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ABSTRACT. One of the most satisfactory results in process theory is Milner’s axiomatization of
strong bisimulation for regular CCS. This result holds for open terms with finite-state recursion. Wang
has shown that timed bisimulation can also be axiomatized, but only for closed terms without recur-
sion. In this paper, we provide an axiomatization for timed bisimulation of open terms with finite-state
recursion.
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1 Introduction

Much research in concurrency theory has recently been devoted to the develop-
ment of extensions of standard process algebras like CCS [15], CSP [10] and ACP
[3] with constructs allowing for the modelling of timing aspects in the behaviour
of processes. By now, most process algebras have a timed counterpart (see, e.g.,
[1, 5, 17, 20]), and the development of results and techniques for these languages
is becoming comparable with that for the standard process description languages.
For example, complete axiomatizations of behavioural congruences for subsets
of timed process algebras have been presented in, e.g., [9, 13, 17, 21]—showing
that behavioural congruences which deal with timing considerations are as math-
ematically tractable as the standard untimed ones.

Two of the most beautiful results in the theory of process algebras are the com-
plete axiomatizations of strong bisimulation equivalence and observational con-
gruence for regular CCS processes provided by Milner in his classic papers [14]
and [16], respectively. These results have put the notions of behaviour used in
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the theory of CCS on an equal footing with the one common in formal language
theory, and have contributed to the realization that the notion of process is at least
as elegant and mathematically tractable as that of language.

The main purpose of this paper is to show that the techniques developed by
Milner in [14, 16] can be adapted to provide a complete axiomatization of the
notion of timed bisimulation equivalence, due to Wang Yi [20], over a class of
regular timed CCS processes [11, 21]. More precisely, we shall offer a complete
axiomatization of timed bisimulation over the language of action guarded regular
expressions studied in [11]. This complete axiomatization is obtained by com-
bining an improved version of the laws which were shown in [21] to characterize
timed bisimulation over finite trees with standard laws for recursively defined pro-
cesses, viz, laws to unwind recursive definitions of expressions, and a version of
unique fixed-point induction.

The paper is organized as follows. Section 2 is devoted to preliminaries, and
background material on timed CCS and timed bisimulation. The axiomatization
of timed bisimulation is presented and discussed in Section 3, where its soundness
is also proved. The proof of completeness of the axiomatization is given in detail
in Section 4, and relies on an adaptation of the techniques used by Milner in [14,
16].

As this is not an introductory paper on timed CCS, we have taken the liberty
to refer the reader to the original papers by Wang Yi for motivations and exam-
ples. We hope, however, that the paper will still be sufficiently readable for the
uninitiated reader.

2 Timed regular behaviours and timed bisimulation

The language for expressions that we shall consider in this paper is a generaliza-
tion of the regular subcalculus of Wang Yi’s timed CCS [20, 22]. This language
has been investigated by Holmer, Larsen and Wang Yi in [11], and we shall mostly
follow the notation and definitions given in that reference.

As usual, we shall assume a countably infinite set ∆ of action names, ranged
over by a and b, and a distinguished action τ

�� ∆. Let

��� � � ∆ � 	

τ




, be the set
of actions, ranged over by µ and ν.

Following [12], we define a monoid

�

X �



� 0

�

to be:

� left-cancellative iff

�

x




y � x




z

� � �

y � z

�

, and

� anti-symmetric iff

�

x




y � 0

� � �

x � y � 0

�

.

Examples of left-cancellative anti-symmetric monoids include:

� The singleton set

�

1 �



� 0

�

.

� The natural numbers

�

N �



� 0

�

.

� The non-negative rationals

�

Q

�
�



� 0

�

.

� The non-negative reals

�

R

�
�



� 0

�

.
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� The countable ordinals

�

ω1 �



� 0

�

.

We can define a partial order on X as:

x

�

y iff

�

z � x 


z � y

It is simple to verify that

�

is a partial order if

�

X �



� 0

�

is a left-cancellative anti-
symmetric monoid. A time domain is a left-cancellative anti-symmetric monoid�� � � � 


� 0

�

, ranged over by t, u and v, such that

�

is a total order. Define:

t

�

u � the minimum of t and u

t

�

u � the maximum of t and u

and when t

�

u:

t 	 u � the unique v such that u




v � t

Let

� � � � � � � � 
 	

0




be the set of positive delays, ranged over by c, d and e.
Let

�
� � � ��� � � 	

ε

�

c

��

c

� � � � �



be the set of labels, ranged over by σ.
Let

�� � be a countably infinite set of process variables, ranged over by x, y
and z.

The set of regular process expressions over

� � �

,

� � � and

�� � is given by the
following grammar:

E :: � 0

�

x

�

µ �E� ε

�

t

� �E� E




E

�

fix

�

x � E

�

The interested reader is referred to [20, 22] for intuition on the operators used in
the above definition.

We shall assume the standard notions of free and bound variables in expres-
sions, with fix

�

x � �

as the binding construct. The set of free variables in an ex-
pression E is denoted by

�
� E. Throughout this paper we shall restrict ourselves to
considering regular process expressions in which recursions are action guarded,
a notion that is defined below.

