A complete axiomatization of timed bisimulation for
a class of timed regular behaviours
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ABSTRACT. One of the most satisfactory results in process theory is Milner's axiomatization of
strong bisimulation for regular CCS. Thisresult holdsfor open termswith finite-state recursion. Wang
has shown that timed bisimulation can also be axiomatized, but only for closed terms without recur-
sion. Inthis paper, we provide an axiomatization for timed bisimulation of open termswith finite-state
recursion.
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1 Introduction

Much research in concurrency theory has recently been devoted to the develop-
ment of extensions of standard processalgebraslike CCS[15], CSP[10] and ACP
[3] with congtructs allowing for the modelling of timing aspectsin the behaviour
of processes. By now, most process algebras have atimed counterpart (see, e.g.,
[1,5, 17, 20]), and the devel opment of results and techniques for these languages
isbecoming comparablewith that for the standard process description languages.
For example, complete axiomatizations of behavioural congruences for subsets
of timed process a gebras have been presented in, e.g., [9, 13, 17, 21]—showing
that behavioural congruences which deal with timing considerations are as math-
ematically tractable as the standard untimed ones.

Two of themost beautiful resultsinthetheory of processalgebrasare thecom-
plete axiomati zations of strong bisimulation equivalence and observational con-
gruence for regular CCS processes provided by Milner in his classic papers [14]
and [16], respectively. These results have put the notions of behaviour used in
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the theory of CCS on an equal footing with the one common in formal language
theory, and have contributed to the realizationthat the notion of processisat least
as el egant and mathematically tractable as that of language.

The main purpose of this paper is to show that the techniques devel oped by
Milner in [14, 16] can be adapted to provide a complete axiomatization of the
notion of timed bisimulation equivalence, due to Wang Yi [20], over a class of
regular timed CCS processes [11, 21]. More precisely, we shall offer acomplete
axiomatization of timed bisimulation over the language of action guarded regular
expressions studied in [11]. This complete axiomatization is obtained by com-
bining an improved version of the laws which were shown in[21] to characterize
timed bisimulation over finitetreeswith standard lawsfor recursively defined pro-
cesses, viz, laws to unwind recursive definitions of expressions, and a version of
unique fixed-point induction.

The paper is organized asfollows. Section 2 is devoted to preliminaries, and
background material on timed CCS and timed bisimulation. The axiomatization
of timed bismulation ispresented and discussed in Section 3, whereits soundness
isalso proved. The proof of completeness of the axiomatizationis given in detail
in Section 4, and relies on an adaptation of the techniques used by Milnerin[14,
16].

Asthisisnot an introductory paper on timed CCS, we have taken the liberty
to refer the reader to the original papers by Wang Yi for motivations and exam-
ples. We hope, however, that the paper will still be sufficiently readable for the
uninitiated reader.

2 Timed regular behavioursand timed bismulation

The language for expressions that we shall consider in this paper isa generaliza-
tion of the regular subcalculus of Wang Yi’stimed CCS[20, 22]. Thislanguage
hasbeeninvestigated by Holmer, Larsenand Wang Yi in[11], and we shall mostly
follow the notation and definitions given in that reference.

Asusual, we shall assume a countably infinite set A of action names, ranged
over by aand b, and adistinguished action T ¢ A. Let Act = AU {1}, be the set
of actions, ranged over by pand v.

Following [12], we define a monoid (X, +, 0) to be:

o |eft-cancellativeiff (x+y=x+2) = (y=2z), and
o anti-symmetriciff (x+y=0) = (x=y=0).
Examples of |eft-cancellative anti-symmetric monoids include:
Thesingleton set (1,+,0).
The natural numbers (N, +, 0).
The non-negative rationals (Q*, +, 0).
The non-negative reds (R, +,0).



