A fully abstract semanticsfor a higher-order functional
language with nondeter ministic computation
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ABSTRACT. This paper is about the relationship between the theory of monadic types and the practice of
concurrent functional programming. We present a typed functional programming language CMML, with a
type system based on Moggi’s monadic metalanguage, and concurrency based on Reppy’s Concurrent ML. We
present an operational and denotational semantics for the language, and show that the denotational semantics
is fully abstract for may-testing. We show that a fragment of CML can be translated into CMML, and that the
translation is correct up to weak bisimulation.
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1 Introduction
This paper shows how the notion of computation types interacts with operational and
denotational semantics for a nondeterministic A-calculus.

In a conventional call-by-value typed A-calculus, one can add a nondeterminism op-

erator e f with typing:

NM-e:1 Fref:t

MN-enf:t

and provide it with nondeterministic reductions:

eMNf=e¢e enNf=f

However, such a A-calculus does not fit the usual ‘off the shelf’ (Lambek and Scott, 1986)
categorical model of cartesian closed categories (cccs), since it does not satisfy either n-
or B-equivalence. For example:

(Ax.(x,x))(0MN1)# (0M1,0M1)
since the latter has the reduction:
(0n1,0n1)=(0,1)
which the former cannot match. Similarly:

((A.0) T (Ax. 1)) #Ay. ((Ax.0) T (Ax. 1))y)
since the latter (placed in an appropriate context) has the reduction:

(Az.(20,20))(Ay. (((Ax.0) M (Ax.1))y)) = (0,1)

which the former cannot match.

Since such a nondeterministic A-calculus cannot be modelled as a ccc, the traditional
denotational approach is to model it using a powerdomain functor (Plotkin, 1981), for
example giving the semantics of integers as:

[int] =2(NL)
Moggi (1991) observed that the phenomenon of non-trivial computation is quite general,
and that the denotational semantics can be simplified by separating the semantics of com-
putation (in this case the functor 2 (_, )) from the semantics of data (in this case N). This
separation can be achieved in the type system of the A-calculus by providing a computa-

tion type constructor C _whose semantics is given by an appropriate functor. For example,
in the above case we have:

it =N [C1] =2 ([1].)

In this treatment, we give different types to values such as ‘2 :int” and ‘1+1: Cint’.
The former is an integer value where the latter is an integer computation. This separation
of expressions into values and computations of values is standard in the call-by-value
A-calculus, but is usually done syntactically rather than in the type system.

Computation types have had some success in the functional programming community
in modelling systems with side-effects (Wadler, 1990), such as the Haskell (Hudak et al.,
1992) monadic I/O library (Gordon et al., 1994).
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In Section 3 we present a A-calculus with an explicit type constructor, and show (as-
suming the programs satisfy certain equivalences) that its models are precisely given by
categorical structures:

Programming construct Categorical equivalent
Algebraic datatypes Categories with finite products
Let-expressions Strong monads
Functions T-exponentials
If-then-else expressions ~ Computational coproducts of 1
Deconstructors Morphisms in the Kleisli category

This gives us quite a powerful tool for giving semantics for languages with computation
type: given such a language, we just have to verify (for example using operational tech-
niques such as bisimulation) that it satisfies certain equivalences, from which we get “for
free’ a canonical semantics in any category with the appropriate structure.

We use this technique in Section 4 to show how a fully abstract semantics can be given
for the case of a nondeterministic language with recursion. The denotational semantics is
given in the domain of algebraic dcpos, not necessarily with least elements. For example,
we can compare the denotation of booleans with computations of booleans:

{t,f}
2N
[bool] =(t f) [Cbool] = | {t} {f}
N 0 /

Since we are not requiring all types to have least elements, this gives a very natural se-
mantics for data, using the product and coproduct structure of posets. However, we still
need to give a denotation for fixed points, but the restrictive type system ensures that we
only have to find fixed points of terms of computation type, and those always have least
elements.

We can show that the denotational semantics is fully abstract for the operational se-
mantics using a variant of Abramsky (1989) and Ong’s (1988) lazy lambda-calculus and
Abramsky’s (1991) domain theory in logical form. This is similar to Ong’s (1993) use of a
program logic for the untyped A-calculus, but is simplified by the fact that nondeterminism
can only occur at computation type.

The simplified proof of full abstraction is due to the fact that the nondeterministic A-
calculus with computation types has more expressive power than the A-calculus without.
For example, in the nondeterministic A-calculus, the following terms are identified:

(0m1,0m1)=(0,0)M(0,1)M(1,0)M(1,1)

whereas their simplistic translations into the A-calculus with computation types are not
equal:

[([oTm {a], [0] v [2])] # [([0], [oD] M [([o], [1DI T {([4], [ODT P [([A], [1])]
since when placed in the context:
letX < _inlety<xXLinletz<=XxLiny =12
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the former has the reduction:

letx <= [([0]M[1],[0]M[1])] inlety <=X.Linletz<=X.Liny =z
= lety < [0]M[1]inletz< [0] M [1]iny =z
=0=1
= [false]

which the latter cannot match.

This paper is part of an investigation into the use of computation types in concurrent
functional languages (Jeffrey, 1995). There, the nondeterministic language is extended
with communication capabilities based on Reppy’s (1991, 1992) Concurrent ML, and we
show that it can be given a fully abstract semantics based on Hennessy’s (1994) fully
abstract semantics for untyped higher-order processes. The resulting program logic has
much of the flavour of Hennessy—Milner (1980) logic.

2 Mathematical preliminaries

This section contains the standard definitions and results which will be used throughout
this paper.

2.1 Categories and monads

This section contains a brief overview of the categorical structure used in later sections.

We refer the reader to Pierce’s (1991) introductory textbook or Mac Lane’s (1971)
book for the definitions of category, functor, natural transform, product, coproduct, ini-
tial, terminal, isomorphic, equivalent, and for further details on the definitions in this
section.

Write C[X,Y] for the class of morphisms with source X and target Y in the category
C. When this class is a set, we call this a homset.

A punctuated category is one where the initial and terminal object coincide.

A small category is one where the class of objects and the class of arrows are sets.

Let Set be the category of sets with functions.

Let Mon be the category of monoids with monoid homomorphisms.

Let Cat be the category of small categories with functors.

Let CCat be the category of small categories with distinguished finite products, and
functors which preserve the product structure. We shall associate products to the left,
writing Xg X - -+ X Xpy1 for (X1 x -+ X)) X Xp1 and Xg X - - - x X for 1. We shall similarly
associate the mediating morphism (fy,..., fy) : X = X1 x --- x X, for fj : X = X; to the
left, writing (f1,..., fap1) for ((f1,..., fn), far1) and (fq,..., fo) for 1. We shall write
T:XxY —=Xand 1 : X xY =Y for the projections, and write Ty n : Xp X -+ X X = Xp
for the generalized projection.

Write C°P for the dual category to C, with objects from C and morphisms f : Y — X
foreach f : X =Y in C. If F: C— C’ is a functor, then so is F°P ; C°? — C°? where
FoPX =FX and FoPf = Ff.

A monad is a functor T : C — C together with natural transformations:

Nx :X—=TX  px:T2X > TX
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such that:
T3 TH.T2x TX .72 .T0 71X
" Ay d
T2X —* . TX TX

Note that here, and throughout this document, we omit subscripts where they can be
deduced from context.
A T-algebrais a object X from C together with a morphism [] : TX — X such that:

T2x TH. X X -N.TX
lu \M \d\ \M
Tx X X

A T-algebra morphism between T-algebras (X,[.]) and (X',[.]') is a morphism
f : X = X’ such that:

TX X
\Tf f

Tx . x
Let T-Alg be the category of T -algebras with T -algebra morphisms.
A monad on a category with finite products is strong iff it has a natural transform:
txy (X xTY =>T(X xY)
such that:

X xY

TX idxn\ﬂ\
{rf\'“”\ XxTY L - T(XxY)
IxTX - T(1xX) id xu \

XxT L T(XxTY) - T3(X xY)

(XxY)XTZ-T((XxY)x2Z)

o K

Xx(YXTZ) XL X x T(Y xZ) - T(X x (Y x 2))
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where a is the associativity natural transformation:

0:(XxY)xZ—=>Xx (Y x2Z)

Let SMon be the category of strong monads with functors which preserve the product
and monad structure.

A computational cartesian closed category (cccc) is a category with finite products
and a strong monad T : C — C such that for any objects X and Y there is a T -exponential
object TXY with bijection (natural in X and Z):

curry : C[X xY,TZ] ~ C[X,TZ"]
Given a cccc, we can define the evaluation morphism as:
ev=curry lid: TZ" xY »7TZ

Let CCCC be the category of small cccc’s with functors which preserve the product,
monadic and T -exponential structure.

2.2 Partial orders

This section contains a brief overview of the order structure used in later sections.

We refer the reader to Davey and Priestly’s (1990) introductory textbook or
Plotkin’s (1981) lecture notes for the definitions of poset, join, meet, monotone, and for
further details on the definitions in this section.

A poset (X, <) is discrete iff x <y impliesx =y.