DEFINITION. A variable x is action guarded in E iff x

� AG

�

E

�

, defined:

AG

�

0

� � �� �

AG

�

x

� � �� � 
 	

x




AG

�

µ �E � � �� �

AG

�

ε

�

t

� �E � � AG

�

E

�

AG

�

E




F

� � AG

�

E

� �

AG

�

F

�

AG

�

fix

�

x � E

� � � AG

�

E

� 
 	

x




A regular process expression E is well-formed iff for every subexpression of E of
the form fix

�

x � F

�

, x is action guarded in F.

For example, the expression

�

fix

�

x � τ �x � � 


y is well-formed, while the expres-
sion fix

�

x � ε

�

c

� �x �

is not. The above definition departs slightly from the one

3

0 ε

�

c

��� �� 0 µ �P µ �� P a �P ε

�

c

��� �� a �P
ε

�

c

�

t

� �P ε

�

c

� � �� ε �t � �P P ε

�

c

� � �� P �

ε

�

t

� �P ε

�

t

�

c

�� � �� P � P µ �� P �
ε

�

0

� �P µ �� P �
P µ �� P �

P

�

Q µ �� P � Q µ �� Q �

P

�

Q µ �� Q � P ε

�

c

� � �� P �"! Q ε

�
c

� � �� Q �
P

�

Q ε

�
c

�#� �� P � � Q �
E

$

fix

�

x % E �& x

' σ �� P
fix

�

x % E � σ �� P
FIGURE 1. The operational semantics for TC0

given in [11, Definition 2.1]. In particular, the expression

�

fix

�

x � τ �x � � 


y would
not be well-formed according to the definition of [11] because the free variable y
does not occur within a subexpression of the form µ �F.

The set of all well-formed regular process expressions is TC, ranged over by
E, F and G. The set of all closed, well-formed regular process expressions is
TC0, ranged over by P, Q and R. Elements of this set will often be referred to as
processes.

Following Milner [16], we shall identify expressions which differ only by the
renaming of bound variables. We shall also write E

	

F1 � � � � � Fn

(

x1 � � � � � xn




for the
result of simultaneously substituting Fi for each free occurrence of xi in E, renam-
ing bound variables as necessary.

The operational semantics for TC0 is given by the labelled transition system�

TC0 �
�� �

� ) � in Figure 1. The interested reader is referred to [20, 22] for com-
ments on the rules. Note that, following Wang Yi [20, 22], ε

�

0

�

has been excluded
from the semantics of processes.

To conclude this introductory section, we shall now define the notion of timed
bisimulation equivalence.

DEFINITION (TIMED BISIMULATION EQUIVALENCE [20]). A relation R over
TC0 is a timed bisimulation iff P R Q implies, for all σ:

� whenever P σ	 ) P * then, for some Q

*

, Q σ	 ) Q *

and P

*,+ Q

*

.

� whenever Q σ	 ) Q *

then, for some P

*

, P σ	 ) P * and P

*-+ Q

*

.

The relation of timed bisimulation equivalence, denoted by+ , is the largest timed
bisimulation.

The interested reader is referred to the aforementioned papers by Wang Yi, and
to [11] for intuition and examples of processes that are equivalent or inequiva-
lent with respect to+ . The definition of+ can be extended to expressions in the
standard way as follows:

DEFINITION. Let E and F be expressions with free variables in x̃ � x1 � � � � � xm.
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(S1) E

�

F % F �

E
(S2) E

� �

F

�

G

� % �E �

F

� �

G
(S3) E

�

E % E
(S4) E

�

0 % E
(TD) ε

�

t

� � �E �

F

� % ε �t � �E � ε �t � �F
(TA) ε

�

t

�

u

� �E % ε �t � �ε �u � �E
(T0) ε

�

0

� �E % E
(R1) fix

�

x % E � % E $

fix

�

x % E �& x

'

(R2) If F % E $

F

&

x

'

, then F % fix

�

x % E � , provided x is action guarded in E

FIGURE 2. The axiom system G

(MP) τ �E � ε �c � �F % τ �E
(AP) a �E � ε �t � �a �E % a �E
(NP) ε

�

t

� �0 % 0
FIGURE 3. The axiom system F is G plus (MP), (AP) and (NP)

(MP) τ �E � ε �c � �F % τ �E
(P) E

� ε �t � �E % E
FIGURE 4. The axiom system E is G plus (MP) and (P)

Then E + F iff for all vectors P̃ � P1 � � � � � Pm E

	

P̃

(

x̃


 + F

	

P̃

(

x̃




.

PROPOSITION 1 ([20, THEOREM 5.1]). Timed bisimulation equivalence forms
a congruence over TC.

In the remainder of this paper, we shall present a complete axiomatization of+

over TC.

3 Axiomatization and soundness

In [20] various equational laws were proved to hold for Wang Yi’s timed CCS
modulo timed bisimulation equivalence, and in [21] a set of such axioms was
shown to be complete over the language of recursion-free TC0 processes with
delays from the time domain of the positive reals. We shall now present an ax-
iomatization which will be proven complete for + over the whole of TC, i.e.,
complete for regular process expressions with action guarded recursion. The de-
tailed proof of completeness occupies Section 4 of this paper.