e The countable ordinals (wy, +,0).
We can define a partial order on X as.
x<yiff Iz.x+z=y
Itissmpleto verify that < isapartial order if (X, +,0) isaleft-cancellative anti-

symmetric monoid. A time domain is aleft-cancellative anti-symmetric monoid
(Tim,+,0), ranged over by t, uand v, such that < isatotal order. Define:

tAu= theminimumoft andu
tvu= themaximumoft andu

andwhent > u:
t —u= theunigquev suchthat u+v=t

Let Tim; = Tim\ {0} bethe set of positive delays, ranged over by ¢, d and e.
Let Lab=ActU{g(c) | c € Timy} bethe set of labels, ranged over by o.
Let Var be a countably infinite set of process variables, ranged over by X, y

and z
The set of regular process expressions over Act, Tim and Var isgiven by the

following grammar:

E:=0|x|pnE|&lt).E|E+E]|fix(x=E)
Theinterested reader isreferred to [20, 22] for intuition on the operators used in
the above definition.

We shall assume the standard notions of free and bound variablesin expres-
sions, with fix(x = _) asthe binding construct. The set of free variablesin an ex-
pression E isdenoted by fvE. Throughout this paper we shall restrict ourselvesto
considering regular process expressions in which recursions are action guarded,
anotion that is defined bel ow.

DEFINITION. Avariablexisaction guarded in E iff x € AG(E), defined:

AG(0) = Var
AG(x) = Var\ {x}
AG(U.E) = Var
AG(g(t).E) = AG(E)
AG(E +F) = AG(E) N AG(F)
AG(fix(x=E)) = AG(E) \ {x}

Aregular process expression E iswell-formed iff for every subexpression of E of
theformfix(x=F), xisaction guarded in F.

For example, the expression (fix(x = 1.x)) +y is well-formed, while the expres-
sion fix(x = €(c).x) is not. The above definition departs dightly from the one
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FIGURE 1. The operational semanticsfor TCgp

givenin[11, Definition 2.1]. In particular, theexpression (fix(x = 1.x)) + ywould
not be well-formed according to the definition of [11] because the free variabley
does not occur within a subexpression of the form p.F.

The set of all well-formed regular process expressionsis TC, ranged over by
E, F and G. The set of al closed, well-formed regular process expressions is
TCy, ranged over by P, Q and R. Elementsof this set will often be referred to as
processes.

Following Milner [16], we shall identify expressions which differ only by the
renaming of bound variables. Weshall alsowriteE{Fy, ..., Fn/X1, ..., %n} for the
result of smultaneously substituting F; for each free occurrence of x; in E, renam-
ing bound variables as necessary.

The operational semanticsfor TCy is given by the labelled transition system
(TCp,Lab,—) inFigure 1. Theinterested reader isreferred to [20, 22] for com-
mentson therules. Notethat, following Wang Yi [20, 22], £(0) hasbeen excluded
from the semantics of processes.

To concludethisintroductory section, we shall now define the notion of timed
bisimulation equivalence.

DEFINITION (TIMED BISIMULATION EQUIVALENCE [20]). Arelation % over
TCpisatimed bismulationiff P 2 Q implies, for all o:

o whenever P - P’ then, for some @, Q < Q and P’ ~ Q.

o whenever Q -% Q' then, for some P, P-% P and P’ ~ Q.
Therelation of timed bisimulation equivalence, denoted by ~, isthelargest timed
bisimulation.

The interested reader is referred to the aforementioned papers by Wang Yi, and
to [11] for intuition and examples of processes that are equivalent or inequiva-
lent with respect to ~. The definition of ~ can be extended to expressionsin the
standard way asfollows:

DEFINITION. Let E and F be expressions with free variablesin X = X, ..., Xm.
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(S1) E+F =F+E

(S2) E+(F+G)= (E4+F)+G
(S3) E4+E=E

(S4) E+0=E

(TD) &(t).(E+F) = g(t).E+e(t).F
(TA)  g(t4u).E = g(t).g(u).E
(TO) g0.E=E

(R1) fix(x=E) = E{fix(x=E)/x}
(R2) If F =E{F/x}, thenF = fix(x= E), provided x is action guarded in E

FIGURE 2. The axiom system g

(MP) t.E+¢(c).F =tE
(AP) aE+eg(t)aE = aE
(NP) gt).0=0

FIGURE 3. Theaxiom system 7 is g plus (MP), (AP) and (NP)

(MP) T.E+¢(c).F
(P) E+e(t).E

T.E
E

FIGURE 4. Theaxiom system £ is g plus (MP) and (P)

Then E ~ F iff for all vectorsP = Py,...,Pn E{P/X} ~ F{P/X}.