A subset Y of a poset X is directed iff every finite subset of Y has an upper bound in
Y; note in particular that 0 is not directed, but that any non-empty chain is. A directed-
complete partial order (dcpo) is a poset where every directed set has a join. A function
between dcpos is continuous iff it is monotone and respects directed join. Let DCPO be
the category of dcpos and continuous functions. The well-below or approximation relation
in a dcpo is defined:

x L yiffy<\/Z=3zeZ.x<zforall directed Z
An element x is compact iff x < x. Let {Y = {x|x <y € Y}. A dcpo is algebraic iff:

Hy} is directed and y = \/ {{y} for all y

For any dcpo X, dcpo with least elementY, x € X andy € Y, let x=y : X =Y be the step
function:
y ifx<x

!
(x=y) =X+ { 1 otherwise

Let Alg be the category of algebraic dcpos with continuous functions. For any category
C of posets, define the subcategories:

e C, the subcategory of C of posets with a least element 1L, and morphisms which
respect L.

e C, the subcategory of C of posets with binary join Vv, and morphisms which respect
V.
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A category C is DCPO-enriched (resp. DCPO | -enriched) iff for every objects X and
Y, the homset C[X, Y] forms a dcpo (resp. dcpo with L), and composition is continuous
(resp. strict continuous). For example Alg is DCPO-enriched, and if C and C; are DCPO-
enriched, then so are C,, Cy, C° and [1; Ci. Similarly Alg, is DCPO -enriched, and if
C and Cj are DCPO  -enriched, then so are C, , Cy, C°? and []; Ci.

A functor F : C — C’ between DCPO-enriched categories is locally monotone
(resp. locally continuous) iff its restriction to homsets F : C[X,Y]— C'[FX,FY] is mono-
tone (resp. continuous).

For example, the following functors are locally continuous:

(=) P Alg°® x Alg,, —Alg,
(-=v-) T AlgY x Alg,y —Algyy
(-=1v-) P AR, x Alg,, —Alg,
(0x.):Algx Alg—Alg
-1 - Algy,—Alg,y

? :Alg—Alg,y
given by:
X =Y = Alg[X,Y] f—og=hm f;h;g
X—=vY = Algy[X,Y] f=vg=h~ f;h;g
X—=1vY =Alg,[X,Y] f=ivg=h~f;h;g
XxY ={(xy)|xeX,yeY} fxg=(xy)— (fx, fy)
XL = {L}u{liftx | x € X} fi = (L~ L)U(liftx — lift fx)
PX ={{Y |Y CX} Pf=Yr{{fy|yeY}

where X x Y inherits the order from X and Y, X inherits the order from X with new least
element L, and #X is ordered by subset inclusion. In addition, if F:C—C’,G:C'—»C"
and H; : C— C; are locally continuous, then so are F°P, F;G and (H; | i € I).

An embedding in a DCPO | -enriched category C is a morphism e : X — Y such that
there exists a morphism eR : Y — X where e;eR = id and eR;e < id. Let Ce be the
subcategory of C where all morphisms are embeddings. Note that any locally monotone
functor F : C — C’ restricts to a functor F : Ce — Cg.

An w-diagram in a catgegory C is a series of objects X1,Xp,... with morphisms
fij - Xi = Xj when i < j such that fjj =id and fjj; fjx = fi. A cocone for such an w-
diagram is an object X with morphisms f; : Xj — X such that fjj; f; = fi. A colimit is a
cocone fj : Xj — X such that for any other cocone f/ : X; — X’ there is a unique f : X — X’
such that f;; f = f/. A category is w-complete iff all w>-diagrams have colimits. Note that
Alg, g and (Alg‘i"v)E are w-complete, and that if C; are w>-complete then so is []; Ci.

A locally monotone functor F : C — C’ between DCPO-enriched categories is -
continuous iff Cg and Cg are w-complete, and the restriction F : Cg — Cg preserves
colimits of w-diagrams.

For example, all of the locally continuous functors listed above are also continuous.
In addition, if F : C—= C’, G: C' = C" and H; : C — C; are continuous, then so are F°P,
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F;Gand (Hj|iel).
A functor F : C — C has a canonical fixed point X iff fold : FX — X is the initial
F-algebra and unfold : X — FX is the terminal F-coalgebra.

PROPOSITION 1. Any continuous, locally continuous endofunctor on a DCPO, -
enriched punctuated category has a canonical fixed point.

PROOF. A generalization of the proofs in (Abramsky and Jung, 1994). O
For example, the domain equation for the lazy lambda-calculus is:
D~ (D—D),
which can be found by taking the first element of the canonical fixed point of the functor:
(= 5-0)%, (= )i-1)) : AIGR, x Alg,, — AlgP, x Alg,

3 Sequential computation

This section shows how categorical structure can be used to model common programming
structures. To do this, we construct a series of programming languages by gradually
adding features, and showing that these features can be modelled categorically.

To show this formally, we shall borrow a notion from categorical algebra, and view
programming languages as monads.

For example, given a set of values V ranged over by v, we can define CLV to be the
cat lists over V, given by the grammar:

ex=[v]|[]|e++e
up to the equivalence class given by:
eH[l=e=[+e (e+f+g=e+(f+9

Then CLV is itself a set, so we can regard CL as a function from sets to sets. Moreover,
given any function F : V — V' we can lift it to a function CLF : CLV — CLV’ as:

CLFv=Fv CLF[] =1 CLF(e++ f) = (CLFe) ++ (CLF )
we can then verify that CL satisfies the criteria for being a functor:
CLid=id CL(F;G)=CLF;CLG

We also have an injection function n : V — CLV and a flattening function
p:CL(CLV)—CLV:

nv=[p  pef=e pl=0 uEHf)=peHpuf
These two functions satisfy the equations:
nu=id  CLnqju=id  CLp=Wp
and so CL forms a monad.

We can then ask what a ‘reasonable’ model of CL would be. The criteria we consider
here are:

o the model should contain a denotation for the singletons [_], and
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o the model should be denotational, so if [e] = [f] then [C[e]] = [C[f]].

A model satisfies these criteria precisely when it is a CL-algebra, since these conditions
correspond to respecting n and u respectively. This means we can refine the informal
question “What are reasonable models of CL?” into the formal question ‘What are the
CL-algebras?’

Any CL-algebra must be a monoid, since we have a binary operation ® with a unit |
given by:

x@y=[X+NI 1=

Moreover, any monoid M is a CL-algebra, since we can define the denotational semantics
of CLM as:

[Vi=v [I=1 [e+fl=[el[f]
We can express this one-to-one correspondence more precisely by showing that CL-Alg
is isomorphic to Mon.

This example is one of the motivating uses of monads and algebras, and suggests a
general technique for searching for models of programming languages:

o define a category for the basic values (in this case V is an object in Set),

define a programming language parameterized by basic values (in this case CL is a
functor on Set),

show that the programming language forms a monad on the category (in this case
using singletons and flattening), and

find the category of algebras of the programming language (in this case Mon).

In this section we shall use the technique of finding categories of T -algebras to show the
correspondence:

Programming construct Categorical equivalent
Algebraic datatypes Categories with finite products
Let-expressions Strong monads
Functions T-exponentials
If-then-else expressions ~ Computational coproducts of 1
Deconstructors Morphisms in the Kleisli category

The results in this section are taken in part from Moggi’s (Moggi, 1991) monadic meta-
language, although the treatment of products, if-then-else statements, and deconstructors
is rather different.

3.1 Algebraic datatypes

In this section, we shall present a simple language for algebraic datatypes, and show
that its algebras (and hence its ‘reasonable models”) are precisely categories with finite
products.
A (many-sorted) signature (ranged over by %) is a set of sorts (ranged over by A, B and
C) and a set of constructors (ranged over by c) together with a sorting ¢ : A1,...,An = A.
For example, the signature NatList for lists of numbers has sorts bool, nat and list,
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and constructors:

true : — bool false : — bool
zero . — nat succ : nat— nat
nil : — list cons : nat, list — list

As another example, given sets X4, ..., Xy, the signature Zx, . x, has sorts Xy, ..., Xy and
functions f : Xj; x --- x Xj, = X as constructors with sorting f : X, , ..., Xj, = Xi.

A signature morphism f : ¥ — ¥’ consists of a mapping from the sorts of X to the
sorts of ' and a mapping from the constructors of Z to the constructors of X’ such that
wheneverc: Ag,..., Ay —Ain I then fc: fAq,...,fA,— fAin Y.

For example, there is a signature morphism [_] from NatList to 2 f} ¢+ Which maps
sorts as:

[bool] = {t, f} [nat] = w [list] = w*
and maps constructors as:
[true] =t [false] = f
[zero] =0 [succ] = _+1
[nil] = ¢ [cons] = _._

Let Sig be the category of signatures with signature morphisms.
Given a signature X, we can define the language ST Z of syntax trees over X as:

e:=x|c(eq,...,en) | (e,€) |V
where v ranges over Ivalues given by the grammar:
vi=X|VL|VR

where x ranges over a set of variables. These Ivalues allow projections of pairs, as we
shall see below.

The closed terms (those which contain no Ivalues) are tuples of expressions built from
>. For example, some open terms from ST NatList are:

true, false
Z€ro,sucC zero, SuCC SUCCZEro, . . .
nil, cons(zero, nil), cons(zero, cons(succ zero, nil)), . ...

The open terms (those containing lvalues) contain free variables which may have terms
substituted for them. In this section, the variables are just acting as place-holders, since
there are no constructs for binding variables to values, but we shall add such a construct
in the next section when we deal with let-expressions.

For example, some open terms from ST NatList are:

X
SUCCX,SUCCSUCCX, ...
cons(X,Y),cons(X,cons(succX,Y)), ...

