
Full Abstraction for Polymorphic Pi-Calculus

Alan Jeffrey?1 and Julian Rathke2

1 Bell Labs, Lucent Technologies, Lisle, IL, USA
2 University of Sussex, Brighton, UK

August 2006, To appear inTheoretical Computer Science

Abstract. The problem of finding a fully abstract model for the polymorphicπ-
calculus was stated in Pierce and Sangiorgi’s work in 1997 and has remained open
since then. In this paper, we show that a variant of their language has a fully ab-
stract model, which does not depend on type unification or logical relations. This
is the first fully abstract model for a polymorphic concurrent language. In addi-
tion, we discuss the relationship between our work and Pierce and Sangiorgi’s,
and show that their model based on type unification is sound but not complete.

1 Introduction

Finding sound and complete models for languages with polymorphic types is notori-
ously difficult. Consider the following implementation of a polymorphic ‘or’ function
in Java 5.0 [16]:

static<X> X or (X t, X a, X b) {
if (a == t) { return a; } else { return b; }

}

This implementation ofor takes a type parameterX, which will be instantiated with
the representation chosen for the booleans, together with three parameters of typeX:
a constant for ‘true’, and the values to be ‘or’ed. This function can be called in many
different ways, for example3:

or.<int> (1, 0, 1); or.<bool> (true, false, true);

In each case, there is no way for the callee to determine the exact type the caller instan-
tiated forX, and sono matter what implementation foror is used, there is no observable
difference between the above program and the following:

or.<int> (1, 0, 1); or.<string> ("true", "false", "true");

or the following:

? This material is based upon work supported by the National Science Foundation under Grant
No. 0430175

3 Java purists should note that this discussion assumes for simplicity that downcasting and reflec-
tion are not being used, and a particular implementation of autoboxing, for example the code
or.<int> (1, 0, 1) is implemented asInteger x = new Integer(1); Integer y =

new Integer(0); or.<Integer> (x, y, x).

or.<int> (1, 0, 1); or.<int> (2, 3, 2);

However, thereis an observable difference between the above programs and:

or.<int> (1, 0, 1); or.<int> (1, 0, 1);

since we can use the following implementation ofor to distinguish them:

static Object x=null;
static<X> X or (X t, X a, X b) {
if (a == x) { System.out.println ("hello"); } else { x=a; }
if (a == t) { return a; } else { return b; }

}

This example demonstrates some subtleties with polymorphic languages: the presence
of impure features (such as mutable fields in this case) and equality testing (such as
a == x in this case) can significantly impact the distinguishing power of tests. In the
case of pure languages such as System F [10], the technique oflogical relations[26, 23]
can be used to establish equivalence of all of the above calls toor, which is evidently
broken by the addition of impurity and equality testing.

Much of the work in finding models of pure polymorphic languages comes in find-
ing appropriate techniques for modellingparametricity[25, 26] to show that programs
are completely independent of the instantiations for their type parameters. Such para-
metricity results are surprisingly strong, and can be used to establish ‘theorems for
free’ [30] such as the functoriality of the list type constructor. The strength of the re-
sulting theorems, however, comes at a cost: the proof techniques required to establish
them are quite difficult. In particular, even proving the existence of logical relations is
problematic in the presence of recursive types [23].

In this paper, we show that providing models for impure polymorphic languages
with equality testing can be surprisingly straightforward, (albeit with some subtlety
of choice of language features, as discussed in Section 4). We believe that the tech-
niques discussed here will extend to the polymorphic features of languages such as
Java 5.0 [16], and C# 2.0 [7]: F-bounded polymorphism [5], subtyping, recursive types
and object features. In this paper, we will investigate a minimal impure polymorphic
language with equality testing and mismatch, based on Pierce and Sangiorgi’s work [22]
on a polymorphic extension of Milneret al.’s [20, 19]π-calculus.

Pierce and Sangiorgi have established a sound model for a polymorphicπ-calculus,
but they only conjectured the existence of a complete model [22, Sec. 12.2]. In this
paper, we develop a sound and complete model for a polymorphicπ-calculus: the re-
sulting model and proof techniques are quite simple. In particular, our model makes no
use of type unification, which is an important feature of Pierce and Sangiorgi’s model.
We then compare our model to theirs, and show that ours is strictly finer: hence we have
resolved their outstanding conjecture, by demonstrating their model to be sound but not
complete.

This is the first sound and complete model for a polymorphicπ-calculus: Pierce
and Sangiorgi [22] and Hondaet al. [3] have established soundness results, but not
completeness.

We would like to thank the anonymous referees for their hard work and detailed
comments: this paper is significantly improved by their effort.

2

a,b,c,d (Names)

x,y,z (Variables)

n,m ::= a | x (Values)

P,Q,R ::= n(~X;~x : ~T) .P | n〈~T;~n〉 | 0 | P|Q (Processes)
| ν(a : T)P | !P | if n = mthenPelseQ

Fig. 1.Syntax

2 An Asynchronous Polymorphic Pi-Calculus
The language we investigate in this paper is an asynchronous variant of Pierce and
Sangiorgi’s polymorphicπ-calculus. This is an extension of theπ-calculus with type-
passing in addition to value-passing.

2.1 Syntax

The syntax of the asynchronous polymorphicπ-calculus is given in Figure 1. The syn-
tax makes use of types (ranged over byT,U,V,W) and type variables (ranged over by
X,Y,Z), which are defined in Section 2.3.

Definition 1 (Free identifiers).Write fn(P) for the free names of P,fn(n) for the free
names of n,fv(P) for the free variables of P,fv(n) for the free variables of n,ftv(P) for
the free type variables of P andftv(T) for the free type variables of T .