PROPOSITION 1 ([20, THEOREM 5.1]). Timed bisimulation equival ence forms
a congruence over TC.

In the remainder of this paper, we shall present a complete axiomatization of ~
over TC.

3 Axiomatization and soundness

In [20] various equational laws were proved to hold for Wang Yi’s timed CCS
modulo timed bisimulation equivalence, and in [21] a set of such axioms was
shown to be complete over the language of recursion-free TCq processes with
delays from the time domain of the positive reals. We shall now present an ax-
iomatization which will be proven complete for ~ over the whole of TC, i.e,,
completefor regular process expressions with action guarded recursion. The de-
tailed proof of completeness occupies Section 4 of this paper.

Wang's axiomatization for recursion-free TCq processes is given by the ax-
iom system ¥ in Figures 2 and 3. Our axiomatization for regular TC process
expressions is given by the axiom system £ in Figures 2 and 4.

The axioms (S1)—4) arethe standard laws for a compl ete axiomatization of
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strong bisimulation equivalence over finite trees [8]. Together with axioms (R1)
and (R2), these form a complete axiomatization of strong bisimulation equiva-
lence for guarded regular CCS terms [14]. (In fact, the axiomatization in [14]
can be obtained as a specia case of that in Figure 2 by taking the time domain to
bethesingleton set (1,+,0).)

The axioms (TD), (TA) and (T0) correspond to the operational properties of
time determinacy, time additivity and zero delay. These axioms are present in
Wang's[20, 21] axiomatization. As we shall see in Section 4, the axiom system
G givenin Figure 2 is powerful enough to prove Milner’s[14] Equational Char-
acterization Theorem for timed regular expressions. However, g isnot powerful
enough to give a complete axiomatization for recursion-free timed expressions.

Wang [20, 21] added the axioms (MP), (AP) and (NP) to g to provide acom-
plete axiomatization for recursion-free TCq processes. These axioms correspond
to the operational properties of maximal progress and persistency, and are dis-
cussed in detail by Wang. However, the resulting axiom system #, givenin Fig-
ure 3, isnot powerful enough to give acompl ete axiomatizationfor recursion-free
T C process expressions.

Our axiomatization replaces (AP) and (NP) with one new persistency axiom
(P). In Section 4 we show that £ is complete for timed bisimulation equivalence
over TC process expressions. In Section 5 we show that £ is gtrictly stronger
than ¥, and thus that Wang's axi omatization is not compl etefor open TC process
expressions.

We shall write £ - E = F when E = F may be proved from £ together with
the structural rules for = to be a congruence, and similarly for 7 - E = F and
GHFE=F.

To conclude this section, we shall show that £ isindeed sound with respect
to timed bisimulation equivalence over TC.

PROPOSITION 2 (SOUNDNESS). For all TC expressonsE,F, E-E=F im
pliesE ~ F.

ProOF. All thelawsin £ have been shown sound by Wang Yi in[21]. The only
exception is the persistency axiom (P), the soundness of which is established by
the timed bisimulation:

{(Q+P.Q)|3c.P XL QLu{(PP)| P& TCo}

The verification of the fact that the above relation satisfies the defining clause of
~ Uuses the properties of time determinacy, time additivity and persistency of the
operational semanticsfor TCy. (Theinterested reader isreferredto [20] and [19]
for details on these properties). O



4 Completeness

Inthissection, we shall present the proof of completenessof the set of laws £ over
TC. Thestructure of the proof of thisresult will follow closely the most beautiful
arguments used by Milner in [14, 16] to prove the completeness of the axioma-
tizationsfor strong bisimulation and observational congruence over regular CCS
processes.