Wang’s axiomatization for recursion-free TC0 processes is given by the ax-
iom system F in Figures 2 and 3. Our axiomatization for regular TC process
expressions is given by the axiom system E in Figures 2 and 4.

The axioms (S1)–(S4) are the standard laws for a complete axiomatization of

5

strong bisimulation equivalence over finite trees [8]. Together with axioms (R1)
and (R2), these form a complete axiomatization of strong bisimulation equiva-
lence for guarded regular CCS terms [14]. (In fact, the axiomatization in [14]
can be obtained as a special case of that in Figure 2 by taking the time domain to
be the singleton set

�

1 �



� 0

�

.)
The axioms (TD), (TA) and (T0) correspond to the operational properties of

time determinacy, time additivity and zero delay. These axioms are present in
Wang’s [20, 21] axiomatization. As we shall see in Section 4, the axiom system
G given in Figure 2 is powerful enough to prove Milner’s [14] Equational Char-
acterization Theorem for timed regular expressions. However, G is not powerful
enough to give a complete axiomatization for recursion-free timed expressions.

Wang [20, 21] added the axioms (MP), (AP) and (NP) to G to provide a com-
plete axiomatization for recursion-free TC0 processes. These axioms correspond
to the operational properties of maximal progress and persistency, and are dis-
cussed in detail by Wang. However, the resulting axiom system F , given in Fig-
ure 3, is not powerful enough to give a complete axiomatization for recursion-free
TC process expressions.

Our axiomatization replaces (AP) and (NP) with one new persistency axiom
(P). In Section 4 we show that E is complete for timed bisimulation equivalence
over TC process expressions. In Section 5 we show that E is strictly stronger
than F , and thus that Wang’s axiomatization is not complete for open TC process
expressions.

We shall write E

�

E � F when E � F may be proved from E together with
the structural rules for � to be a congruence, and similarly for F

�

E � F and
G

�
E � F .

To conclude this section, we shall show that E is indeed sound with respect
to timed bisimulation equivalence over TC.

PROPOSITION 2 (SOUNDNESS). For all TC expressions E � F, E

�

E � F im-
plies E + F.

PROOF. All the laws in E have been shown sound by Wang Yi in [21]. The only
exception is the persistency axiom (P), the soundness of which is established by
the timed bisimulation:

	 �

Q




P � Q

� � �

c � P ε

�

c

�	 	 ) Q 
 � 	 �

P � P

��

P

� TC0




The verification of the fact that the above relation satisfies the defining clause of+ uses the properties of time determinacy, time additivity and persistency of the
operational semantics for TC0. (The interested reader is referred to [20] and [19]
for details on these properties).

�
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4 Completeness

In this section, we shall present the proof of completeness of the set of laws E over
TC. The structure of the proof of this result will follow closely the most beautiful
arguments used by Milner in [14, 16] to prove the completeness of the axioma-
tizations for strong bisimulation and observational congruence over regular CCS
processes.

The structure of the completeness proof will be as follows: first of all, we shall
show that every TC expression E provably satisfies a certain kind of equation set.
This is what Milner calls the Equational Characterization Theorem. Next, we
shall show that if E+ F and E provably satisfies an equation set, while F prov-
ably satisfies another equation set, then both E and F provably satisfy a common
equation set. Finally, we show that whenever two TC expressions provably sat-
isfy the same equation set, then E proves that they are equal.

DEFINITION. An equation set x̃ � Ẽ is a finite non-empty sequence of declara-
tions x1

� E1 � � � � � xn

� En, where the xis are pairwise distinct variables, and the
Eis are TC expressions.

A vector F̃ � F1 � � �Fn satisfies x̃ � Ẽ iff

�

i � Fi

+ Ei

	

F̃

(

x̃




.
For an equational theory T , a vector F̃ � F1 � � �Fn T -provably satisfies x̃ � Ẽ

iff

�

i � T �

Fi

� Ei

	

F̃

(

x̃




.
An expression E (T -provably) satisfies x̃ � F̃ iff we can find a vector Ẽ which

(T -provably) satisfies x̃ � F̃ and E+ E1 (T

�

E � E1).
We refer to x1 as the leading variable of the equation set x̃ � F̃.

For example, the equation set:

x1

� ε

�

1

� �a �x2


 ε

�

3

� �y x2

� ε

�

2

� �b �x1 (1)

is satisfied by fix

�

z � ε

�

1

� �a �ε �

2

� �b �z 
 ε

�

3

� �y �

.

DEFINITION. An equation set x̃ � Ẽ is standard iff each Ei is of the form:

∑
j

�

Ji

ε

�

t j

� �µ j �x j


 ∑
k

�

Ki

ε

�

uk

� �wk

where the vectors x̃ and w̃ are disjoint. We call x̃ the formal variables of x̃ � Ẽ,
and w̃ the free variables of x̃ � Ẽ.