(we shall discuss the Ivalues v.L and v.R below).
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We can give ST X a static type system, with types:

=1 [Al|T®T
and type judgements of the form I - e : T given by rules:
Ne:o THT:T

FExi1  THEf) ot
Fher:[A)] - Then:[A)], .
Frcer,..,en): [A] [c:AL,...,An—A]
Myt
VT xty)

Mx:oFx:o Ix:oky:t
MEv:(o®t) TERvV:(0®T)
MviL:o N-vk:t
where I" ranges over contexts of the form x1 : T1,..., X, : Tp.
For example, we have the type judgements for closed terms:

F true,false : [bool]
F zero,succzero,succsucczero, ... : [nat]
F nil, cons(zero, nil), cons(zero, cons(succzero, nil)), ... : [list]
and for open terms:
X : [bool] - X : [bool]
X : [nat] F succX,succsuccX, ... : [nat]
X : [nat],y : [list] F cons(X,Y),cons(X, cons(succX,Y)),... : [list]
We can now explain the Ivalues v.L and vR as allowing the projection on pairs. For exam-
ple:
z: [nat] ® [list] - succ(zL),succsucc(zL),... : [nat]
z: [nat] @ [list] F cons(z.L,zR),cons(z.L,cons(succz.L,zR)),... : [list]

Note that we are not allowing projections on arbitrary terms e and 1T'e (as would be more
standard, for example in Moggi’s (1991) monadic metalanguage) since this would not
allow us to have the following useful properties:

e any term of type | is either an Ivalue or x,
e any term of type [A] is either an Ivalue or of the form c(e4,...,en), and
e any term of type o ® T is either an lvalue or of the form (e, f).

However, whenever ' - e: 0®T, we can define T - 1e: o and I - 1Te : T as syntactic
sugar, since e must either be an Ivalue v, in which case we define:

TV = V.L TV =VR

or e is a pair (f,g) in which case we define:
n(f,g)="f 1(f,0)=g
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We are allowing multiple occurrences of one variable in a context, but only considering
the right-most occurrence as significant. For example:
X:O0X:THFX:T
X:0,X:THX:0o
STX is itself a signature, with types as sorts and judgements of the form

(X1 :01,...,X, : On - €1 T) as constructors & — T, viewed up to the congruence given
by (wheny is fresh):

(CEx:1)

=Tk=x:1) (1.n)
(T'F(vL,vR) :0R®T)

=(Tkv:o®T) (x.n)
(Fx:o,MkFe:1)

= (Ty:o,MFely/x:1) (a)

Note that these equations only involve open terms, so closed terms are viewed up to
syntactic identity. This is useful for the operational semantics given in Section 4, since
we do not have to give the operational semantics up to an equivalence class on values.
We shall often elide the typing of terms where context makes it obvious. For any
signature morphism f : ¥ — 3’ we can define signature morphism ST f : ST — ST’ as:
=1
[A] = [fA]
o1~ (STfo)® (ST f1)
* > %
c(et,...,en) — (fc)(ST feq,...,ST fen)
(e,€') — (ST fe,ST f¢)
ViV
It is routine to verify that ST f is a signature morphism and that ST : Sig— Sig is a
functor.

Whenever I, : & e :tand I+ f: & we can define the substitution I - e[f/X] : T as
usual, the only non-standard clause being:

VL[F/) = [ /X) VRIF/R) = O[T /)
For example:
cons(z.L,cons(succz.L,ZR))[(zero,nil)/z] = cons(zero, cons(succzero, nil))

Following the outline given in the introduction to this section, we now show that
ST : Sig— Sig is a monad, using injection for n and substitution for .
We can definens : Z—SLZ as:
A [A]
(C:AL...,A = A) = (X1 [A1],-- -, Xn : [An] F C(X1, ..., %) : [A])
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and pis : SL?Z —SLS as:

I —1
[f]—T

ORTH— HO® T
* > %

(:6Fe:1)(F) — e[uf/x]

(e,€') = (pe,pe)
ViV

It is routine to verify that ST is a monad, and so the only remaining question is what are
the ST-algebras? Proposition 2 tells us that these are equivalent to categories with finite
products.

PROPOSITION 2. ST-Algis equivalent to CCat.
PROOF. We need to provide two functors:
cat: ST-Alg— CCat alg: CCat—ST-Alg
and then show that we have natural isomorphisms:
catalgC~C algcatz ~ %

Given an ST-algebra Z, let cat X be the category where objects are sorts and morphisms
are unary constructors ¢ : A— B. This has categorical structure given by:

1=11]
AxB=[[Al®[B]]
id = [x:[A]Fx:[A]]
c;c' =[x:[AlFc(c(x): [C]]
P=[x:[AlF*:1]
= [x:[A]® [B] FxL:[A]]
T = [x:[A]®[B] F xR : [B]]
(c,c’y = [x:[A]F (cx,cx) : [B]®[C]]
It is routine to verify that this makes catX a category with finite products, and that any
ST-algebra morphism f : ¥ — X' lifts to a functor cat f : catZ — cat X’ which respects
finite products.

Given a category with finite products C, let alg C be the signatures where sorts are
objects and constructors are morphisms with the sorting f : Xy,...,X, — X whenever
f Xy x---x X, — X. This is an ST-algebra, since we can define the denotational se-
mantics of ST (algC) by defining an object [1] in C as:

=1
[o®1] = [o] x[1]
[IX]I =X
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an object [I'] in C as:
[X1: Ty Xn i T] = [T2] X -+ % [tn]
and a morphism [ Fe: 1] : [[]—[1] in C as (when x # y):
[FTEx:1] =1
[TE(ef):oxt=(Fe:a],[TFf:T])
[TEfer,....en)  [X]I =T Fev: Xa]],---, 0T Fen: [Xall); f
[F,x:oFx:0] =1
[Fx:oky:t=mlFy:T]
[FTEvL:o]=[FFv:o®T];m
[FTFvR:T]=[Fv:o®T];T
It is routine to verify that algC is a ST-algebra, and that any functor F : C — C’ which
respects finite products lifts to an ST-algebra morphism algF : algC — alg C'.
It is routine to verify that alg; cat = id, but it is not the case that cat;alg = id, since only
unary constructors are preserved by cat. However, whenever two SL-algebras (Z,[_]) and

(Z,[-]') have the same sorts and unary constructors, we can show them to be isomorphic
with the SL-algebra morphism:

A A
(C:AL,-..,An—=A) = [X1: [A1],---,%n : [An] F C* (tuple(X1, ..., %n)) : [A]]
where tuple : Ag,...,An = AL X --- X Ay is:

tuple = [[yl : [Al]a---;Yn : [An] F (YL---;Yn) : [Al]®®[An]]]
andifc:Ag,...,An—>Athenc*: Apx--- x Ay > Als:

C* = [X:[A1x - X Ap] F C(Th 1X, ..., ThnX) : [A]]

Moreover, we can show that this SL-algebra morphism is a natural isomorphism between
alg(catX) and %, and so ST-Alg is equivalent to CCat. O

3.2 Monadic metalanguage

In the previous section, we saw that the appropriate categorical model for a simple lan-
guage of data is categories with finite products. However, there was no mention of com-
putation in that presentation, which we shall rectify in this section.

We shall follow Moggi (1991) in making two assumptions: that let-expressions are an
appropriate primitive for computation, and that we should introduce a type constructor for
computation.

To do this, we extend ST Z to the monadic metalanguage, MMLZX , by adding two new
expression constructions:

ei=---|[e]|letx<eine
These are:

e [e] is a computation which immediately terminates with result e. For example, [zero]
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is a computation of an integer which immediately returns zero. This is similar to *exit’
in LOTOS (8807, 1989), and ‘return’ in CML.

e letx<ein f is a computation which evaluates e until it returns a value, which is then
boundto x in f. For example, letx < [zero]in [succX] is the same as [succzero.

We also extend the type system by adding a new type constructor for computations:
Ti=---|Ct
and statically typing MML X as:

N-e:t N-e:Co Mx:oFf:Crt
M-[e]:Ct INFletx<einf:Ct

For example, we have:
F [zero] : Cnat
F letx <= [zero]in[succX] : Cnat
F [[zero]] : CCnat
F letx < [[zero]]inx : Cnat

Note in particular that we are allowing higher-order computations such as [[zero]], which
immediately terminates with a computation [zero]. This is similar to CML’s event type
constructor.

Then MML forms a monad in the same way as ST does, with the addition of
Moggi’s (1991) axioms (when x is not free in g):

(F'lety<fing: Ct)

= (Ikletx< fing[x/y]: C1) (C-a)
(I letx<=[e]inf : C1)

= (T'k fle/x]: C1) (C-B)
(F'Fletx<ein[x]: C1)

=(Tke:C1) (C-n)
(F'Flety < (letx<einf)ing: C1)

= (MTkletx<ein(lety< fing) : C1) (C-ass)

The next proposition shows that the MML-algebras are precisely strong monads (hence
the name ‘monadic metalanguage’). This result is due largely to Moggi (1991).

PROPOSITION 3. MML-Alg is equivalent to SMon.
PROOF. For any MML-algebra Z, let cat > have the monadic structure:
TA =[C[A]]
Tc=[x:C[A]F lety<=xin][cy] : C[B]]
n=[x:[AlF[x:CA]
H=[x:CC[A]F lety<xiny: C[A]]
t = [x:[A]®C[B] F lety<=xRin[(xL,y)] : C([A] ®[B])]
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It is routine to verify that catX is a strong monad. Given an MML-algebra morphism
f 1 £ — %' it is routine to verify that cat f : catZ — catZ’ preserves the strong monadic
structure, and so is an SMon morphism.