Thestructure of the compl eteness proof will beasfollows: first of all, weshall
show that every T C expression E provably satisfiesa certain kind of equation set.
Thisis what Milner calls the Equational Characterization Theorem. Next, we
shall show that if E ~ F and E provably satisfies an equation set, while F prov-
ably satisfies another equation set, then both E and F provably satisfy acommon
equation set. Finally, we show that whenever two TC expressions provably sat-
isfy the same equation set, then £ proves that they are equal.

DEFINITION. An equation set X = E is a finite non-empty sequence of declara-
tionsx; = Ey, ..., Xy = En, where the ;s are pairwise distinct variables, and the
Eisare TC e>gpr ons. _ _

AvectorF:Fl...Fnsatisfi&eX:EifoVi.H~Ei{F/>Z}. B

For an equational theory 7', avector F = F; ... F, 7-provably satisfiesX=E
iffvi. 7 - R =E{F/%}. ) )

An expression E (7 -provably) satisfiesX = F iff we can find a vector E which
(7 -provably) satisfiesX=F andE ~ E; (7 F E = Ey). B

We refer to x; astheleading variable of the equation set X = F.
For example, the equation set:

x1=¢€(1).axp+&(3)y X =¢(2).bx; (@)
issatisfied by fix(z=¢(1).a.€(2).b.z+£(3).y).
DEFINITION. Anequation set X = E is standard iff each E; is of the form:
et Mixi+ Y e(ug).wk
jEZi i-HiX k;ﬁ

where the vectors X and W are digjoint. We call X the formal variables of X = E,
and W the free variables of X = E.

For example, the above equation set (1) is standard, but the following is not:
x1 = €(1).x2+ €(3) y, X2 = a.€(2).b.xg

PROPOSITION 3. IfX=E i~sstandard and wisnot a formal variable of S then
we can find a standard X = F suchthatVi. g F F = E;{E;/w}.

PROOF. Define F as:

F= Z e(t)).1j.Xj + Ze(uk).wk

] ke K;
Wi # W
+ Y e(Ucttj) X+ ) (Ui + U)W
ke K; k € K;
W =W W =W
j'ex kK € Ky

It issimple to show that thisis standard, and that Vi . g F F = Ei{E;/w}. O

PROPOSITION 4. If x isaction guarded in E and ¢ - E = F then x is action
guardedinF.

PROOF. Show that AG(_) isamodel for the equational theory g. O

ProPOSITION 5. We shall use the following standard results about substitution:

1. G{F/S}{E/w} = G{E/wW}{F{E/w}/%}, if w does not occur in X, and X are
not free in E. . . B

2. F{G/wW}{E/X} = F{G{E/X} /W}{E/X}, if Rarenot freein E.

PROOF. Routine structural induction. |

THEOREM 6 (EQUATIONAL CHARACTERIZATION). For any E we can find a
standard equation set X = G which E G-provably satisfies.

PROOF. Aninduction on E. The only difficult caseiswhen E = fix(w=F). In
this case, by induction we find aX = H which F g-provably satisfies, and wlog
we can assume that w is not aformal variable of X = H, and that X are not freein
E. Thuswe have aF such that:

GFR=F 2
Vi.gFFR=H{F/5} €)
Define:
Ei = FR{E/w} @)
Let G be the standard equation set given by Proposition 3 such that:
G F G = Hi{Hy/w} ©)

Since w is action guarded in F, by Proposition 4 it must be action guarded in
H1{F/X}, s0, asw ¢ X, must be action guarded in H1, so cannot be freein H;.
Then:

GFE
= F{E/w} (R1)
= F{E/w} 2
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=E 4
and:
GFER
= F{E/w} 4
= Hi{F/XH{E/w} ©)
= H{E/WHF{E/w}/%} (Propn 5.1)
= H{E/WH{E/X} @
= H{E/%} (w¢ fvHy)
and so:
GFE
= Hi{F /X{E/w} ©)
= Hi{E/WHF{E/w}/X} (Propn5.1)
= H{E/WH{E/RX} 4
= Hi{H{E/X} /WHE/X} (above)
= Hi{H1/WwHE/X} (Propn 5.2)
= G{E/%X} ®)
Thus we have found a standard X = G which E g-provably satisfies. O