For example, the above equation set (1) is standard, but the following is not:

x1

� ε

�

1

� �x2


 ε

�

3

� �y � x2

� a �ε �

2

� �b �x1

PROPOSITION 3. If x̃ � Ẽ is standard and w is not a formal variable of S, then
we can find a standard x̃ � F̃ such that

�

i � G �

Fi

� Ei

	

E1
(

w



.
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PROOF. Define F̃ as:

Fi

� ∑
j

�

Ji

ε

�

t j

� �µ j �x j


 ∑
k � Ki

wk

��� w

ε

�

uk

� �wk


 ∑
k � Ki

wk

� w
j

� �

J1

ε

�

uk




t j

� � �µ j

� �x j

� 
 ∑
k � Ki

wk

� w
k

� �

K1

ε

�

uk




uk

� � �wk
�

It is simple to show that this is standard, and that
�

i � G �

Fi

� Ei

	

E1

(

w




.

�

PROPOSITION 4. If x is action guarded in E and G

�

E � F then x is action
guarded in F.

PROOF. Show that AG

� �

is a model for the equational theory G.

�

PROPOSITION 5. We shall use the following standard results about substitution:

1. G

	

F̃

(

x̃


 	

E

(

w


 � G

	

E

(
w


 	
F̃

	

E

(
w


 (

x̃




, if w does not occur in x̃, and x̃ are
not free in E.

2. F

	

G

(

w


 	

Ẽ

(

x̃


 � F
	

G
	

Ẽ

(
x̃


 (

w


 	

Ẽ

(

x̃




, if x̃ are not free in Ẽ.

PROOF. Routine structural induction.

�

THEOREM 6 (EQUATIONAL CHARACTERIZATION). For any E we can find a
standard equation set x̃ � G̃ which E G-provably satisfies.

PROOF. An induction on E. The only difficult case is when E � fix

�

w � F

�

. In
this case, by induction we find a x̃ � H̃ which F G-provably satisfies, and wlog
we can assume that w is not a formal variable of x̃ � H̃, and that x̃ are not free in
E. Thus we have a F̃ such that:

G

�

F1

� F (2)

�

i � G �

Fi

� Hi

	

F̃

(

x̃




(3)

Define:

Ei

� Fi

	

E

(

w




(4)

Let G̃ be the standard equation set given by Proposition 3 such that:

G

�

Gi

� Hi

	

H1

(

w




(5)

Since w is action guarded in F, by Proposition 4 it must be action guarded in
H1

	

F̃

(

x̃




, so, as w

��

x̃, must be action guarded in H1, so cannot be free in H1.
Then:

G

�

E

� F

	

E

(

w




(R1)

� F1

	

E

(

w




(2)
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� E1 (4)

and:

G

�

E1

� F1

	

E

(

w




(4)

� H1

	

F̃

(

x̃


 	

E

(

w




(3)

� H1

	

E

(

w


 	

F̃

	

E

(

w


 (

x̃




(Propn 5.1)

� H1

	

E

(

w


 	

Ẽ

(

x̃




(4)

� H1

	

Ẽ

(

x̃




(w

�� �
� H1)

and so:

G

�

Ei

� Fi

	

E

(

w




(4)

� Hi

	

F̃

(

x̃


 	

E

(

w




(3)

� Hi

	

E

(

w


 	

F̃

	

E

(

w


 (

x̃




(Propn 5.1)

� Hi

	

E

(

w


 	

Ẽ

(

x̃




(4)

� Hi

	

H1

	

Ẽ

(

x̃


 (

w


 	

Ẽ

(

x̃




(above)

� Hi

	

H1

(

w


 	

Ẽ

(

x̃




(Propn 5.2)

� Gi

	

Ẽ

(

x̃




(5)

Thus we have found a standard x̃ � G̃ which E G-provably satisfies.

�

Theorem 6 shows that every expression E in TC G-provably satisfies a standard
equation set x̃ � G̃. The second stepping stone towards the promised complete-
ness theorem is a result showing that if E + F , where F G-provably satisfies a
standard equation set ỹ � H̃, then there exists a third standard equation set E-
provably satisfied by both E and F. Note that this part of the completeness proof
requires the axioms (MP) and (P).

THEOREM 7. Let E and E

*

be expressions in TC such that E+ E

*

. Assume that
E E-provably satisfies a standard equation set x̃ � F̃, and E

*

E-provably satisfies
a standard equation set x̃

* � F̃

*

. Then there exists a standard equation set E-
provably satisfied by both E and E

*

.

PROOF (FOLLOWING MILNER). Assume that:

Fi

� ∑
j

�

Ji

ε

�

t j

� �a j �x j


 ∑
k

�

Ki

ε

�

uk

� �τ �xk


 ∑
l

�

Li

ε

�

vl

� �wl (6)

F

*

i

� � ∑
j

� �

J

�

i

� ε

�

t

*

j

� � �a j

� �x *j � 
 ∑
k

� �

K

�

i

� ε

�

u

*

k

� � �τ �x *k � 
 ∑
l

� �

L

�
i

� ε

�

v

*
l

� � �w *
l

� (7)

As E E-provably satisfies x̃ � F̃ and E

*

E-provably satisfies x̃
* � F̃

*
, we can find

Ẽ and Ẽ

*

such that:

E

�

E � E1 (8)

9

�

i � E �

Ei

� Fi

	

Ẽ

(

x̃




(9)

E

�

E

* � E

*

1 (10)