For any strong monad T : C— C, let alg C be extended with semantics for MML given

by:
[Ct] =TI[r]
[FTEe]:CT] =] Fe:1n
[l Fletx<einf:C1] = (id,[I+e: Ca]);t;T[M,x:0F f:Cao];u

It is routine to verify that this is an MML-algebra, and that if F : C — C’ preserves the
monadic and cartesian structure, then alg F is an MML-algebra morphism.

It is routine to verify that alg and cat form an equivalence. m|
3.3 Partial functions
The monadic metalanguage does not allow for any form of parameterized computation,
such as procedures or functions. In this section, we extend MMLZX to a higher-order
functional programming language, and show that the corresponding categorical struc-
ture is computational cartesian closed categories (ccccs). This development follows
Moggi (1991), although the details are new.

The functional monadic metalanguage MMLA X, extends MML 2 with expressions:

en=---|Ax.e|ee
We also extend the type system by adding a new type constructor for functions:
T:=---|T1—>Ct

and statically typing MMLA X as:
MNx:oke:Ct N-e:o—-Ct,f:o
MF-Ax.e:o0-Ct M-ef:Ct

For example:
F AX.[succX] : nat — Cnat
F (Ax.[succx])zero : Cnat

Note that we are only allowing functions to return computations, for example there is no
type nat — nat, only nat — Cnat. This corresponds to our intuition that the only terms
which involve computation are terms of computation type, and this would not be true if
we allowed functions to return arbitrary type. This restriction also allows us to show that:

any term of type | is either an Ivalue or x,

any term of type [A] is either an Ivalue or of the form c(eq,...,en),
any term of type o ® T is either an Ivalue or of the form (e, f), and
any term of type o — Ct is either an Ivalue or of the form Ax.e.

Note that we have no similar result about terms of type Ct.
Then MMLA forms a monad in the same way as MML does, with the addition of the
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standard a, (3 and n axioms for functions (wheny is not free in e):

(T'-Ax.e:0—=C1)

= (TFAy.e[y/x]:0—=C1) (—-0)
(T'k(Ax.e)f: C1)

=(M+e[f/x]:CT) (—-B)
(CFAy.(ey):0—>C1)

=(Tke:0-C1) (—=-n)

These axioms are those required to show that the models for typed A-calculi are precisely
cartesian closed categories (Lambek and Scott, 1986). Functional MML has a more
restrictive type system, and so we have the corresponding restricted result that algebras
for MMLA are ccccs.

PROPOSITION 4. MMLA-AIg is equivalent to CCCC.
PROOF. For any MMLA-algebra Z, let catZ have T -exponentials give by:
TB* = [[A] = C[B]]
with curry given:
curryc = [[x: [A] F Ay. [c(tuple(x,y))] : [B] = C[TC]];
[x:[B] = CC[C]F Ay.letz<xyinz: [B] = C[C]]
curry1c = (c x id);apply
apply = [x: ([B] = C[C]) ® [B] - (x.L)(X.R) : C[C]]

The tricky part of this proof is showing that curry is a natural bijection. This is difficult be-
cause the definition of curry involves an implicit type coercion, between the types C[TC]
and CC[C]. These types have the same semantics (T2C) but are syntactically different,
but the bijection can be proved by equational reasoning using appropriate use of the fact
that [_] is an MMLA-algebra.

It is routine to verify that catX is a cccc, and that cat f : cat> — catX’ is a cccc
morphism.

Forany cccc T : C— C, let alg C be extended with semantics for MMLA given by:

[o—C1] = T[]l
[FFAx.e:0—=C1] = curry[l,x: 0k e: CT]
[TFef:Ctl=([T+e:0—=Ct],[TF f:a]);ev

It is routine to verify that algC is an MMLA-algebra, and that algF : algC — algC’ is an
MMLA-algebra morphism.

It is routine to verify that alg and cat form an equivalence. m|
3.4 Control flow

One feature which is missing from functional MML is the ability for computation to
depend on data. For example, it is impossible to implement an ‘if-then-else’ function of
type [bool] ® [nat] ® [nat] — C[nat] in MMLA list.
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In this section we shall add a simple control flow operator, and show that it can be
modelled by a restricted form of coproducts

A signature with booleans is a signature with a sort bool and constructors
true,false : () = bool. Let SigB be the category of boolean signatures, together with
morphisms which respect bool, true and false.

For any boolean signature 2, the functional monadic metalanguage with booleans
MMLAbZ extends MMLA Z with expressions:

e:=---|ifetheneelsee
and with the type judgement:
INFe:[bool],f:Ct,9:Ct
I+ ifethenfelseg: Ct

Again, note that since ‘if-then-else’ statements require computation, they are restricted to
terms of type Ct.

MMLAb forms a monad on SigB in the same way as MMLA does, with the addition of
axioms for ‘if-then-else’:

(I Fiftruethen felseg: C1)

=(Ff:C1) (if-B)
(T Fiffalsethen felseg: C1)

=(kFg:C1) (if-p")
(FFifethen felse f : C1)

=(TkFf:C1) (if-n)
(I Fifxthen f[true/x] elseg]false/x] : CT)

= (I Fifxthen felseg: C1) (if-n")

A category with a strong monad T : C — C has computational coproducts of 1 iff there is
a distinguished object 2, with maps K,k’ : 1 — 2 such that for any commuting diagram:

1-X.2. X 1

A4

TY

there is a unique mediating arrow [f,g] such that:

(L S B S

The category has indexed computational coproducts of 1 iff it has computational coprod-
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ucts of 1 and for every commuting diagram:

X {I;K,id) X x 2(!;K’,id) X

K

there is a unique mediating arrow [f,g] such that:

X {1;K,id) X x 2(!;K’,id) X

RN

TY

Note that any category with indexed computational coproducts of 1 must have coproducts
of 1, since we can take X to be 1.

We shall show below that models of MMLADb are precisely cccc’s with computational
coproducts of 1. First we shall show that in any cccc, any computational coproducts of 1
are indexed, and so we only need computational coproducts of 1 for a model of MMLA to
be a model of MMLADb.

PROPOSITION 5. Any cccc with computational coproducts of 1 has indexed computa-
tional coproducts of 1.

PROOF. Forany f,g: X —=TY, let h be:
h = [curry(T7; £);n, curry(1t;9);n] : 2 = T(TYX)
and let [f,g] be:

X x 2 1B X TTYX) L T(X x TYX)
TM, 7 (TyX 5 X) 124 T2y &, TY

Then we use the fact that, forany f : X x Y —TZ, the diagram:

X x Y curry f xid TZY <Y

.

ev

TZ
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commutes to show that:

X (i1 X x 1 dxx X x 2
id x curry(T(; f) /Xﬁ
X x T(TYX)
(T, id x t

XxTYX D T(X xTYX)

(it Tt [f.q
1x X @DXd Ty X o x T (TYX x X)
Tev
Tt o T2y
AN
X ! TY — ¢ TY

and similarly for k’, and so the indexed coproduct diagram commutes. For any other i
which makes the indexed coproduct diagram commute:

X {I;K,id) X x 2(!;K',id) X

AN

TY
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we can show that h = curry ({17, T0);i); N, and thus:

X x 2 id X x2

id Xcurry ({0, T0); 1)

id (.1 T(rt, 1) [f,q]
2 x X eyt xid py X o x A T(TYX x X)
Tev
(m, ev TZY
/ \
X x 2 ! TY id TY
Thus the category has indexed partial coproducts of 1. O

Let CCCCB be the subcategory of CCCC of categories with partial coproducts of 1,
together with functors which respect 2, k and k.

PROPOSITION 6. MMLAb-Alg is equivalent to CCCCB.
PROOF. For any MMLAb-algebra Z, let cat X have the structure:

2 = bool

K = [x: 1+ true: [bool]]

K' = [x: 1 false : [bool]]

[c,c'] = [x:[A] ® [bool] - if xR then [c(x.L)] else [c'(x.L)] : C[TB]]; 1

It is routine to verify that these satisfy the defining conditions of an indexed partial co-
product of 1, and that cat f : cat X — catZ’ is an CCCCB morphism.

For any category C with indexed partial coproducts of 1, let algC be extended with
semantics for MMLAD given by:

[bool] =2
[l F true: [bool]] = ;K
[ + false : [bool]] = ;K
[T Fifethen felseg: Ct] = (id,[ Fe: [bool]]);[[F F f:Ct],[T Fg:Ct]]
It is routine to verify that alg C is an MMLAb-algebra, and that algF : algC — algC’ is an

MMLAb-algebra morphism.
It is routine to verify that alg and cat form an equivalence. |
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3.5 Deconstructors

Although MMLAb X allows computation to be affected by data, this is only allowed for
expressions of type [bool]. For example, although we can implement an equality test
function of type [bool] ® [bool] = C[bool], we cannot implement an equality-test function
of type [nat] ® [nat] — C[bool] in MMLAb NatList.

This can be rectified by allowing signatures to have deconstructors as well as con-
structors.

A signature with booleans and deconstructors is a signature with booleans together
with a set of deconstructors, ranged over by d, with sorting d : A1,...,Ay— B.

For example, we can extend NatList to being a signature with booleans and decon-
structors by adding deconstructors:

eq : nat,nat — bool pred : nat — nat
isnil : list = bool hd : list — nat tl: list — list

In this section, we will not consider the semantics of deconstructors, and we shall leave
that to Section 4.2.

A morphism f : Z— ¥’ between signatures with booleans and deconstructors is a map-
ping between sorts, constructors and deconstructors which respects the boolean structure
and sorting. Let SigBD be the category of signatures with booleans and deconstructors.