Theorem 6 shows that every expression E in TC g-provably satisfies a standard
equation set X = G. The second stepping stone towards the promised complete-
ness theorem is a result showing that if E ~ F, where F g-provably satisfies a
standard equation set § = H, then there exists a third standard equation set z-
provably satisfied by both E and F. Note that this part of the compl eteness proof
requiresthe axioms (MP) and (P).

THEOREM 7. Let E and E’ beexpressionsin TC such that E ~ E’. Assume that
E £-provably satisfiesa standard equation set X = F, and E’ z-provably satisfies
a standard equation set X' = F’. Then there exists a standard equation set £-
provably satisfied by both E and E’.

PROOF (FOLLOWING MILNER). Assume that:

F,zZ(t)aijJrZ () T+ D &(vi).w (6)

J€d IE€T;

Fi= > et )2y X + > e(Up). T.X + > e(V)).W, (7
j'ed; KK, I'eLs,

AsE E£-provably satisfies
E and E’ such that:

and E/ £-provably satisfies ¥ = F/, we can find

EFE=E ®)

9

Vi.zFE = R{E/X} 9)

£+E =E (10)

Vi.zFE =F{E/%} (11

Let ® be the relation {(i,i’) | Ei ~ E}, let Z be the vector of fresh variables
{zi |i ® i’} (with z;; asleading variable), and define the vectors G, H and H' as:

Gin =y & tjVti).aj.z+ > & uk\/uk,).T.zkk,+ZS vivvi).w (12

jeJ‘,j’eJi’, keKi,keKi’, IeLi,I’eLf,
I ja =4, k® K W =W,
Hiil = Ei (13)
||’ = El (14)

Note that the equation set 7 = G is standard by construction. We now show that
thevector H £-provably satisfiesz= G. Tothisend, we prove, first of all, that, for
eachi & i', every summand of Gj;; {H /Z} can be absorbed into H;;;. We consider
three cases, depending on the form taken by the summand of G;;: {H /2}.

Foranyi® i', j€ Jandj' € Jj suchthat j & | and aj = &;:

£+ Hiil
=5 _ (13)
= R{E/%} ©)
= R{E/R} +e(t)) 2. (S1-53,6)
= R{E/X} +e(t)).(aj.Ej +&((tj v )—tj)-aj-Ej) P
= R{E/X} +e(t)).aj.Ej +e(t)). ((t vtp) —tj).a) Ej (TD)
= R{E/X} +<(t)).a;.Ej +&(t; +((t Vi) —tj)).a.Ej (TA)
= R{E/%} +&(t)). aj Ej+e(t)vij).a. El t+u-t)=u
= R{E/%} +e(t; Vi) .a E (S1-3,6)
= E+e(tj Vi ).a,.EJ 9)
= H“:+s(tjvtj,).aj.Hjjl (13)
= Hi +&(tj vt)).a.2{H/Z} (substitution)

Similarly, forany i ® i’, k € Kj and k' € K, such that k % K':
£ b Hip = Hip + (U V U) . T.200{H/Z}
andforanyi® i’,1 € Lj and1’ € L, such that w = wi:
£ b Hiy = Hiyp + (v vV wi{H/2}

We remark here that the proof of the above equality makes an essential use of
axiom (P), and could not have been carried out using Wang's persistency axioms
(AP) and (NP).
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Thus eachsummand of G;;: { H /Z} canbeabsorbed into H;;:, and by (S1)~(S4):
£ F Hip = Hiil+Giil{|:|/2} (15

We now show that the converse also holds, namely that H;;; can be absorbed into
G“,{H[Z}. Tothisend, by (9) and (13), itissufficient to prove that each summand
of KF{E/X} can be absorbed into G;;{H/Z}. Again, we distinguish three cases
depending on the form the summand takes.
Foranyi® i’ and j € J;, either:
o tj < u, for every ke K, or:
o thereexistsk € K; such that tj > u.