Definition 2 (Substitution). Let σ be a substitution of the form(~V/~X;~n/~x), and let
n[σ], T[σ] and P[σ] be defined to be the result of applying the capture-free substitution
of type variables~X by types~V and variables~x by values~n, defined in the normal fashion.
Let the domain of a substitutiondom(σ) be defined asdom(~V/~X;~n/~x) = {~X,~x}.

Definition 3 (Process contexts).A process contextC [·] is a process containing one
occurrence of a ‘hole’(·). WriteC [P] for the process given by replacing the hole by P.

We present an example process, following [22], in the untypedπ-calculus, in which
we implement a boolean abstract datatype as:

ν(t)ν(f)ν(test)(getBools〈t, f , test〉 | !t(x,y) .x〈〉 | ! f (x,y) .y〈〉 | !test(b,x,y) .b〈x,y〉)

This process generates new channelst, f andtest, which it publishes on a public channel
getBools. It then waits for input on channelt: when it receives a pair(x,y) of channels,
it sends a signal onx. The same is true for channelf except that it sends the signal ony.
Finally, on a test channel we wait to be sent a booleanb (which should either bet or f)
together with a pair(x.y) of channels, and just forwards the pair on tob, which chooses
whether to signalx or signaly as appropriate. This can be typed as:

B1
def= ν(t : Bool)ν(f : Bool)ν(test: Test(Bool))(

getBools〈Bool; t, f , test〉 |
!t(x : Signal,y : Signal) .x〈〉 |
! f (x : Signal,y : Signal) .y〈〉 |
!test(b : Bool,x : Signal,y : Signal) .b〈x,y〉

)

3

where we define:

Signal
def= l[] Bool

def= l[Signal,Signal] Test(T) def= l[T,Signal,Signal]

The interesting typing is for the channelgetBoolswhere the implementation of booleans
is published:

getBools: l[X;X,X,Test(X)]

that is, the implementation typeBool is never published: instead we just publish an
abstract typeX together with the valuest : X, f : X andtest : Test(X). Since the im-
plementing type is kept abstract, we should be entitled to change the implementation
without impact on the observable behaviour of the system, for example by uniformly
swapping the positions ofx andy in outputs:

B2
def= ν(t : Bool)ν(f : Bool)ν(test: Test(Bool))(

getBools〈Bool; t, f , test〉 |
!t(x : Signal,y : Signal) .y〈〉 |
! f (x : Signal,y : Signal) .x〈〉 |
!test(b : Bool,x : Signal,y : Signal) .b〈y,x〉

)

As Pierce and Sangiorgi observe, as untyped processesB1 and B2 are easily distin-
guished, for example by the testing context:

T
def= · |ν(a)ν(b)(getBools(t, f , test) . t〈a,b〉 |a() .c〈〉 |b() .d〈〉)

However, this process does not typecheck, since when we come to typecheckT, the
channelt has abstract typeX, not the implementation typeBool. We expect any sound
and complete model to considerB1 andB2 equivalent.

An illustrative example of a contextual inequivalence is given below. For some gen-
erative typeT (that is,T is not a type variable) consider the following processes:

L = ν(b : l[T],c : l[T],d : T)(a〈T,T;b,b,c,d〉 |c(y : T) . fail〈〉)
L′ = ν(b : l[T],c : l[T],d : T)(a〈T,T;b,b,c,d〉 |c(y : T) .0)

and a type environmentΓ which contains onlya : l[X,Y;l[X],l[Y],l[Y],X] and a suit-
able type forfail. Now it may at first appear thatL andL′ should be considered equiv-
alent with respect to the type information inΓ as the private named is only released
along channela at some abstract type represented byX, say. And the private namec
is only released as a channel which carries values of abstract typeY, say. In order to
distinguish these processes a test term would need to obtain a value of typeY to send
onc. However, there is a testing context which allows the named to be cast to typeY:

R= a(X,Y;z : l[X],z′ : l[Y],z′′ : l[Y],x : X) . (z〈x〉 |z′(y : Y) .z′′〈y〉)

It is easy to check that this process is well-typed with respect toΓ. Here, whenR com-
municates withL andL′, the vector of fresh names is received alonga and the variables
z andz′ are aliased so that a further internal communication withinR sendsd as if it
were of typeX but receives it as if it were of typeY. It can then be sent alongc to
interact with the remainder ofL andL′ to distinguish them.

4

µ ::= τ | c(~U ;~b) | ν(~a : ~T)c〈~U ;~b〉 (Untyped Labels)

c(~X;~x : ~T) .P
c(~U ;~b)- P[~U/~X;~b/~x]

(R-IN)
c〈~U ;~b〉 c〈~U ;~b〉- 0

(R-OUT)

P
µ- P′ bn(µ)∩ fn(Q) = /0

P|Q µ- P′ |Q
(R-PAR)

P
c(~U ;~b)- P′ Q

ν(~a:~T)c〈~U ;~b〉- Q′ {~a}∩ fn(P) = /0

P|Q τ- ν(~a : ~T)(P′ |Q′)
(R-COM)

P
µ- P′ a 6∈ fn(µ)∪bn(µ)

ν(a : T)P
µ- ν(a : T)P′

(R-NEW)
P

ν(~a:~T)c〈~U ;~b〉- P′ a∈ {~b}\{c,~a}

ν(a : T)P
ν(~a:~T,a:T)c〈~U ;~b〉- P′

(R-OPEN)

!P|P µ- P′

!P
µ- P′

(R-REPL)

P
µ- P′

if a = athenPelseQ
µ- P′

(R-TEST-T)
a 6= b Q

µ- Q′

if a = bthenPelseQ
µ- Q′

(R-TEST-F)

Fig. 2.Untyped Labelled TransitionsP
µ- P′ (eliding symmetric rules forP|Q)

2.2 Dynamic Semantics

The untyped transition semantics for the asynchronous polymorphicπ-calculus is given
in Figure 2, and is the same as Pierce and Sangiorgi’s.