For any signature with booleans deconstructors %, the functional monadic metalan-
guage with booleans deconstructors MMLAbd 2 extends MMLAb X with expressions:

en=-..-|d&
and with type judgements:
ree:[A ., »
rras cg oA Bl

For example, we can define an equality test for booleans as:
eq : [bool] ® [bool] = C[bool]
eq = AX. ifxL

then[x.R]
else not(X.R)

where not is the negation function:
not : [bool] = C[bool]

not = AX. if X
thenlfalse]
else[true]

MMLAbd Z is itself a signature with booleans and deconstructors:
(X:8Fe:Ct):8—>1

and we can show that MMLAbd is a monad on SigBD in the same way as MMLAb.
The next proposition shows that the MMLAbd-algebras are precisely the same as the
MMLAb-algebras. This may seem rather surprising, since we have added extra structure
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to MMLAb, and we might expect to see this structure occurring in the categorical models
for MMLAbd. However, it turns out that CCCCB already has enough structure, since the
deconstructors can be modelled as morphisms in the Kleisli category of a strong monad,
that is where a constructor ¢ : A— B is a morphism of type A— B, a deconstructord : A— B
is a morphism of type A— T B. The deconstructors inan MMLAbd-algebra form a category
with composition and identity given by:

id =[x:[AlF[x]: C[A]]
d;d’ = [[x: [A] F lety < dxind’y : C[C]]
PROPOSITION 7. MMLAbd-Alg is equivalent to CCCCB.

PROOF. It suffices to show that MMLAbd-Alg is equivalent to MMLAb-Alg. To do this,
we show that MMLAbd-algebras are uniquely determined (up to isomorphism) by their
constructors.

In any MMLAbd-algebra Z, define the deconstructor:

(0:TA=A) =[x:C[A]Fx: C[A]]
and given a constructor ¢ : A— TB, define the deconstructor:
(c. :A—=B) =[x [A]F d(cX) : C[B]]
Given a deconstructor d : A— B, define the constructor:
(d*:A—TB) = [%: [A]Fdx: C[B]]

Then (c,)* = c and (d*). = d. From this it is routine to show that if twvo MMLAbd-
algebras are isomorphic in SigB then they are isomorphic in SigBD, since we can extend
the isomorphism i to deconstructors as:

i(d) = (i(d"))«
Thus MMLAbd-Alg is equivalent to MMLAb-Alg and hence to CCCCB. O

4 Nondeterminism

The work in Section 3 shows the precise correspondence between categorical models and
programming languages, and in particular between strong monads and computation.

In this section we look at a particular strong monad, the lower powerdomain monad
2 on algebraic dcpo’s, and show that it provides a fully abstract model for nondetermin-
istic computation. That is, we show that the preorder on terms given by the denotational
semantics is exactly the same as the may-testing pre-order defined operationally.

Powerdomains have long been used as models for concurrency, notably by
Plotkin (1981, for example). Powerdomains over algebraic dcpo’s form a cccc with com-
putational coproducts of 1, which means that for free we have a model for functional
MML with booleans and deconstructors. Hennessy and Plotkin (1979) and Mislove and
Oles (1992) have shown techniques for proving full abstraction of powerdomain seman-
tics. In this paper we show another technique, based on Abramsky’s (1991) domain theory
in logical form.
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Domain theory in logical form uses a program logic as a stepping stone between the
operational and denotational views of programs, and has been used by the author (1994)
to show full abstraction for a concurrent call-by-need A-calculus, and Hennessy (1992) to
show full abstraction for a higher-order concurrent language based on Thomsen’s (1989)
CHOCS.

One corollary of the full abstraction result is that whenever two terms are denotatinally
different, we can provide the reason why they are different. This reason can either be given
as a context in which one term deadlocks where the other may terminate, or it can be given
as a proposition, similar to the distinguishing formulae produced by verification tools such
as TAV (Larsen et al., 1989).

4.1 Syntax

The language we shall consider in this section is an extension of functional MML with
booleans and deconstructors. We extend it with a syntax for recursion, and for nondeter-
minism.

Given a signature X with deconstructors and booleans, the nondeterministic monadic
metalanguage NMML X extends MMLAbd X with expressions:

ex=---|0|e0e]|fix(x=¢)
and type judgements:

MN-e:Cr,f:Ct rx:Ctke:Ct
N-o6:Crt MrFeof:Ct Ikfix(x=e):Ct

Note that we have only defined recursion on computations rather than on functions. How-
ever, we can define recursive functions as syntactic sugar:

fix(x =Ay.e) = [fix(z= (Ax.[Ay.€])|z])]

where:
le] =Ay.letx<einxy

These have typing:

NlN-e:C(lc=»Crt) rIx:o—=Cty:oke:Ct

M-le]:o0—=Ct THfix(x=Ay.e):0—Ct
We shall see below that this has the expected operational semantics:

fix(x =Ay.e)f = e[fix(x =Ay.e)/x][f/Y]

We will write A(X) . e as syntactic sugar, for example:

A(X,y).e=Az.e[zL/X,ZR/Y]

and we will write e(X) £ Cle] as short for defining e to be fix(y = A(X) .C[y]).
For example, a recursive function to add an element to the end of a list is:

snoc : [list] ® [nat] — C[list]
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snoc(xs,X) & letx < isnil(xs) in

if X

then[cons(x, nil)]

elselety < hd(xs) in
lety’ <= tl(xs) in
letz <snoc(y',X) in
[cons(y,2)]

This can be made tail-recursive by defining a function to reverse a list:
rev' : [list] ® [list] — Cllist]
rev/(xs,ys) & letx < isnil(xs) in
if x
thenlys]
elselety < hd(xs) in
lety’ < tl(xs) in
rev'(y', cons(y,ys))
rev : [list] = Cllist]
rev(xs) & rev/(xs, nil)
and then defining:

snoc’ : [list] ® [nat] — C[list]
snoc’ (x,X) £ letys < rev(xs) in rev(cons(X,ys))
Note that the difference between tail-recursive and non-tail-recursive functions is made
very apparent by the explicit use of let to control flow of execution.

The choice operator e O f is based on CSP’s (Hoare, 1985) external choice and so
the choice is not made between e and f until they return a result. (This choice operator
is used because it gives an appropriate semantics in the concurrent language (Jeffrey,
1995).) This means that even up to weak bisimulation (defined in Section 4.3) we have
the equivalences:

ed0d=e=00e (eOf)Og=eO(fOg)
These equivalences allow us to model nondeterminism with a powerdomain model, since
we can view d as the empty set of results, [e] as a singleton, and O as union.

We have also only provided CSP (Hoare, 1985) external choice, and not internal
choice. However, this can be defined:

enf =letx<[e]O[f]inx
This has typing:
N-e:Ct Tref:Cr
Mr-enf:Crt
The operational semantics for internal choice is given below as:

eNf=¢e enNf=f
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As we shall see, internal and external choice cannot be distinguished by may-testing, but
they can be distinguished by bisimulation.

4.2 Operational semantics

In this section we define the operational semantics of NMMLZ.

In order to give an operational semantics for NMML X, we need an operational se-
mantics for the deconstructors of 2. This is given as a higher-order unlabelled value
production system, that is:

e an internal transition relation e — ¢, and
e atermination relation e - ¢’

such that:
o ifese'thente:Ctandke': Ctforsomer,
o ife s e thente:Ctandk e : 1 forsomer,
o Y is deterministic, and
o ife % thene L.

For example, the operational semantics for NatList is (when e # f):

eq(e,e) s true eq(e, ) s false
isnil(nil) s true isnil(cons(e, f)) s false
hd(cons(e, f)) e tl(cons(e, f)) s f

pred(succe) Ve
Note that we have not given any reductions for predzero, hdnil or tinil, and so they
deadlock.

Asort A in a signature with deconstructors and booleans is an equality sort iff there is
a deconstructor eq : A, A — bool with operational semantics (when e # f):

eq(e,e) s true eq(e, f) Y false

For example, nat is an equality sort in NatList, but list is not.
Given an operational semantics for terms of the form d€&, we can extend it to an oper-
ational semantics for closed terms of NMML Z with:

e—1re eYg
[e] Le letx<einf L letx<einf letx<einf -1 f[g/x]

iftruethen felseg — f  iffalsethen felseg -5 g

(Ax.e)f —se[f/x] fix(x=e) — e[fix(x =€) /X]
e—se . e Y e f Y fr
e0f —eOf eOf-eOf eOf-Se] eOf-—[f]
PROPOSITION 8. The operational semantics for NMMLZ is a higher-order unlabelled
value production system.
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PROOF. Show by induction on the proof of e £ ¢’ that if e - &’ then the conditions for
a higher-order unlabelled vps are satisfied. m|

Lete=s¢' iffe —>* e’ ande =5 f iffe =% f.
For example, the operational semantics of fix(x = Ay.e) is:

fix(x=Ay.e)f
- letw <fix(z = (Ax.[Ay.€])|z]) inwf
- letw < (AX.[Ay.€])(fix(x = Ay.e)) inwf
— letw <= [Ay. e[fix(x = Ay.e)/x]]inwf
-5 (Ay.e[fix(x = Ay.e)/x)) f
— e[fix(x = Ay.e)/X][f/y]

Thus the operational semantics of snoc(nil, g) is:

snoc(nil,g)

= letx<«isnilnilin
if X
then[cons(g, nil)]
elselety < hd(nil)in

lety’ < tl(nil)in
letz <=snoc(y’,g)in
[cons(y,2)]

— iftrue
then[cons(g, nil)]
elselety < hd(nil)in

lety’ <tl(nil)in
letz < snoc(y’,g)in
[cons(y,2)]

— [cons(g, nil)]

—5 cons(g, nil)

and if snoc(f,Q) =4 h then the operational semantics of snoc(cons(e, f),q) is:

snoc(cons(e, ),q)
= letx<isnil(cons(e, f),g) in

if X

then[cons(g, cons(e, f))]

elselety <=hd(cons(e, f))in
lety’ < tl(cons(e, f))in
letz < snoc(y’,g)in
[cons(y, )]
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-y iffalse
then[cons(g, cons(e, f))]
elselety <= hd(cons(e, f))in

lety’ < tl(cons(e, f))in
letz <=snoc(y’,g)in
[cons(y,2)]

— lety <= hd(cons(e, f))in
lety’ < tl(cons(e, f))in
letz < snoc(y',g)in
[cons(y,z)]

-5 lety’ <tl(cons(e, f))in
letz <= snoc(y’,g)in
[cons(e,Z)]

— letz<snoc(f,g)in
[cons(e,Z)]

= [cons(e,h)]

- cons(e,h)

Thus we can show by induction that snoc(e, f) returns the list e with f appended to the
end.