We proceed to show that in either case:
£+ Gi{H/2} = Gi{H/Z} +&(t;).a) X {E/%}

o CaseVke Ki.tj < U, Inthlscase by the operational semanticsfor TC, it
followsthat F{E/x} LI Ej. ASEi ~ E’ and g issound for ~, we have
that F{E/X} ~ F/{E/X}. SOF/ {E’/x’} slti), aj, E;, for some j’ WlthtJ >t
aj_a andj‘]{j Thus:

£+ G||I{H~/2}
= G {H /2}+s(t, ) Hjj (S1-S3,12)
= G {H/Z} +(t; ) al El (13
= G {H/Z} +&(t)).a; ;{E/%X} (substitution)

o CasedkeKj.tj> . Chooseksuchthatuklsmmlmal|ntheset{uh|he Ki}.
Then, by the operational semantlcsforTCo, J5E /X} £ £, T, Ex. Therefore,
asmthepre\nouscase wehaveF{E'/%} £ ), T, E, for somek’ € K, with
U > U, andk ® K. In fact, by symmetry and thefact that u, isminimal in
the set {uh | he K}, itiseasy to seethat uy = uy,. Thus.

E GII’{HZZ}
= Gii’{':'/z} +e(u Vv uk’) T.Hye (S1-S3,12)
= G {H/Z} + &(u) T.Hge (U = uy,)
= Gii {H/Z} 4 e(uy) (1. Hyo + £(tj — U).a) Hj ') (MPtj > w)
= Giir{H/Z} + &(u) .T.Hye +€(Uk) e(t] — Ug).a; (TD)
= Gji{H/Z} +e(u) T.Hge + (i + (tl — U))-a; (TA)
= Gji{H/Z} +&(u) T.Hyo +£(t)) .aj . Hjjs (t+(u—t):u)
= G“,{Ii/i}+e(ukv uk,) T. Hkkl+s(t) aj.H;j (U =u,)
= Giil{H/Z}-‘rE(tJ) “l (31—53,12)
— Gy {H/2} +e(t)).a, (13)
= G {H/2} +¢(t)).a;. x;{E/%} (substitution)
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Note that the above reasoning uses the equation (MP).

Thus:
£+ Gi{H/Z} = Gi{H/Z} +&(t)) aj X {E/X}
Similarly, forany i ® i’ andk € K;, it isnot too difficult to prove that:
£ F Gy{H/2 = Gy {H /2 +e(u).T.x{E/K}
We are now |eft to show that forany i € i and | € Lj:
£ +Gi{H/Z = Giu{H/Z +e(w) w{E/S} (16)
As before, we prove this statement by considering the following two sub-cases:
o v < U, for every k € K;, or:
o thereexistsk € K; such that vi > u.
The proof of (16) when there exists k € K such that vi > u follows the lines
spelled out in detail above. We shall thus concentrate on presenting a detailed
proof of (16) in the casev, < u, for every k € K;.
Assumethat | € L andthatv; < uy, for every k € K. Weclaimthat thereexists
I” € Lj, suchthat vj, <v; andw = w,. To see that thisis indeed the case, note
that F{E/x} ~Fi {E’ /X}, by (9), (11) and the soundness of . Let W denote the
set of free varlablesoccurrl ng in either F{E/X} or FI,{E’/x }. Choose a vector
& of digtinct actions, one action a,, for eachw € W, that do not occur in F{E/X}

and F’{E’/x }. (Thisisalwayspossible asthe set of action namesA is countably
infinite.) Take the vector P of processes given by Ry = aw.0. We then have that:

R{E/HP/W} ~ FI{E'/K H{P/W) 17
Asl e Lj and v, < u, for every k € K, it follows that F{E/x}{P/w} 2), 8w,
By (17) and the fact that ay, does not occur in F/{E'/X'}, we then have that