�

i � E �

E

*

i

� F

*

i

	

Ẽ

* (

x̃

* 


(11)

Let R be the relation

	 �

i � i

* � �

Ei

+ E

*

i

� 


, let z̃ be the vector of fresh variables	

zii

�� i R i

* 


(with z11 as leading variable), and define the vectors G̃, H̃ and H̃

*

as:

Gii

� � ∑
j

�

Ji � j

� �

J

�

i

�

j R j

�
� aj

� a

�

j

�

ε

�

t j

�

t

*

j

� � �a j �z j j

� 
 ∑
k

�

Ki � k

�

K

�

i

�

k R k

�

ε

�

uk

�

u

*

k

� � �τ �zkk
� 
 ∑

l
�

Li � l

� �

L

�

i

�

wl

� w

�

l

�

ε

�

vl

�

v

*

l

� � �wl (12)

Hii

� � Ei (13)

H

*

ii

� � E

*

i (14)

Note that the equation set z̃ � G̃ is standard by construction. We now show that
the vector H̃ E-provably satisfies z̃ � G̃. To this end, we prove, first of all, that, for
each i R i

*

, every summand of Gii
� 	

H̃

(
z̃




can be absorbed into Hii

� . We consider
three cases, depending on the form taken by the summand of Gii

� 	

H̃

(

z̃




.
For any i R i

*

, j

�

Ji and j
* �

J

*

i

� such that j R j

*

and a j

� a

*

j

� :
E

�

Hii

�
� Ei (13)

� Fi

	

Ẽ
(

x̃



(9)

� Fi

	

Ẽ
(

x̃

 
 ε

�

t j

� �a j �E j (S1–S3,6)

� Fi
	

Ẽ
(

x̃


 
 ε

�

t j

� � �a j �E j


 ε

� �

t j

�

t

*

j

� � 	 t j

� �a j �E j

�

(P)

� Fi

	

Ẽ

(
x̃


 
 ε

�

t j

� �a j �E j


 ε

�

t j

� �ε � �

t j

�

t

*

j

� � 	 t j

� �a j �E j (TD)
� Fi

	

Ẽ

(

x̃


 
 ε

�

t j

� �a j �E j


 ε

�

t j


 � �

t j

�

t

*

j

� � 	 t j

� � �a j �E j (TA)
� Fi

	

Ẽ

(

x̃


 
 ε

�

t j

� �a j �E j


 ε

�

t j

�

t

*

j

� � �a j �E j (t


 �

u 	 t � � u)

� Fi

	

Ẽ

(

x̃


 
 ε

�

t j

�

t

*

j

� � �a j �E j (S1–S3,6)

� Ei


 ε

�

t j

�

t

*

j

� � �a j �E j (9)

� Hii

� 
 ε

�

t j

�

t

*

j

� � �a j �Hj j

� (13)

� Hii

� 
 ε

�

t j

�

t

*

j

� � �a j �z j j

� 	

H̃

(

z̃




(substitution)

Similarly, for any i R i

*

, k

�

Ki and k

* �

K

*

i

� such that k R k

*

:

E

�

Hii

� � Hii

� 
 ε

�

uk

�

u

*

k

� � �τ �zkk

� 	

H̃

(

z̃




and for any i R i

*

, l

�

Li and l

* �

L

*

i

� such that wl

� w

*

l

� :
E

�

Hii

� � Hii

� 
 ε

�

vl

�

v

*

l

� � �wl

	

H̃

(

z̃




We remark here that the proof of the above equality makes an essential use of
axiom (P), and could not have been carried out using Wang’s persistency axioms
(AP) and (NP).
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Thus each summand of Gii

� 	

H̃

(

z̃




can be absorbed into Hii

� , and by (S1)–(S4):

E

�

Hii

� � Hii

� 


Gii

� 	

H̃

(

z̃




(15)

We now show that the converse also holds, namely that Hii

� can be absorbed into
Gii

� 	

H̃

(

z̃




. To this end, by (9) and (13), it is sufficient to prove that each summand
of Fi

	

Ẽ

(

x̃




can be absorbed into Gii

� 	

H̃

(

z̃




. Again, we distinguish three cases
depending on the form the summand takes.

For any i R i

*

and j

�

Ji, either:

� t j

�

uk, for every k

�

Ki, or:

� there exists k

�

Ki such that t j

� uk.

We proceed to show that in either case:

E

�

Gii

� 	

H̃

(

z̃


 � Gii

� 	

H̃

(

z̃


 
 ε

�

t j

� �a j �x j

	

Ẽ

(

x̃




� Case

�

k

�

Ki � t j

�

uk. In this case, by the operational semantics for TC0, it
follows that Fi

	

Ẽ

(

x̃


 ε

�

t j

�	 	 ) a j	 ) E j. As Ei

+ E

*

i

� and G is sound for+ , we have
that Fi

	

Ẽ

(

x̃


,+ F

*

i

� 	

Ẽ

(

x̃

* 


. So F

*

i

� 	

Ẽ

* (

x̃

* 
 ε

�

t j

�	 	 ) a j	 ) E *

j

� for some j

*

with t j

�

t

*

j

� ,
a j

� a

*

j

� and j R j

*

. Thus:

E

�

Gii

� 	

H̃

(

z̃




� Gii

� 	

H̃

(

z̃


 
 ε

�

t j

�

t

*

j

� � �a j �Hj j

� (S1–S3,12)

� Gii

� 	

H̃

(

z̃


 
 ε

�

t j

� �a j �Hj j

� (t j

�

t

*

j

�)

� Gii

� 	

H̃

(

z̃


 
 ε

�

t j

� �a j �E j (13)

� Gii

� 	

H̃

(

z̃


 
 ε

�

t j

� �a j �x j

	

Ẽ

(

x̃




(substitution)

� Case

�

k

�

Ki � t j

� uk. Choose k such that uk is minimal in the set

	

uh

�

h

�

Ki




.
Then, by the operational semantics for TC0, Fi

	

Ẽ

(

x̃


 ε

�

uk

�	 	 ) τ	 ) Ek. Therefore,
as in the previous case, we have F

*

i

� 	

Ẽ

* (

x̃

* 
 ε

�

uk

�	 	 ) τ	 ) E *

k

� for some k

* �

K

*

i

� with
uk

�

u

*

k

� and k R k

*

. In fact, by symmetry and the fact that uk is minimal in
the set

	

uh

�

h

�

Ki




, it is easy to see that uk

� u

*

k

� . Thus:

E

�

Gii

� 	

H̃

(

z̃




� Gii

� 	

H̃

(

z̃


 
 ε

�

uk

�

u

*

k

� � �τ �Hkk

� (S1–S3,12)

� Gii

� 	

H̃

(

z̃


 
 ε

�

uk

� �τ �Hkk

� (uk

� u
*

k
� )

� Gii

� 	

H̃

(

z̃


 
 ε

�

uk

� � �τ �Hkk

� 
 ε

�

t j

	 uk

� �a j �Hj j

� � (MP,t j
� uk)

� Gii

� 	

H̃

(

z̃


 
 ε

�

uk

� �τ �Hkk

� 
 ε

�

uk

� �ε �

t j

	 uk

� �a j �Hj j

� (TD)

� Gii

� 	

H̃

(

z̃


 
 ε

�

uk

� �τ �Hkk

� 
 ε

�

uk


 �

t j

	 uk

� � �a j �Hj j

� (TA)

� Gii

� 	

H̃

(

z̃


 
 ε

�

uk

� �τ �Hkk

� 
 ε

�

t j

� �a j �Hj j

� (t

 �

u 	 t � � u)

� Gii

� 	

H̃

(

z̃


 
 ε

�

uk

�

u

*

k

� � �τ �Hkk

� 
 ε

�

t j

� �a j �Hj j

� (uk

� u

*

k

� )

� Gii

� 	

H̃

(

z̃


 
 ε

�

t j

� �a j �Hj j

� (S1–S3,12)

� Gii

� 	

H̃

(

z̃


 
 ε

�

t j

� �a j �E j (13)

� Gii

� 	

H̃

(

z̃


 
 ε

�

t j

� �a j �x j

	

Ẽ

(

x̃




(substitution)
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Note that the above reasoning uses the equation (MP).

Thus:

E

�

Gii

� 	

H̃

(

z̃


 � Gii

� 	

H̃

(

z̃


 
 ε

�

t j

� �a j �x j

	

Ẽ

(

x̃



Similarly, for any i R i

*

and k

�

Ki, it is not too difficult to prove that:

E

�

Gii

� 	

H̃

(

z̃


 � Gii

� 	

H̃

(

z̃


 
 ε

�

uk

� �τ �xk
	

Ẽ
(

x̃



We are now left to show that for any i R i

*

and l

�

Li:

E

�

Gii

� 	

H̃

(

z̃


 � Gii

� 	

H̃

(

z̃


 
 ε
�

vl
� �wl

	

Ẽ

(

x̃




(16)

As before, we prove this statement by considering the following two sub-cases:

� vl

�

uk, for every k

�

Ki, or:

� there exists k

�

Ki such that vl

� uk.

The proof of (16) when there exists k

�

Ki such that vl

�

uk follows the lines
spelled out in detail above. We shall thus concentrate on presenting a detailed
proof of (16) in the case vl

�
uk, for every k

�

Ki.
Assume that l

�

Li and that vl

�

uk, for every k

�

Ki. We claim that there exists
l

* �

L

*

i

� such that v

*
l

� �
vl and wl

� w

*

l

� . To see that this is indeed the case, note
that Fi

	

Ẽ

(

x̃


 + F
*

i
� 	

Ẽ
* (

x̃

* 


, by (9), (11) and the soundness of E. Let w̃ denote the
set of free variables occurring in either Fi

	

Ẽ

(

x̃




or F

*

i

� 	

Ẽ

* (

x̃

* 


. Choose a vector
ã of distinct actions, one action aw for each w

�

w̃, that do not occur in Fi

	

Ẽ

(

x̃




and F

*
i

� 	

Ẽ
* (

x̃
* 


. (This is always possible as the set of action names ∆ is countably
infinite.) Take the vector P̃ of processes given by Pw

� aw �0. We then have that:

Fi

	