Note that this operational semantics explicitly represents many intermediate states of
a computation which would normally be elided in an operational semantics. This is the
price of making the flow of computation explicit using let-expressions. The advantage of
doing so is a simpler operational semantics, and one which is ‘closer to the metal’ of an
abstract machine.

There are a large number of possible operational equivalences and preorders which can
be used to relate nondeterministic terms. In the rest of this section we shall concentrate
on only one of them—may testing.

May-testing has been investigated by Hennessy for both first-order (1988) and higher-
order (1992) untyped processes. It was first suggested as a model for the untyped A-
calculus by Morris (1968).

The assumption behind may-testing is that we are only interested in the observable
external behaviour of terms, and moreover the only behaviour we are interested in is
whether a process may terminate. For a full discussion of may- and must-testing for
concurrent systems, see Hennessy’s (1988) textbook.

Forany I' e, f : T, define the may-testing preorder as " = e Co f : T iff C[e] =L
implies C[f] 24 for any closing context C of type Cl1.

For example, here are some terms which are not may-testing equivalent, together with
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contexts which distinguish them:

distinguished terms distinguishing context
true false if _then Oelse []
) [9] letX < _in[%]

letw < _inletx<=winlety <win

[[true]] O [[false]] [[true] O [false]] letz <=eq(x,Y) inif zthen delse [*]

In each case the first term fails the test and the second passes.

4.3 Bisimulation

We would like to show that (up to may testing) NMML satisfies the equational properties
of MMLAbd X used in Section 3, since this would tell us that programs viewed up to may
testing form a cccc with computational coproducts of 1.

Unfortunately, proving equational properties are true for may-testing is quite difficult,
because it requires quantifying over all contexts. For this reason, we will investigate
bisimulation as an equivalence between programs, since it is much simpler to show the
required equations are true for bisimulation, and then to show that bisimulation is finer
than may testing.

In this section we shall define a variant of Milner’s (1989) bisimulation for NMML Z,
show that bisimulation is finer than may-testing, and that bsimulation satisfies the equa-
tional properties of MMLAbd X. Thus NMML fits the framework outlined in Section 3.

In this section, we shall use the theory of bisimulation for higher-order terms, first
suggested by Abramsky (1989), adapted for a small-step labelled transition system. This
section owes a great deal to Gordon’s (1995) theory of bisimulation for functional lan-
guages, and to Howe’s (1989) presentation of bisimulation for functional languages.

A family of relations % is closed type-indexed iff for each type T, there is a relation
®.C {(e,f) | Fe,fiT).

A family of relations & is open type-indexed iff for each context I" and type T there is
arelation ® r ;C {(e,f) [ e, f:t}.

Given a closed type-indexed relation % , let % ° be the open type-indexed relation
given by:

R zsx={(&,f) | V-g:3.e[d/X] % f[g/X]}

Given a closed type-indexed relation %_, let [® ] be the largest closed type-indexed relation
such that:

o ife[R] fthene=f.

if (e,€') [R]ggr (f,f') thene 5 fande’ &, /,

if (Ax.€) [R]g_cc (Ay. f) thenforall - g: o we have e[g/x] R ¢ f[9/Y],

ife[®]c, fande —> €' then f = f’and e’ & ¢, f', and
ife[®].,fande Yy ¢/ then f =5 ' and ¢/ R f

A (higher order weak) simulation on NMMLZ is a closed type-indexed relation ® such
that [® ] C ®.. A bisimulation is a simulation whose inverse is also a simulation. Then
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(o]

Q

X &2° %
(V.L,VR) ~° vV
letx<[e]in f ~° fle/x]
letx<ein[x] ~° e
lety < (letx<einf)ing =° letx<ein(lety < fing)
(Ax.e)f ~° e[f/X]
Ay.(gy) ~° g
if truethen f elseg =° f
if falsethen f elseg ~° g
ifethen felse f ~° f
if xthen f[true/x] else g[false/X] ~° if X then f elseg

TABLE 1. Equations for MMLAbd X expressed as bisimulations (y not free in g)

define:
e simulation preorder < is the largest simulation,
e mutual simulation equivalence =< is <N >.
e bisimulation equivalence = is the largest bisimulation.

Note that these are well-defined because [_] is monotone. We shall often elide the indices
from these relations, writing e ® f rather thane ® . f and e ®° f for e KF,T f when
context makes the typing obvious.

Note that bisimulation is strictly finer then mutual simulation, for example:

[¥] M= [] [¥] MO 5 [*]

As this example shows, mutual simulation does not have the power to detect deadlock,
which is why Milner (1989, exercise 9.14) chose to use bisimulation rather than mutual
simulation for CCS.

We can show that (up to bisimulation) NMML Z satisfies the equations of MMLAbd, by
establishing bisimulations for the equations in Table 1. Thus, if we can show that bisimu-
lation is finer than may-testing, we have shown that (up to may-testing) NMML X satisfies
the equations of MMLAbd. This is trivial to establish if we can show that bisimulation is
a congruence, which is what the rest of this section will show.

Unfortunately, it is quite tricky to show that bisimulation is a congruence, since the
direct proof based on Milner’s (1989) proof for CCS fails in the higher-order case. It is
routine to show directly that the relation:

R ={(C[e],C[f]) |[e~ f}
satisfies the property:
e Ifeg fande 5 e’ then f = f'ande’ & * f'.
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However, this is not enough to show that | * is a simulation, for reasons similar to the
problems with showing that the A-calculus is Church—Rosser, since the above property
allows for systems such as:

Pl

1 ex*g

R l |

e R ¢

where it would be impossible to close the diagram.
We shall now follow a variant of Gordon’s (1995) presentation of Howe’s (1989) proof
that simulation is a precongruence. Define the one-level deep contexts to be:

Dle1,...,en] = X| x| (e1,€2) | c(e1,..-,en) | d(€1,.--,€n)
| [e1] | letx<ezine;
| AX.e1|ee2
| ifepthenegelsees
|d|erOey | fix(x=¢1)
Note that for any e therf is a unique D and & such that e = D[g]. Given an open type-
indexed relation % , let ® be given by:
& = {(D[e],D[T) | T}
Given a closed type-indexed relation % , let ® * be the compatible closure of % given by:
eR*fR°g
exR*g
PROPOSITION 9. For any preorder <:
1 <o<PC<
2. <*is reflexive.
3. <°C<
4. Ife<* fande <* f’ thene[e'/x] <* f[f'/x].
PROOF.
1. Ife<® f <°gthene<*h<°f <°g,andsoe <°*g.
2. For any e, show by induction on e thate <* e.
3. Since <* is reflexive, <* is reflexive, and so <° C <*<° C <°,
4. Aninductionone. m|
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PROPOSITION 10. If £ is a simulation and a preorder, then £ * is a simulation.
PROOF. For any closed e, show by induction on e that if e . * f then e [ °] f. We shall
prove the case when e = letx < ey in e, and the other cases are similar. Since e 8 * f we

can find g = letx < gy ingy such that e; £ * gi and g ® f. Then if e — ¢’ then we have
two cases:

e either e; — €} and &’ = letx <= €] in e, so by induction g; = g} and e} ® * g}, so
g=¢ =letx<gjingzande’ x*¢’,so f = f’ande’ x* g’ ® f’,andsoe’ 8 * f’,

oor e % e] and e = ep[e}/x], so by induction g1 =4 g7 and €5 R° g}, so
g=0 =0g2[d)/x]ande’ ®°* ¢, so f = f'andg’ ® f',andsoe’ ®* f’,

Thus % * C [ *], and so % * is a simulation. O

Proposition 10 is sufficient to show that simulation is a precongruence, which is the re-
sult shown by Howe. To show that bisimulation is a congruence, we need the following
unpublished observation of Howe’s (1992) pointed out to the author by Andrew Pitts:

PROPOSITION 11. If % is symmetric then so is % **.

PROOF. Show by induction on e that if e  * f then f£ **e. From this it is routine to
establish that £ ** is symmetric. O

We can then plug Propositions 10 and 11 together to show that ~° is a congruence.
PROPOSITION 12. =° is a congruence.