We define the free names of a labelfn(µ) as fn(τ) = /0, fn(c(~U ;~b)) = {c,~b} and
fn(ν(~a : ~T)c〈~U ;~b〉) = {c,~b}\{~a}. We also define the bound names of a labelbn(µ) as
bn(τ) = bn(c(~U ;~b)) = /0 andbn(ν(~a : ~T)c〈~U ;~b〉) = {~a}. We defineweak transitionsas
follows:

P ==⇒ P′ wheneverP - · · · - P′

P ==
µ
⇒ P′ wheneverP ==⇒ · µ- · ==⇒ P′

P ==̂
τ
⇒ P′ wheneverP ==⇒ P′

P ==̂
µ
⇒ P′ wheneverP ==

µ
⇒ P′ (in the caseµ 6= τ)

The untyped semantics is useful for defining the run-time behaviour of processes, but
is not immediately appropriate for defining a notion of equivalence, as it distinguishes
terms such asB1 andB2 which cannot be distinguished by any well-typed environment:

B1
ν(t:Bool, f :Bool,test:Test(Bool))getBools〈Bool;t, f ,test〉- t(a,b)- a〈〉-

B2
ν(t:Bool, f :Bool,test:Test(Bool))getBools〈Bool;t, f ,test〉- t(a,b)- b〈〉-

5

X,Y,Z (Type Variables)

T,U,V,W ::= X | l[~X;~T] (Types:X is non-generative,l[~X;~T] is generative)

Γ,∆ ::= ~X;~n : ~T (Typing Contexts)

X ∈ Γ
Γ ` X

(T-TVAR)
~X,Γ ` ~T {~X}∩dom(Γ) = /0 ~X disjoint

Γ ` l[~X;~T]
(T-CHAN)

~X ` ~T
~X;~n : ~T ` �

(T-ENV)
Γ ` � (n : T) ∈ Γ

Γ ` n : T
(T-VAL)

Γ ` n : l[~X;~T] ~X,Γ,~x : ~T ` P {~X,~x}∩dom(Γ) = /0 ~x disjoint

Γ ` n(~X;~x : ~T) .P
(T-IN)

Γ ` n : l[~X;~U] Γ `~n : ~U [~T/~X]
Γ ` n〈~T;~n〉

(T-OUT)

Γ ` �
Γ ` 0

(T-NIL)
Γ ` P Γ ` Q

Γ ` P|Q (T-PAR)

Γ,a : T ` P a 6∈ dom(Γ) ftv(T)⊆ dom(Γ) T is generative
Γ ` ν(a : T)P

(T-NEW)

Γ ` P
Γ ` !P

(T-REPL)
Γ ` n : T Γ ` m : U Γ ` P Γ ` Q

Γ ` if n = mthenPelseQ
(T-TEST-W)

Fig. 3.Type System, with judgementsΓ ` T, Γ ` �, Γ ` n : T andΓ ` P

These behaviours correspond to the untyped testT, but do not correspond to any well-
typed test, which only has access to the abstract typeX and not to the concrete type

Bool. As a result, no well-typed test can cause the action
t(a,b)- to be performed. We

will come back to this point in Section 3.2.

2.3 Static Semantics

The static semantics for the asynchronous polymorphicπ-calculus is given in Figure 3
where the domain of a typing contextdom(Γ) is dom(~X;~n : ~T) = {~X,~n}, the free
names of a typing contextfn(Γ) are fn(~X;~n : ~T) = fn(~n), the free variables of a typ-
ing contextfv(Γ) arefv(~X;~n : ~T) = fv(~n), and the free type variables of a typing context
ftv(Γ) are ftv(~X;~n : ~T) = {~X} ∪ ftv(~T). We say that a typing context∆ is closed if
fv(∆) = ftv(∆) = /0 and moreover for anya : T ∈ ∆ anda : U ∈ ∆ thenT = U . We write
Γ[σ] as the typing context given by(~X;~n : ~T)[~W/~Y;~m/~y] = (~X \~Y;~n[~m/~y] : ~T[~W/~Y]).

6

This is quite a simple type system, as it does not include subtyping, bounded poly-
morphism, or recursive types, although we expect that such features could be added
with no essential difficulty.

In Section 4, we will discuss the relationship between this type system and that of
Pierce and Sangiorgi. For the moment, we will just highlight one crucial non-standard
point about our typing judgement: we are allowing identifiers to have more than one
type in a typing context. For example:

X,Y;a : l[l[X],l[Y]],b : l[X],b : l[Y] ` a〈b,b〉

To motivate the use of these multicontexts consider the processes

P
def= c(X,Y;x : l[l[X],l[Y]]) .x(y : l[X],z : l[Y]) .x〈y,z〉

Q
def= ν(a : l[l[int],l[int]])ν(b : l[int])c〈int, int;a〉 |a〈b,b〉

which can interact as follows:

P|Q τ- ν(a : l[l[int],l[int]])(a(y : l[int],z : l[int]) .a〈y,z〉 |ν(b : l[int])(a〈b,b〉))
τ- ν(a : l[l[int],l[int]])ν(b : l[int])a〈b,b〉

This interaction comes about due to the following labelled transitions fromP (with
appropriate matching transitions fromQ):

P
c(int,int;a)- a(y : l[int],z : l[int]) .a〈y,z〉
a(b,b)- a〈b,b〉

Now, P typechecks as:
c : l[X,Y;l[l[X],l[Y]]] ` P

and we would like to find an appropriate typing fora〈b,b〉. The obvious typing would
be to useQ’s choice of concrete implementation ofX andY as int; however in order
to reason aboutP independently ofQ we must choose a typing which preserves type
abstraction and is independent of any choice provided byQ. To do this we use a typing
which more closely resemblesP’s view of the interaction:

X,Y;c : l[X,Y;l[l[X],l[Y]]],a : l[l[X],l[Y]],b : l[X],b : l[Y] ` a〈b,b〉

which makes a use of two different types forb in the type environment.
Note that multiple typings for the same identifier are only required in giving the

labelled transition system semantics in Section 3.2. In particular, type-checking closed
terms can be performed without ever using an environment with multiple bindings for
the same variable.