’{E’/x}{P/w} LCINCTR because for somel’ € '—w v, <viandw, =w as
claimed.
Now we can easily prove (16) asfollows:
E GHI{HN/Z}
= Gi{H/Z} +e(v vVi,).w (S1-S3,12)
=Gi{H/Z} +e(vi)w v, <w)
= Gji{H/Z} +¢(vj) W {E/X} (substitution)

Thus each summand of F{E/X} can be absorbed into G {H /Z}, and by (S1)—
(SA4):
T+ Gy{H/2Z} = Gy {H/Z} + R{E/X} (18)
Hence:
E Hiil
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= Hii'+Gii'{|:|/2} (15)

=E +~Gi~i,{ﬂ/2} - (13)
= R{E/X} + G {H/2} (©)
=G{H/Z} (18)
ThusH - -provably satisfiesZ= G adzt+E= Ey = Hi; 0 E Z-provably sat-
isfiesz= G. Similarly, E’ -provably satisfiesz= G. |

Thefinal ingredient of the proof of completenessis a result showing that every
standard equation set has a unique solution up to provable equality.

THEOREM 8 (UNIQUE SOLUTION). If X = H is a standard equation set, then
there isa TC expression E which Z-provably satisfies it. Moreover, if another
TC expression F also £-provably satisfiesX=H,then - E =F.

Proor. The claimfollows from the following, dightly stronger statement:

LetX=Xg,...,.XnandW=ws, ..., W, bedigoint vectors of pairwise dis-
tinct variables, and H = {Hy,...,Hm} be well-formed expressions with
free variablesin XU W in which each variable x; is action guarded. Con-
sider the equation set X = H. Then there exists an expression E € TC
which £-provably satisfiesit. Moreover, if F aso £-provably satisfies
¥=H,thenz FE =F,

Thisis proven by induction on mby asimple reworking of the proof of Theorem

5.7 in[14]. The interested reader will have no difficulty in filling in the details
following Milner’s proof. O

We are now in a position to prove the completeness of .

THEOREM 9 (COMPLETENESS). For all TC expressions E,F, E ~ F implies
EFE=F.

ProoF. By Theorem 6, E may be proved to satisfy astandard equation set; like-
wise F. By Theorem 7, E and F may be proved to satisfy asingle standard equa-
tion set. Finally, Theorem 8 ensuresthat £ - E = F. O

5 Comparison with Wang's axiomatization

In this section we show that the theory £ is strictly stronger than Wang's # over
TC. More precisely, we shall prove that if # proves an equality E = F, then so
does £. On the other hand, # is not strong enough to prove the new persistency
axiom (P).

PrROPOSITION 10. Forall E,F e TC, F FE=F impliese - E=F.

ProoOF. A graightforward induction on the length of the proof of the equation
E = F fromthetheory 7. Notethat axiom (AP) isaninstance of axiom (P), and
that an application of axiom (NP) can be mimicked using (P) and (S1)—(S4).0
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ProPosITION 11. F Y E=E+¢(t).E

PrROOF. Define adenotational semanticsfor TC in the domain {0, 1,2} with the
semantics:

[X]p = p(X)
[Olp=0
[MElp=2
[€(0).E]p = [E]p

[£(c).E]p = { 0 gﬂ[EeEr]\]IaS:e 0

[E +Flp = max([E]p, [Flp)
[fix(x= E)]p = theleast fixed point of the function Ad. [[E]p[x+— d]

where p : Var — {0,1,2}, and p[x+ d] stands for the function that maps x tod
and agreeswith p on all the other variables.

Note that, because of our requirement that expressions be well-formed, the
function Ad. [E]lp[x+— d] used in the definition of the semantics of recursive ex-
pressions has always a unique fixed point. It isnow smpleto check that thisisa
model for , but

[X+e(c) X[(Ax.1) =2# 1= [x](Ax.1)
and so it is not amodel for £. O

However, all the closed instantiations of (P) can be derived from #, as the fol-
lowing proposition shows.

PROPOSITION 12. For everyP € TCp, F F P=P+¢(t).P.