PROOF. By Proposition 9, ~° C ~* and ~* is a congruence. By Proposition 10 ~* is a
simulation, and so ~** is a simulation. By Proposition 11 ~** is symmetric, S0 ~** is a
bisimulation, and so ~* C ~** C ~°. Thus ~° = ~* is a congruence. O
Having shown that ~° is a precongruence, we can show that bisimulation is finer than
may-testing.

PROPOSITION 13. Ife~p  fthenl |=eCo f.

PROOF. For any closing context C of type CI, by Proposition 12, C[e] ~° C[f], so if
C[e]¥>*thenC[f]ié>*. ThusT =eCo f. O

Let NMMLy,Z be NMMLZ viewed up to bisimulation. It is routine to ver-
ify that NMML.X forms a signature in the same way as MMLAbdZ, and that
NMML,, : SigBCD — SigBCD is a monad.

PROPOSITION 14. Any NMML .-algebra is a cccc with computational coproducts of 1.

PrRooOF. NMML Z satisfies the equations in Table 1, up to bisimulation, so NMML X is a
MMLAbd-algebra, and so by Proposition 6 is a cccc with computational coproducts of 1.
Thus, any NMML.-algebra must be a cccc with computational coproducts of 1. O

4.4 Denotational semantics

In this section we present a denotational semantics for NMML based on powerdomains.
The rest of this section will show this semantics is fully abstract for may-testing.
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In the previous section we saw that any NMML.-algebra must be a cccc with com-
putational coproducts of 1. We will model NMML in a particular such cccc Alg with the
lower powerdomain monad #. This is a cccc with computational coproducts of 1, and so
has a denotational semantics for MMLAbd given by Propositions 2, 3, 4, 6 and 7.

The semantics for NMML X extends this with:

[FTF&:CT =1
[FFeOf:Ctl=[FFe:CT]V][IFTf:CT]
[l F fix(x =¢) : Ct] = the least fixed pt of f — (id, f);[,x:Ctke: CT]

Note that this semantics is well-defined because #D is a join semi-lattice.

Thus for any Z, if there is a morphism [] : ¥ — Alg then we can extend this to
[] : NMMLZ — Alg as:

NMML S MMMLLL nvmLAlg L Alg

For example, we have a mapping [] : NatList — Alg given in Section 3.1, which maps
the sorts of NatList to discrete domains:

[bool] = {t, f} [nat] = w [list] = w*

the constructors to continuous functions (since every function between discrete domains
is continuous):

[true] =t [false] = f

[zero] =0 [succ] = _+1

[nil] =¢ [cons] = _..

and the deconstructors to continuous functions in the Kleisli category (that is functions
X = PY):

- {n—1}ifn>0
[pred] = n { 0 otherwise
_ {t} ifm=n
[eal = (mn) = {{f} otherwise

{t} ifl=¢
{f} otherwise

{
[[hd]]=|,_){{n} ifl=n.l’

[isnil] =1 —

0 ifl=¢
[tl] = 1 {g}' :;I;n.l'

This means we have a semantics [_] : NMMLZX — Alg, for example:
[ true: [bool]] =t
[ false : [bool]] = f
[Fd:CCT]=0
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[F[9]: CCt]] = {0}
[F [[true]] O[[false]] : CC[bool]] = {{t},{f}}
[F [[true] O [false]] : CClbool]] = {{t},{f},{t,f}}
[ snoc: list ® nat — Clist] = (I,n) — {l.n}
Define the denotational preorder ' -eCp f:Tiff [T Fe: T <[ F f:1].
A semantics [-] : Z— Alg is adequate iff:
[Fde: C[A]] = \/{[[I— [f]: CIA] | de =4 f}
For example, the above semantics for NatList is adequate, as can be verified by comparing
its operational and denotational semantics.
A semantics [-] : ¥— Alg is expressive iff for any compact a € [A] we can find terms
isq and test, such that:
[Fisa:[A]] =a [ testa : [A] = Cl] = (a=nL)

For example, the above semantics for NatList is expressive, since we can define:

is; = true
isf = false
isp = zero

iSp+1 = succisy
isg = nil
isn.| = cons(isp, is))
testt = AX.if Xxthen[x]elsed
testr = AX.if Xthen delse [%]
testy, = AX.lety <eq(X,isy) intestry
teste = AX.lety <=isnilXintest;y
testn) = Aw.letx<hdwinlety <testpXinletz<tlwintest|z

Moreover, any signature with equality sorts automatically has an adequate and expressive
semantics:

PrRoPOSITION 15. Any signature with all sorts being equality sorts has an adequate
expressive semantics in Alg.

PROOF. Let [A] be the discrete poset of terms:
[Al = {e[Fe:[Al}
[c] =€+ cE
[d] =&~ {f|de=4 f}
This is adequate, and we can define:
ise =€ teste = AX.lety <eq(x,€) inif xthen [] else &

and verify that the signature is expressive. m|
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A semantics [-] : NMMLZ — Alg is correct iff:

[Fre:T]<[FFf:1]impliesT EeCof:1
The semantics for NMML X is fully abstract iff this can be strengthened to:
[FTRe: 7] <[FFf:7]ifffT=eCof:T

The rest of this section will show that if a semantics for X is adequate then its extension
to NMMLZX is correct, and that if a semantics for X is adequate and expressive, then its
extension to NMML X is fully abstract. In particular Proposition 15 means that if 3 consists
of equality sorts, then NMML X has a fully abstract semantics.

4.5 Program logic

In order to show the relationship between the operational and denotational semantics of
NMMLZ, we shall use a program logic similar to that used by Abramsky (1989) and
Ong (1988) in modelling the untyped A-calculus, based on Abramsky’s (1991) domain
theory in logical form.

The logic is presented in two ways:

e it has an operational characterization, similar to the operational characterization for
HML (Milner, 1989) or the modal p-calculus (Kozen, 1983), and

e it has a denotational characterization, which provides a syntax for the compact ele-
ments of [t], in a similar fashion to Scott’s (1982) information systems.

In Section 4.6 we shall see a third presentation of the logic, using sequent calculus. In
Section 4.8 we shall show that these three presentations are equivalent, and use this to
show full abstraction for the powerdomain semantics for NMMLZ.

The program logic for NMML X has propositions:

ei=x[(@W) [[al[w|eAY|[¢ | o=
These can be statically typed, so the propositions for type T are those where @: £T:
@: L0 Y:LT
x: Ll (QU):L(o®T) |a|:L[A]
¢:£(Ct) W:.(Cr) QLT

[a € [A],a is compact]

w: £(C1) oA £(CT) [@]: £(CT)
Q:£(0—>Ct) WY:2(0—=C1t) @:20 Y:(Cr)
w: £(0—-C1) OAY: L(0—CT) o=>y: L(c—>CT1)

We can give an informal account of these propositions as:
e any term ke | satisfies x,
e (e, f): o®T1satisfies (@, ) iff e satisfies @and f satisfies ,
e e [A] satisfies |a| iff [e] < a,
o | e: Cr satisfies [¢] iff e can terminate with some result f which satisfies @,

e e:0— Crt satisfies 9=  iff whenever f satisfies @then ef satisfies ,
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e any term satisfies w, and
e aterm satisfies @A Y iff it satisfies @and .
For example, some terms and predicates they satisfy are:
true satisfies |t|
succsucczero satisfies |2|
0 satisfies w
[9] satisfies [w)]
[[true]] O [[false]] satisfies [[|t|]]] A [[| F]]]
[[true] O [false]] satisfies [[|t|] A [| f]]]
snoc satisfies (]0.1],|2])=[]0.1.2]]

Note that this logic includes compact elements of base type as formulae. It is possible
to replace this by requiring the base types to have a program logic characterizing the
compacts, but this would unnecessarily complicate the proofs.

We can formalize this notion of when a term satisfies a proposition by giving the
operational characterization of the logic as judgements = e : @given by:

Ceip Efiy a<[e:[A]
Frr FeN:@W Fe
e ey e-he e ebf fig

Ferw  Feioay oo EEET
VeEf:@.=ef:y
Ferp=>y

This can be generalized to open terms as:
R @=e:piffvie o =e[f/%]:w
For example:
X:Qy: W= (xy) (o)
X:0F=[X: (49
X (]0.1],]2]) |= snocx : [|0.1.2[]

Let A range over propositional contexts of the form Xy : @1,...,%Xn : @, and write A: 2T
for:

(X2 @1,y Xn 1 @) P L(X2 i Tayee ey Xn i Tn) iFF Q@1 LT, @0 LTy
We can also define a denotational semantics for propositions, so that if @: £t then

[¢] & [T]:

[x] =L
[(@w)] = ([, [¥])
[lal] =a

[w] =L
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[eAw] =[] v [w]

[[@] = nl4l
[o= 4] = [¢] = [W]

This gives us a syntax for compact elements of 1], since we can show that the compact
elements of [1] are precisely the denotations of propositions from t.

PROPOSITION 16. a € [[1] is compactiff Ip: £1.a=[q].
PROOF. = is an induction on T. < is an induction on @. |

Whenever A: 2T, we can define [A] € [[] as:

[X1: @, %0 2 @] = ([@n],-- -, [n])

Then in Section 4.8 we shall see that these two presentations of the logic are equivalent,
in that whenever " -e: 1, A: 2T and @: £T we have:

AEe:oiff[@] <[ Fe:T[4]
This result is an important step in proving the semantics fully abstract.