Pierce and Sangiorgi do not allow multiple typings for the same identifier: instead,
they usetype unificationfor the same purpose. In their model, the typesX andY above
would be unified, and sob would just have one typeb : l[X]. This produces a model
which is sound, but not complete, as we discuss in Section 4.

An alternative strategy to either multiple typings for variables or type unification
would be subtyping with intersection types [6, 27], which ensure that meets exist in

7

the subtype relation. Subtyping with meets are used, for example, by Hennessy and
Riely [12] to ensure subject reduction. Intersection types would provide this language
with pleasant properties such as principal typing, which it currently lacks, but at the
cost of complexity.

3 Equivalences for Asynchronous Polymorphic Pi-Calculus

Process equivalence has a long history, including Milner’s [18] bisimulation, Brookes,
Hoare and Roscoe’s [4] failures-divergences equivalence, and Hennessy’s [11] testing
equivalence. In this paper, we will follow Pierce and Sangiorgi [22] and investigatecon-
textual equivalenceon processes [13, 21], and prove that it coincides with an appropri-
ate bisimulation. We conjecture that our results would carry over to other equivalences
such as relating failures-divergences and testing: the shift from a labelled transition
system to a failures set should not be affected by the polymorphic nature of the labels.

Contextual equivalence has a very natural definition: it is the most generous equiv-
alence satisfying three natural properties:reduction closure(that is, respecting the op-
erational semantics),contextuality(that is, respecting the syntax of the language), and
barb preservation(that is, respecting output on visible channels).

Unfortunately, although contextual equivalence has a very natural definition, it is
difficult to reason about directly, due to the requirement of contextuality. Since con-
textuality requires processes to be equivalent in all contexts, to show contextual equiv-
alence ofP andQ, we have to show contextual equivalence ofC [P] andC [Q] for any
appropriately typed contextC : moreover, attempts to show this by induction onC break
down due to reduction closure.

The problem of showing processes to be contextually equivalent is not restricted
to polymorphicπ-calculi, for example this problem comes up in treatments of theλ-
calculus [2], monomorphicπ-calculus [19] and object languages [1]. The standard so-
lution is to ask for afully abstractmodel, which coincides with contextual equivalence,
but is hopefully more tractable.

The problem of finding fully abstract models of programming languages originates
with Milner [17], and was investigated in depth by Plotkin [24] for the functional lan-
guage PCF. For polymorphic functional languages, logical relations [26] allow for the
construction of fully abstract models [23] but require an induction on type, and so break
down in the presence of recursive types. Sumii and Pierce have recently shown that
bisimulation based on sets of relations [29] yields a fully abstract model in the presence
of recursive types.

To date the only known models for polymorphic process languages have been sound
but not complete [22, 3]. We will now show that a very direct treatment of type-respecting
labelled transitions generates a fully abstract bisimulation equivalence which makes no
use of logical relations or type unification.

3.1 Contextual Equivalence

Process contexts are typed as follows:∆` C [Γ] whenever∀(Γ`P) .(∆` C [P]). A typed
relation on closed processesR is a set of triples(Γ,P,Q) such thatΓ ` P andΓ ` Q
andΓ is closed. We will typically writeΓ � P R Q whenever(Γ,P,Q) ∈ R . Given any
typed relation on closed processesR , we can define its open extensionR◦ to be the

8

α ::= τ | ν(~a : ~T)c[~U ;~b] | ν(~a)c〈~X;~b :~V〉 (Typed Labels)

C ::= (Γ ` [σ]P) (Configurations)

P
τ- P′

(Γ ` [σ]P)
τ- (Γ ` [σ]P′)

(TR-SILENT)

Γ,~a : ~T ` c〈~U ;~b〉 {~a}∩dom(Γ) = /0 ~T are generative

(Γ ` [σ]P)
ν(~a:~T)c[~U ;~b]- (Γ,~a : ~T ` [σ]P| (c〈~U ;~b〉[σ]))

(TR-RECEP)

P
ν(~a:~T)c〈~U ;~b〉- P′ Γ ` c(~X;~x :~V) .0 {~a,~X}∩dom(Γ) = /0

(Γ ` [σ]P)
ν(~a)c〈~X;~b:~V〉- (~X,Γ,~b :~V ` [~U/~X,σ]P′)

(TR-OUT-W)

Fig. 4.Typed Labelled TransitionsC
α- C′

typed relation on processes given byΓ � P R◦ Q wheneverΓ[σ],∆ � P[σ] R Q[σ] for
any closed typing context of the form(Γ[σ],∆).

Definition 4 (Reduction closure).A typed relationR on closed processes is reduction-

closed whenever∆ � P R Q and P
τ- P′ implies there exists some Q′ such that

Q ==⇒ Q′ and∆ � P′ R Q′.

Definition 5 (Contextuality). A typed relationR on closed processes is contextual
wheneverΓ � P R◦ Q and∆ ` C [Γ] implies∆ � C [P] R◦ C [Q].

Definition 6 (Barb preservation). A typed relationR on closed processes is barb-

preserving whenever∆ � P R Q and P
a〈〉- implies Q==

a〈〉
⇒ .

We can now define contextual equivalence∼= as the open extension of the largest
symmetric typed relation on closed processes which is reduction-closed, contextual
and barb-preserving. The requirement of contextuality makes it very difficult to prove
properties about contextual equivalence, and so we investigate bisimulation as a more
tractable proof technique for establishing contextual equivalence.