Proor. By Theorem 6, for some finite index set I, actions | € Act, delays
ti € Tim and processes P, € TCy:

FP= E &(t).ui-R 19
g 2 () ( )
NO\N:

FEP
= (19

Zst.
€

(ti)-Hi
%e(t.)
(ti).
(ti).

Mi-P4e((t+t) —t).1i.R) (AP, or MPif g =1)

:Zet. Hi P A4e(t).e((t+1t) — ). R (TD)
€

= 2 E)WR+et+ (1) 1)1 A (TA)
€
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= Zs(ti)~Ui-H+5(t+ti)-Ui~H t+u-t)=u)
1€

= Ze(ti)~ui-|3|+5(t)~5(ti)-ui-P| (TA)
1€

= Zs(ti)Ui-Pﬁ+Ze(t)~5(ti)~uiﬂ (SLs2)
e e

= Ze(ti)Ui-H+5(t)~Ze(ti)~Hi-P| (TD,NP)
1€ 1€

=P+et).P (29

Thus # can show any closed instantiation of axiom (P). O

Note that throughout the above proof we have been careful not to assume that the
monoidal operation + on the time domain is commutative. Although thisistrue
for most of the examples of time domain one encountersin the literature, it does
not hold for, e.g., the time domain of the countable ordinals (wy, +, 0).

6 Concluding remarks

Inthis paper, we have presented a compl ete axiomatization of timed bisimulation
equivalence over open termswith finite-state recursion in a generalization of the
regular subcal culus of Wang'stimed CCS. Our inference system for timed bisim-
ulation equivalence is obtained by combining an improved version of Wang's
complete axiomatization for finite trees [21] with standard laws for recursively
defined processes. The proof of completeness of the proposed axiomatization
uses an adaptation of Milner's classic arguments presented in [14, 16].

The axiomatization we have presented is parametric with respect to the cho-
sen time domain, and will hold for many of the models of time that have been
considered in the literature on timed process algebras, e.g., the natural numbers,
the non-negative rationals and the non-negative reals. The definition of time do-
mainthat we have chosen in this paper isdue to Jeffrey, Schneider and VVaandrager
[12] and suits the purpose of this paper well. However, it iscertainly not the only
one possible, and several ones have been proposed in the literature (see [4] for a
series of examples).

Compl ete axiomatizations of behavioural equivalencesfor several timed pro-
cess algebras have been presented in the literature; see, e.q., [6, 9, 13, 17, 18, 21]
for examples of such results. With the notable exception of the one presented in
[9], al the aforementioned axiomatizations are restricted to recursion-free pro-
cesses. Hennessy and Regan’ s axiomati zation of their behavioural precongruence
over the language TPL includes an infinitary conditional equation, the so-called
w-inductionrule, whose validity isjustified by thealgebraicity [ 7] of their testing-
based semantics. Tothe best of our knowledge, the work reported in this paper is
thefirst to offer afinitary complete axiomatization for aclass of timed behaviours
with finite-state recursion.
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The axiomatization of strong bisimulation equival ence presented by Milnerin
[14] iscompletefor arbitrary regular CCS expressions. Milner’sinferencesystem
dealswith unguarded recursive expressions by means of the law:

fix(x=E+x) = fix(x=E) (20)

Such a law, however, is not sound with respect to timed bisimulation. For ex-
ample, fix(x = a.0+ X) is not timed bisimulation equivalent to fix(x = a.0), as
the latter can delay whereas the former cannot. We conjecture that our complete
axiomatization of timed bisimulation can be extended to arbitrary timed regular
expressions by extending the language TC with a new constant 3 denoting the
time stop, i.e., a process that cannot perform any action, and, unlike O, is not al-
lowed to delay. Using U3, we could then write a version of law (20) asfollows:

fix(x=E+x) = fix(x=E+0)
The time stop process could then be axiomatized by means of the laws:
U+¢(c)E=0
O+1E=1E

It isinteresting to note that axiom (M P) is derivable from these two laws for U.
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