Ẽ

(

x̃


 	

P̃

(

w̃


 + F

*

i

� 	

Ẽ

* (

x̃

* 
 	

P̃

(

w̃




(17)

As l

�

Li and vl

�

uk, for every k

�

Ki, it follows that Fi

	

Ẽ

(

x̃


 	

P̃

(

w̃


 ε

�

vl

�	 	 ) awl	 ) .
By (17) and the fact that awl

does not occur in F

*

i

� 	

Ẽ

* (

x̃

* 


, we then have that
F

*

i

� 	

Ẽ

* (

x̃

* 
 	

P̃

(

w̃


 ε

�

vl

�	 	 ) awl	 ) because, for some l

* �

L

*

i

� , v

*

l

� �

vl and w

*

l

� � wl as
claimed.

Now we can easily prove (16) as follows:

E

�

Gii

� 	

H̃

(

z̃




� Gii

� 	

H̃

(

z̃


 
 ε

�

vl

�

v

*

l

� � �wl (S1–S3,12)

� Gii

� 	

H̃

(

z̃


 
 ε

�

vl

� �wl (v

*

l

� �

vl)

� Gii

� 	

H̃

(

z̃


 
 ε

�

vl

� �wl

	

Ẽ

(

x̃




(substitution)

Thus each summand of Fi

	

Ẽ

(

x̃




can be absorbed into Gii

� 	

H̃

(

z̃




, and by (S1)–
(S4):

E

�

Gii

� 	

H̃

(

z̃


 � Gii

� 	

H̃

(

z̃


 


Fi

	

Ẽ

(

x̃




(18)

Hence:

E

�

Hii

�

12



� Hii

� 


Gii

� 	

H̃

(

z̃




(15)

� Ei




Gii

� 	

H̃

(

z̃




(13)

� Fi

	

Ẽ

(

x̃


 


Gii

� 	

H̃

(

z̃




(9)

� Gii

� 	

H̃

(

z̃




(18)

Thus H̃ E-provably satisfies z̃ � G̃, and E

�

E � E1

� H11 so E E-provably sat-
isfies z̃ � G̃. Similarly, E

*

E-provably satisfies z̃ � G̃.

�

The final ingredient of the proof of completeness is a result showing that every
standard equation set has a unique solution up to provable equality.

THEOREM 8 (UNIQUE SOLUTION). If x̃ � H̃ is a standard equation set, then
there is a TC expression E which E-provably satisfies it. Moreover, if another
TC expression F also E-provably satisfies x̃ � H̃ , then E

�

E � F.

PROOF. The claim follows from the following, slightly stronger statement:

Let x̃ � x1 � � � � � xm and w̃ � w1 � � � � � wn be disjoint vectors of pairwise dis-
tinct variables, and H̃ � 	

H1 � � � � � Hm




be well-formed expressions with
free variables in x̃

�

w̃ in which each variable xi is action guarded. Con-
sider the equation set x̃ � H̃. Then there exists an expression E

� TC
which E-provably satisfies it. Moreover, if F also E-provably satisfies
x̃ � H̃ , then E

�

E � F.

This is proven by induction on m by a simple reworking of the proof of Theorem
5.7 in [14]. The interested reader will have no difficulty in filling in the details
following Milner’s proof.

�

We are now in a position to prove the completeness of E.

THEOREM 9 (COMPLETENESS). For all TC expressions E � F, E + F implies
E

�

E � F.

PROOF. By Theorem 6, E may be proved to satisfy a standard equation set; like-
wise F. By Theorem 7, E and F may be proved to satisfy a single standard equa-
tion set. Finally, Theorem 8 ensures that E

�

E � F.

�
5 Comparison with Wang’s axiomatization

In this section we show that the theory E is strictly stronger than Wang’s F over
TC. More precisely, we shall prove that if F proves an equality E � F , then so
does E. On the other hand, F is not strong enough to prove the new persistency
axiom (P).

PROPOSITION 10. For all E � F

� TC, F

�

E � F implies E
�

E � F.

PROOF. A straightforward induction on the length of the proof of the equation
E � F from the theory F . Note that axiom (AP) is an instance of axiom (P), and
that an application of axiom (NP) can be mimicked using (P) and (S1)–(S4).

�
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PROPOSITION 11. F

� �

E � E


 ε

�

t

� �E
PROOF. Define a denotational semantics for TC in the domain

	

0 � 1 � 2



with the
semantics:

� �

x

� �

ρ � ρ

�

x

�

� �

0

� �

ρ � 0

� �

µ �E � �

ρ � 2

� �

ε

�

0

� �E � �

ρ � � �

E

� �

ρ

� �

ε

�

c

� �E � �

ρ �
�

0 if

� �

E

� �

ρ � 0
2 otherwise

� �

E




F

� �

ρ � max

� � �

E

� �

ρ �
� �

F

� �

ρ
�

� �

fix

�

x � E

� � �

ρ � the least fixed point of the function λd � � �

E

� �

ρ

�

x � ) d �

where ρ :

�� � ) 	

0 � 1 � 2




, and ρ
�

x � ) d �

stands for the function that maps x to d
and agrees with ρ on all the other variables.