3.2 Bisimulation

As a first attempt to find a more tractable presentation of contextual equivalence, we
could usebisimulation. Unfortunately, as we discussed in Section 2.2, our untyped la-
belled transition system does not respect the type system, and so gives rise to too fine
an equivalence. We therefore investigate a restricted labelled transition system which
respects types: this is defined in Figure 4. The transition system is given by a relation:

(Γ ` [σ]P)
α- (Γ′ ` [σ′]P′)

between configurations of the form(Γ ` [σ]P). These comprise three constituent parts:

9

– P is the process being observed: after the transition, it becomes processP′.

– Γ is theexternalview of the typing contextP operates in. This external view may
not have complete information about the types, for exampleP may have exported
the concrete typeint as an abstract typeX. Only X will be recorded in the typing
context. AsP exports more type information,Γ may grow to becomeΓ′. It is here
that we make use of the multiple entries in type environments.

– σ is a type substitution, mapping the external view to the internal view. This map-
ping provides complete information about the types exported byP, for example
int/X records that external typeX is internal typeint. Note that this substitution is
not applied toP, we represent unapplied substitutions as[σ]P, and applied substi-
tutions asP[σ]. We will elide the type substitution when it is empty.

A configuration(Γ ` [σ]P) is closed wheneverΓ[σ] ` P andΓ[σ] is closed. There are
three kinds of transitions:

– Silent transitions(Γ ` [σ]P)
τ- (Γ ` [σ]P′) which are inherited from the untyped

transition system.

– Receptivity transitions(Γ ` [σ]P)
ν(~a:~T)c[~U ;~b]- (Γ,~a : ~T ` [σ]P | (c〈~U ;~b〉[σ])) which

allow the environment to send data to the process. We require the message to type-
check, and we allow the environment to generate new names, which are recorded
in the type environment. We are modelling an asynchronous language, and so pro-
cesses are always input-enabled. Note that the process is sending no information to
the environment, so the type substitutionσ does not grow. Note also that the mes-
sage is typed using the external viewΓ but must have the type mappingσ applied
to it for it to be mapped to the internal type consistent withP.

– Output transitions(Γ` [σ]P)
ν(~a)c〈~X;~b:~V〉- (~X,Γ,~b :~V ` [~U/~X,σ]P′) which allow the

process to send data to the environment. The channel being used to communicate
with the environment must be typedl[~X;~V], so the typing context is extended with
abstract types~X and the new type information~b : ~V. This may result in more than
one type being given to the same name, which is why we allow duplicate entries in
typing contexts. The processP must have provided concrete implementations~U of
the abstract types~X: these are recorded in the type substitution.

To demonstrate how our typed labelled transitions can be used we return to the example
above of processesL andL′ and type environmentΓ. We show a sequence of typed
transitions from(Γ ` L) which cannot be matched by(Γ ` L′):

(Γ ` L)
ν(b,c,d)a〈X,Y;b:l[X],b:l[Y],c:l[Y],d:Y〉- (Γ′ ` [σ]c(y : l[T]) . fail〈〉)

whereσ is [T,T/X,Y] andΓ′ is X,Y,Γ,b : l[X],b : l[Y],c : l[Y],d : X. At this point we
would like to use Rule TR-RECEP to provide a message on channelc to facilitate a
communication, however, there is no name of the appropriate type listed inΓ′ and the
restriction to generative types for the fresh names means that this cannot yet be done.

10

However, note the following transitions:

(Γ′ ` [σ]c(y : l[T]) . fail〈〉) b[d]- (Γ′ ` [σ]c(y : l[T]) . fail〈〉 |b〈d〉)
b〈d〉- (Γ′,d : Y ` [σ]c(y : l[T]) . fail〈〉)
c[d]- (Γ′,d : Y ` [σ]c(y : l[T]) . fail〈〉 |c〈d〉)

==
fail〈〉
⇒

in which the second type listed forb in Γ′ is used to justify theb〈d〉 transition. These
transitions serve to mimic the typecasting and subsequent use of the extruded named
by a testing context which are crucial to distinguishingL andL′.

We now formalise our notion of bisimulation equivalence. A typed relation on
closed configurationsR is a set of 5-tuples(Γ,σ,P,ρ,Q) such thatΓ[σ]`PandΓ[ρ]`Q
and bothΓ[σ] andΓ[ρ] are closed. For convenience we will writeΓ � [σ]PR [ρ]Q when-
ever(Γ,σ,P,ρ,Q) ∈ R .

Definition 7 (Bisimulation). A simulationR is a typed relation on closed configura-

tions such that ifΓ � [σ]P R [ρ]Q and(Γ ` [σ]P)
α- (Γ′ ` [σ′]P′) then we can show

(Γ ` [ρ]Q) ==̂
α
⇒ (Γ′ ` [ρ′]Q′) for someΓ′ � [σ′]P′ R [ρ′]Q′. A bisimulation is a simu-

lation whose inverse is also a simulation. Let≈ be the largest bisimulation.

As an example, a possible execution ofB1 is as follows:

(Γ ` B1)
ν(t, f ,test)getBools〈X;t:X, f :X,test:Test(X)〉- (Γ′ ` [Bool/X]B′

1)

Γ def= getBools: l[X;X,X,Test(X)]
Γ′ def= X,Γ, t : X, f : X, test: Test(X)
B′

1
def= !t(x : Signal,y : Signal) .x〈〉 |

! f (x : Signal,y : Signal) .y〈〉 |
!test(b : Bool,x : Signal,y : Signal) .b〈x,y〉

Note that in this output action, only the abstract typeX is revealed: the concrete type
Bool is kept hidden, and is recorded in the type substitutionBool/X. At this point, the
type requirements of Rule TR-RECEPblock any communication on the channelst and
f , since they are only known at the abstract typeX. As a result, the only productive
action at this point is to use Rule TR-RECEP to communicate on channeltest, for
example:

(Γ′ ` [Bool/X]B′
1)

ν(a:Signal,b:Signal)test[t,a,b]- (Γ′′ ` [Bool/X]B′
1 | test〈t,a,b〉)

τ- (Γ′′ ` [Bool/X]B′
1 | t〈a,b〉)

where the environment has generated two new namesa andb, which are recorded in
the type environment:

Γ′′ def= Γ′,a : Signal,b : Signal

11

Again, the environment only knows aboutt at abstract typeX, not at channel type, and
so cannot observe the output on channelt, so the only output which is observable is the
one on channela given by:

(Γ′′ ` [Bool/X]B′
1 | t〈a,b〉) τ- (Γ′′ ` [Bool/X]B′

1 |a〈〉)
a〈〉- (Γ′′ ` [Bool/X]B′

1)

Note thatB2 has a matching behaviour:

(Γ ` B2)
ν(t, f ,test)getBools〈X;t:X, f :X,test:Test(X)〉- (Γ′ ` [Bool/X]B′

2)
ν(a:Signal,b:Signal)test[t,a,b]- (Γ′′ ` [Bool/X]B′

2 | test〈t,a,b〉)
τ- (Γ′′ ` [Bool/X]B′

2 | t〈b,a〉)
τ- (Γ′′ ` [Bool/X]B′

2 |a〈〉)
a〈〉- (Γ′′ ` [Bool/X]B′

2)

B′
2

def= !t(x : Signal,y : Signal) .y〈〉 |
! f (x : Signal,y : Signal) .x〈〉 |
!test(b : Bool,x : Signal,y : Signal) .b〈y,x〉

We can now show thatΓ � B1 ≈ B2 by defining an appropriate relation and showing
that it is a bisimulation. The details of this are routine, apart from a slight complica-
tion caused by Rule TR-RECEPbeing allowed at any point, even on channels (such as
getBools) which are intended for use only as output channels. We avoid this complica-
tion by looking atbisimulation with t, f , test inputs:

Definition 8 (Configuration with ~c inputs). A process P with~c inputs is one where
any subprocess of the form n(~X;~x : ~T) .Q has n∈ {~c}. A configuration(Γ ` [σ]P) with
~c inputs is one where P is a process with~c inputs.

Definition 9 (Bisimulation with ~c inputs). A simulation with~c inputsR is a typed re-
lation on closed configurations with c inputs such that if we haveΓ � [σ]P R [ρ]Q and

(Γ ` [σ]P)
α- (Γ′ ` [σ′]P′), for α not a receptivity transition on a channel outside~c,

then we can show(Γ ` [ρ]Q) ==̂
α
⇒ (Γ′ ` [ρ′]Q′) for someΓ′ � [σ′]P′ R [ρ′]Q′. A bisim-

ulation with~c inputs is a simulation with~c inputs whose inverse is also a simulation
with~c inputs.

Proposition 1. If R is a bisimulation with~c inputs thenR ⊆≈.

Proof. Let R ′ be defined asΓ,∆ � [σ]P|RR ′ [ρ]Q|Rwheneverdom(Γ)∩dom(∆) = /0
andΓ � [σ]P R [ρ]Q andR is of the form∏i ai〈~Ti ;~bi〉 whereai 6∈ {~c}. It is routine to
show thatR ′ is a bisimulation, and henceR ⊆ R ′ ⊆≈. ut

If we defineR such that:
Γ � B1 R B2

12

and:
Γ′,~a : Signal� [Bool/X](B′

1 |P1) R [Bool/X](B′
2 |P2)

whereP1 is of the form:

P1 = ∏
i

test〈vi ,bi ,ci〉 |∏
j

w j〈d j ,ej〉 |∏
k

fk〈〉

with P2 of the form:

P2 = ∏
i

test〈vi ,bi ,ci〉 |∏
j

w j〈ej ,d j〉 |∏
k

fk〈〉

and:
vi ,w j ∈ {t, f} bi ,ci ,d j ,ej , fk ∈ {~a}

then it is direct to show thatR is a bisimulation witht, f , test inputs, and henceB1 and
B2 are bisimilar.

We are now in position to show full abstraction of bisimulation for contextual equiv-
alence, and so provide a tractable model of polymorphicπ-calculus.

3.3 Soundness of Bisimulation for Contextual Equivalence

The difficult property to show is that bisimulation is a congruence: from this it is routine
to establish that bisimulation implies contextual equivalence. Showing congruence for
bisimulation is a well-established problem for process languages, going back to Mil-
ner [18]. In the case of polymorphicπ, the problem is in showing that bisimulation is
preserved by parallel composition. We do this by constructing a candidate bisimulation:

Γ � [σ]P|R[σ] R [ρ]Q|R[ρ] wheneverΓ � [σ]P≈ [ρ]Q
andΓ ` R
andσ andρ are type substitutions

and then showing that this is a bisimulation (up to some technicalities which we shall
elide for the moment). This has a routine proof, except for one case, which is when
R[σ] - R′[σ]. It is straightforward to establish that type substitutions do not influ-
ence reduction, and so we haveR[ρ] - R′[ρ], and all that remains is to show that
Γ � [σ]P |R′[σ] R [ρ]Q |R′[ρ]. Unfortunately, this is not directly possible, due to the
requirement thatΓ ` R′. If we had a subject reduction result for open processes, then
this would be routine, but this result is not true due to channels with multiple types:

a〈c〉 |a(x : Y) .b〈x〉 - 0|b〈c〉
X,Y;a : l[X],a : l[Y],b : l[Y],c : X ` a〈c〉 |a(x : Y) .b〈x〉
X,Y;a : l[X],a : l[Y],b : l[Y],c : X 6` 0|b〈c〉

Pierce and Sangiorgi’s technique for dealing with this problem is to introduce type uni-
fication to ensure that every channel has a unique type. Unfortunately, as we will discuss
in Section 4, the resulting semantics is incomplete. Instead of using such unifications,
we observe that in any case where subject reduction fails, it does so because of com-
munication on a visible channel: if the channel was hidden by aν-binder, then it would
have only one type, and so subject reduction holds. We therefore observe that in the
cases where subject reduction fails to hold, there must be a pair of matching visible
reductions which caused the communication.