For those readers familiar with Abramsky’s (1991) domain theory in logical form, it is
worth noting some differences between his logic and ours. Abramsky’s logic allows finite
conjunction (using wand A) for propositions of any type, not just £ (Ct1) and (o — C1).
Thus, propositions in Abramsky’s logic do not represent compact elements (as ours do) but
represent compact Scott-open sets of elements. This allows Abramsky to use the theory of
Stone duality (Johnstone, 1982, for example) in showing the relationship between program
logics and denotational semantics.

However, for the proofs given here, it is simpler to restrict the use of conjunction
to propositions of type £(C1) and £ (o — Ct), whose semantics in Alg form join semi-
lattices. This allows us to use propositions as a syntactic representation of compacts, and
simplifies some of the proofs in later sections.

It is an open question as to what the relationship between these two logics is. One
possibility is that Abramsky’s logic can be seen as representing compact morphisms in
the Kleisli category Alg, where ours represent compact morphisms in the underlying
category Alg. We will not investigate this possibility further here.

4.6 Proof system

In order to relate the denotational and operational characterizations of the program logic,
we shall use an intermediate proof system. This is a sequent calculus with judgements of
the form Ak e:@wherelFe: 1, A: £l and @: £T. In this section we shall define this
proof system, and show that At-e: @iff [@] < [ Fe: T][A].

To begin with, we give a complete axiomatization for the semantics of the program
logic. Let < be the preorder on propositions given by:

e wis the top element, and (_A _) is meet.
e (,.), [-] and (@=>_) are monotone.

e (o= _) preserves wand A.
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e || and (_= ) are anti-monotone.

PROPOSITION 17. @< Wiff [¢] > [Y].
PROOF. = is an induction on T. < is an induction on @. |
We can then define the proof system for NMML . as:
[o] <[ Fce:[AJIA] [¢] <[ Fde: CA]J[A] AFe:LIJNK(p]
AFCE: @ A-dE: @ Are:@ " —
AFX: @
AX:QFXx:@ A,y:lpkx:(p[xséy]
Are:@ AFT:Y
AFx:x Ak (e,f): (@)
Are:@p Ake:y
Ale:w Ale:pAY
Ate:@ Ate:[g Ax:oFf:yp
Al le]: 9] AlFletx<einf:
Ax:prke:y AFe:p=x ARy
AFA.e:P=Y) AFef:x
Ate:|t| AFf:@ Ate:|f| AFg:o
At ifethenfelseg: @ Al ifethenfelseg: @
AtFe:y AFf:x AFfix(x=e):Y AXx:QFe:x
AFeOf:PAx AFfix(x=¢e): X
Note that all of the structural rules for the proof system, such as weakening and contrac-
tion, have been absorbed into the definition of @ < .
PROPOSITION 18. Ale: @iff [@] <[ Fe: t][A].

PROOF.

= An induction on the proof of Al-e: @.

< An induction on the proof of I' - e : 1. The tricky case is I" I fix(x =€) : Ct, in which
case we have:

[o] <\/(f = (id, f);[M,x: Ctke: CT])"L[A]

Since [[@] is compact, we can find n such that:
[o] < (fw(id, f);[M,x:Ctke:Ct])"L[A]

and we proceed by induction on n.
Ifn=0then@] < L,soF@>w:£(Ct)andso Al fix(x=e):q
If n > 0 then:

[o] <[r,x:Ctke:CT([A],(f — (id, f);[,x: CtFe: Ct)"LL[A])
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and so from Proposition 16 we can find  such that:
[W] < (f = (id, f); [, x:Cthe: CT)"LL[4]
[o] < [rx:Ctke:CT([AL WD)
so by induction on the proof of I" - fix(x = €) : CT and n we have:
AFfix(x=¢e):y AX:Pke:@
and so Ak fix(x=¢€) : @ O
4.7 Expressivity
In this section we shall show that as long as Z is expressive, then so is NMML Z, since for
any @: LT we can define a term term @ such that:
[9] = [t terme@: 1]

In particular, this means that for any proposition @: £ T, there is a context which determines
whether a term | e : T satisfies that proposition:

T

This expressivity result is used in showing that the semantics for NMML X is fully abstract.
The relationship between expressivity and full abstraction has been long known (Plotkin,
1977, for example).

PROPOSITION 19. If the semantics for X is expressive, then for any @: £1 we can find
F term; @: T such that [@] = [+ term; @: T].
PROOF. Let term @ be defined:
term| x = %
termgg(@,P) = (termg @ term:y)
termpp |a| = isa
termcrwW =0
termc(QA W) = termcr @O terme Y
termc[@] = [term; @
termg_ct@W = AX.d
termgoct(@A W) = AX. (termgo,ct @)X O (termgoyct W)X
termicr(x=X) = AX.termcr X

termpgooct((W, ) = X) = AX. lety < (termp_c1 (P = [*]))(XL)
in(termg_ct(@= X)) (XR)

termia_,c(|a] = X) = AX.lety <= (testaX) intermcr X
termg_cr(W=X) = AX.termc X

termgoct(@AP=X) = AX. lety <termgoci (9= [*])X
intermg_, ¢t (P = X)X
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termcoocr([@ = X) = Ax.lety <Xintermg_cry
term(p_,co)m (9= ) = X) = AX. (termcoco (P = X)) (X(termp @)
It is routine to verify that [¢] = [ term @: T]. O

We can extend this result to contexts, to relate propositional contexts A to their program
context equivalent Ca.

PROPOSITION 20. If 2 is expressive then for any A: T there is a context Cp such that
[FFe:CT][A] =T FCale] : CT]L.

PROOF. If " = X1 : T1,...,X%n : Tn then let Cp be the context:
Cxli@l,--.,xni({h [e] = |etX1 = [term-[l (p]_] in--- Iet Xn R [teran (ﬂq] in e
It is routine to verify that this satisfies the required property. m|

4.8 Full abstraction

We can now fit together the results from Sections 4.6 and 4.7 to show that the semantics for
NMMLZ is fully abstract. In Section 4.6 we showed that the denotational characterization
and proof system for the program logic were equivalent:

Ate:@iff [@] <[l Fe:T][A]

In this section we can extend this to show (as long as the semantics for X is adequate and
expressive) that:

Ale:@impliesA=e:@implies [@] <[ Fe:T][A]

and so the operational characterization of the program logic is equivalent to the denota-
tional characterization and to the proof system. From this we can prove full abstraction.

The proof of full abstraction relies on the expressivity of NMMLZ, and thus on the
expressivity of >. If we have a semantics for X that is adequate but not expressive, then
we can still show that the semantics for NMML X is correct, although we cannot show that
it is fully abstract.

PROPOSITION 21.

1. Ife—s ¢ then-e:Ct]>[Fe:C1].

2. Ife Y f then [Fe:Ct] >[+I[f]:CT].

PROOF. An induction on the proof of reduction. |
PROPOSITION 22. If a semantics for X is adequate, then AFe: @impliesA=e: @

PROOF. First show by induction on the proof of @ < @ that if @< @ and = e : @ then
I= e : Y. The result then follows by an induction on the proof of Al-e: @. O

THEOREM 23 (CORRECTNESS). If a semantics for X is adequate, then its extension to
NMMLZ is correct.

PROOF. If I e Cp f : T then for any closing context C[_] of type C| we have:

Cle] =5 *
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= [[«]] < [FCle]: CI] (Propn 21)
= [[*]] < [FC[f]: CI] (Hypothesis)
= FC[f]: [¥] (Propn 18)
= =C[f]: [¥] (Propn 22)
= Cle] =25 * (Defn of =)

ThusF'FeCpo f:T.

PROPOSITION 24. If asemantics for X is expressive and adequate, then A = e : @implies
[o] <[ Fe:T]A].

PROOF. Using Proposition 21, show by induction on the proof of =e: @thatif =e: @
then [Fe:t]L > [q].

The only difficult case is for functions, where we have deduced e : o= U
from V= f : @. = ef : W. By expressivity and Propositions 18, 19 and 22 we
have |= termg@: @ so by the hypothesis we have |= e(termg @) : W, so by induction
[W] <[+ e(termg@) : CT]L, from which it is routine to deduce the desired result that
[o=y] <[Fe:o0—CT].

Then we have:

XQEe:
=>VEefg.e[f/q:0 (Defn of |=)
= |=e[term /%] : @ (= term@: @)
= [¢] < [ e[term /%] : 1] L (Above)
= [@] <[ Fe:Tt](+ term @: L) (NMML-algebra)
= [ <[rFe:T)[x:q] ([term @] L = [¢])

Note that we have used expressivity in this proof, but not in the proof of Proposition 22.0

THEOREM 25 (FULL ABSTRACTION). If a semantics for X is expressive and adequate
then its extension to NMML % is fully abstract.

PROOF. Forany @: ctand A: LT we have:
o] <[rFe:t][A]
& [[+]] < [o=[+]I(IT - e : T][A]) (Defn of =)

< [[#]] < ([T Ftermesci(@=[+]) : 1= CI][A]) ([ +term @[ [A] = [¢])
(IF Fe:CINIA]

< [[¥]] L [T F termesci (9= [x])e : CIJ[A] (Application)
< [[¥]] £ [F Catermisci(@=[*])e] : CI]L (Propn 20)
& [=Caltermiscr (@=[x])e] : [*] (Propns 18, 22, 24)
& Caltermio,c1 (0= [*])€] * (Defn of =)

ThusifTFeCo f:1then:

[@] <[rFe:t][A] implies [@] <[ F f:t][4]
Thus since [[t]] and [[I'] are algebraic, and by Proposition 16 every compact element has a
corresponding proposition, we have:

[FTRe: 7] <[FFf:T]
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Thus the semantics for NMML X is fully abstract. |
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