Note that, because of our requirement that expressions be well-formed, the
function λd � � �

E

� �

ρ

�

x � ) d �
used in the definition of the semantics of recursive ex-

pressions has always a unique fixed point. It is now simple to check that this is a
model for F , but

� �

x


 ε

�

c

� �x � � �

λx �1 � � 2

� � 1 � � �

x

� � �

λx �1 �

and so it is not a model for E.

�

However, all the closed instantiations of (P) can be derived from F , as the fol-
lowing proposition shows.

PROPOSITION 12. For every P

� TC0, F

�

P � P


 ε

�

t

� �P.

PROOF. By Theorem 6, for some finite index set I, actions µi

� ��� �

, delays
ti

� � � � and processes Pi

� TC0:

G

�

P � ∑
i

�

I
ε

�

ti

� �µi �Pi (19)

Now:

F

�

P

� ∑
i

�

I
ε

�

ti

� �µi �Pi (19)

� ∑
i

�

I
ε

�

ti

� � �µi �Pi


 ε

� �

t




ti

� 	 ti � �µi �Pi

�

(AP, or MP if µi

� τ)

� ∑
i

�

I
ε

�

ti

� �µi �Pi


 ε

�

ti

� �ε � �

t




ti

� 	 ti � �µi �Pi (TD)

� ∑
i

�

I
ε

�

ti

� �µi �Pi


 ε

�

ti


 � �

t




ti

� 	 ti � � �µi �Pi (TA)
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� ∑
i

�

I
ε

�

ti

� �µi �Pi


 ε

�

t




ti

� �µi �Pi (t


 �

u 	 t � � u)

� ∑
i

�

I
ε

�

ti

� �µi �Pi


 ε

�

t

� �ε �

ti

� �µi �Pi (TA)

� ∑
i

�

I
ε

�

ti

� �µi �Pi


 ∑
i

�

I
ε

�

t

� �ε �

ti

� �µi �Pi (S1,S2)

� ∑
i

�

I
ε

�

ti

� �µi �Pi


 ε

�

t

� �∑
i

�

I
ε

�

ti

� �µi �Pi (TD,NP)

� P


 ε

�

t

� �P (19)

Thus F can show any closed instantiation of axiom (P).

�

Note that throughout the above proof we have been careful not to assume that the
monoidal operation




on the time domain is commutative. Although this is true
for most of the examples of time domain one encounters in the literature, it does
not hold for, e.g., the time domain of the countable ordinals

�

ω1 �



� 0

�

.

6 Concluding remarks

In this paper, we have presented a complete axiomatization of timed bisimulation
equivalence over open terms with finite-state recursion in a generalization of the
regular subcalculus of Wang’s timed CCS. Our inference system for timed bisim-
ulation equivalence is obtained by combining an improved version of Wang’s
complete axiomatization for finite trees [21] with standard laws for recursively
defined processes. The proof of completeness of the proposed axiomatization
uses an adaptation of Milner’s classic arguments presented in [14, 16].

The axiomatization we have presented is parametric with respect to the cho-
sen time domain, and will hold for many of the models of time that have been
considered in the literature on timed process algebras, e.g., the natural numbers,
the non-negative rationals and the non-negative reals. The definition of time do-
main that we have chosen in this paper is due to Jeffrey, Schneider and Vaandrager
[12] and suits the purpose of this paper well. However, it is certainly not the only
one possible, and several ones have been proposed in the literature (see [4] for a
series of examples).

Complete axiomatizations of behavioural equivalences for several timed pro-
cess algebras have been presented in the literature; see, e.g., [6, 9, 13, 17, 18, 21]
for examples of such results. With the notable exception of the one presented in
[9], all the aforementioned axiomatizations are restricted to recursion-free pro-
cesses. Hennessy and Regan’s axiomatizationof their behavioural precongruence
over the language TPL includes an infinitary conditional equation, the so-called
ω-induction rule, whose validity is justified by the algebraicity [7] of their testing-
based semantics. To the best of our knowledge, the work reported in this paper is
the first to offer a finitary complete axiomatization for a class of timed behaviours
with finite-state recursion.
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The axiomatization of strong bisimulation equivalence presented by Milner in
[14] is complete for arbitrary regular CCS expressions. Milner’s inference system
deals with unguarded recursive expressions by means of the law:

fix

�

x � E




x

� � fix

�

x � E

�

(20)

Such a law, however, is not sound with respect to timed bisimulation. For ex-
ample, fix

�

x � a �0 


x

�

is not timed bisimulation equivalent to fix

�

x � a �0 �

, as
the latter can delay whereas the former cannot. We conjecture that our complete
axiomatization of timed bisimulation can be extended to arbitrary timed regular
expressions by extending the language TC with a new constant

�

denoting the
time stop, i.e., a process that cannot perform any action, and, unlike 0, is not al-
lowed to delay. Using

�

, we could then write a version of law (20) as follows:

fix

�

x � E




x
� � fix

�

x � E


 � �

The time stop process could then be axiomatized by means of the laws:
� 
 ε

�

c

� �E � �

� 
 τ �E � τ �E
It is interesting to note that axiom (MP) is derivable from these two laws for

�

.
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