13

Proposition 2 (Open subject reduction).If Γ ` P and P
τ- P′′ then either:

1. Γ ` P′′, or

2. P
ν(~a:~T)c〈~U ;~b〉- c(~X;~b)- P′ where P′′ ≡ (ν(~a : ~T)P′)[~U/~X].

Proof. Given in Appendix A.

Here, we are working up to structural equivalence, which has its usual definition [19].

Definition 10 (Structural equivalence).Let≡ be the equivalence generated by treat-
ing | as a commutative monoid with unit0, satisfying scope extrusion,!P≡ !P |P, and
closed under| andν(a : T).

In the example (up to structural equivalence):

a〈c〉 |a(x : Y) .b〈x〉 a〈c〉- 0|a(x : Y) .b〈x〉
a(c)- 0|b〈c〉

X,Y;a : l[X],a : l[Y],b : l[Y],c : X ` a〈c〉 |a(x : Y) .b〈x〉
X,Y;a : l[X],a : l[Y],b : l[Y],c : X,c : Y ` 0|a(x : Y) .b〈x〉
X,Y;a : l[X],a : l[Y],b : l[Y],c : X,c : Y ` 0|b〈c〉

The crucial point is that these extra transitions by the testing context correspond to
complementary typed transitions by the process such that, after the visiblea〈c〉 output
action, the typing contextΓ is extended withc : Y. The problematic residual of the
test termR′ (0 | b〈c〉 in the example) can now be typed in this extendedΓ and the
bisimulation argument can be completed.

We can now show that bisimulation is a congruence, from which soundness follows
directly. We recall that≈◦ is the open extension of≈.

Theorem 1 (Bisimulation is a congruence).If Γ � P≈◦ Q then∆ � C [P] ≈◦ C [Q] for
any∆ ` C [Γ].

Proof. Given in Appendix A.

Theorem 2 (Soundness of bisimulation for contextual equivalence).If Γ � P≈◦ Q
thenΓ � P∼= Q.

Proof. It suffices to prove the result for closed processes, for which we need to show
that≈ is symmetric, reduction-closed,contextual and barb-preserving. All of these are
direct, except for contextuality, which follows from Theorem 1.

3.4 Completeness of Bisimulation for Contextual Equivalence

The proof of soundness for bisimulation required some non-standard techniques. In
comparison, the proof of completeness is quite straightforward, and follows the usual
definabilityargument [11, 9, 15] of showing that for every visible actionα, we can find
a processR which exactly tests for the ability to performα. Once we have established
definability, completeness follows in a straightforward fashion.

Theorem 3 (Completeness of bisimulation for contextual equivalence).If Γ � P∼= Q
thenΓ � P≈◦ Q.

Proof. Given in Appendix B.

14

4 Comparison with Pierce and Sangiorgi
In this paper, we have shown that weak bisimulation is fully abstract for observational
equivalence for an asynchronous polymorphicπ-calculus. This is almost enough to set-
tle the open problem set by Pierce and Sangiorgi [22] of finding a fully abstract seman-
tics for their polymorphicπ-calculus. There are, however, some differences between
their setting and ours, most of which we believe to be routine, with one important ex-
ception: the type rule for if-then-else.

4.1 Minor differences

The minor differences between our polymorphicπ-calculus and theirs are:

1. We are considering weak bisimulation rather than strong bisimulation.
2. Since we are considering weak bisimulation, we have not includedP+ Q in our

language of processes. We speculate that this could be handled in the usual fashion,
by defining observational equivalence on processes in the style of Milner [18].

3. We have treated an asynchronous rather than a synchronous language, since the
soundness result follows more naturally for the resulting asynchronous transition
system. We speculate that a fully abstract bisimulation for a synchronous language
can be given by adding transitions for synchronous input as well as receptivity:

P
c(~U ;~b)- P′ Γ,~a : ~T ` c〈~U ;~b〉

{~a}∩dom(Γ) = /0 ~T are generative

(Γ ` [σ]P)
ν(~a:~T)c(~U ;~b)- (Γ,~a : ~T ` [σ]P′)

(TR-IN)

Note that the label used here for synchronous input is distinct from the label used
for receptivity.

4. We have used Honda and Yoshida’s definition of observational equivalence [13] as
our touchstone equivalence. Although this has been proposed astoo strongin the
literature [28], where it has been shown not to coincide with Milner and Sangiorgi’s
notion of observational equivalence, [21], it is important to note that in the presence
of a variable-name distinction, the discrepancy between these two definitions dis-
appears as variable-open terms are more clearly identified and congruence with
respect to input prefixing is guaranteed. See [8] for further information on the rela-
tionship between Honda and Yoshida’s work and that of Milner and Sangiorgi [21].

5. Our type system keeps track explicitly of free type variables, rather than treating
them implicitly: this makes some of the book-keeping easier, at the cost of some
additional syntactic overhead.

We do not consider these issues any further in this paper.

4.2 Major difference: typing if-then-else

There is, however, one important difference between our language and Pierce and San-
giorgi’s, even though it may appear at first sight to be a minor point: the type rule for
if-then-else. In their paper, a strong type rule is given:

Γ ` n : T Γ ` m : T
Γ ` P Γ ` Q

Γ ` if n = mthenPelseQ
(T-TEST-S)

15

In our work, the weaker type rule T-TEST-W is used, which allowsn andm to have
different types: name equality testing is essentially untyped in this setting. Note that in a
language with subtyping and a top type (such as Java or C#), these rules are equivalent,
since we can always chooseT to be the top type, and use subsumption to derive T-
TEST-W from T-TEST-S. In the absence of subtyping, however, the rule T-TEST-W
allows more processes to typecheck, so raises the expressive power of tests, and hence
makes observational equivalence finer. For example:

P
def= ν(b : l[int])ν(c : l[string])a〈int,string;b,c〉

Q
def= ν(b : l[int])a〈int, int;b,b〉

As long asa : l[X,Y;l[X],l[Y]] these processes cannot be distinguished by any test
which uses the type rule T-TEST-S, but they can be distinguished by:

R
def= a(X,Y;x : l[X],y : l[Y]) . if x = ythend〈〉else0

which typechecks using type rule T-TEST-W. In fact, there is a third possible type rule
for if-then-else, which makes use of type unification:

Γ ` n : T Γ ` m : U
mgu(T,U) = σ ⇒ Γ[σ] ` P[σ] Γ ` Q

Γ ` if n = mthenPelseQ
(T-TEST-U)

wheremgu(T,U) builds the most general type substitutionσ such thatT[σ] = U [σ].
This type rule is strictly weaker than T-TEST-W, and raises the expressive power of
tests even further, and hence makes observational equivalence even finer. For example:

P
def= ν(c : l[int,string])ν(d : l[int])a〈int,string;c,d〉 .b〈string;c〉 .d(x : int) .e〈x〉

Q
def= ν(c : l[int,string])ν(d : l[int])a〈int,string;c,d〉 .b〈string;c〉

As long asa : l[X,Y;l[X,Y],l[X]], b : l[Z;l[int,Z]] ande: l[int], these processes cannot
be distinguished by any test which uses T-TEST-W, but they can be distinguished by:

R
def= a(X,Y;x : l[X,Y],y : l[X]) .b(Z;z : l[int,Z]) . if x = ztheny〈5〉else0

which typechecks using type rule T-TEST-U. We have that:

– The type rule T-TEST-W has a matching fully abstract bisimulation equivalence≈,
which for purpose of this discussion we shall refer to as≈w (shown in Theorems 2
and 3).

– The type rule T-TEST-S has a matching fully abstract bisimulation equivalence
≈s (shown in Appendix D).

– The type rule T-TEST-U has a matching fully abstract bisimulation equivalence
≈u (shown in Appendix E).

Moreover:

16

– We have inclusions on these equivalences: ifΓ � P≈w Q thenΓ � P≈s Q for any
Γ `s P andΓ `s Q (and similarly for≈u and≈w).

– The above examples show that the inclusions are strict: we haveΓ � P 6≈w Q and
Γ � P≈s Q for someΓ `s P andΓ `s Q (and similarly for≈u and≈w).

– The type rule for if-then-else used by Pierce and Sangiorgi is T-TEST-S.
– Pierce and Sangiorgi’s bisimulation is the strong, synchronous version of≈u (shown

in Appendix C).

Hence, since synchrony and weak bisimulation play no role in the above examples, we
have a resolution of Pierce and Sangiorgi’s conjecture:

– Pierce and Sangiorgi’s polymorphic bisimulation is sound, but not complete, for
their polymorphicπ-calculus.

These arguments are formalised in Appendices C, D and E. We note that the only parts
of the proof which significantly change are the proofs of two propositions: Proposi-
tions 9 (Output Contextuality) and 10 (Extrusion).

5 Conclusions

This paper gives the first fully abstract semantics for a polymorphic process language.
Moreover, due to careful choice of language features (in particular the typing rule for
if-then-else), the semantics is straightforward: the only nonstandard part of the presenta-
tion is that names are given more than one type in a type environment. This corresponds
to the ability for a polymorphic program to be sent the same channel at multiple differ-
ent types. In contrast to polymorphicλ-calculi, polymorphicπ-calculi have the ability
to compare names for syntactic equality, and so there is an internal test which can detect
when the same name has been given multiple different types.

We believe that the techniques given in this paper are quite robust (for example
there are no uses of type induction) and could be scaled with little difficulty to larger
type systems with features such as subtyping, F-bounded polymorphism, and recursive
types. Moreover, object languages such as theς-calculus support object equality, and
so we believe that adapting our previous fully abstract semantics [14] for objects [1] to
deal with generic objects would also be possible.

References
1. M. Abadi and L. Cardelli.A Theory of Objects. Springer-Verlag, 1996.
2. H. P. Barendregt.The Lambda Calculus, Its Syntax and Semantics. North Holland, 1984.
3. M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. InProc. Int. Conf.

Foundations of Software Science and Computer Structures (FoSSaCs), Lecture Notes in
Computer Science. Springer-Verlag, 2003.

4. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes.J. ACM, 31(3):560–599, 1984.

5. P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-bounded polymorphism for
object-oriented programming. InProc. Int. Conf. Functional Programming Languages and
Computer Architecture (FPCA), pages 273–280. ACM Press, 1989.

6. M. Coppo and M. Dezani-Ciancaglini. A new type-assignment forλ-terms. Archiv Math.
Logik, 19:139–156, 1978.

17

7. Microsoft Corporation. ECMA and ISO/IEC C# and common language infrastructure stan-
dards, 2004. http://msdn.microsoft.com/net/ecma/.

8. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. InProc.
Int. Conf. Automata, Languages and Programming (ICALP), volume 1443 ofLecture Notes
in Computer Science. Springer-Verlag, 1998.

9. C. Fournet, G. Gonthier, J-J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents.
In Proc. Int. Conf. Concurrency Theory (CONCUR), volume 1119 ofLecture notes in com-
puter science. Springer-Verlag, 1996.

10. J-Y. Girard, P. Taylor, and Y. Lafont.Proofs and Types. Cambridge University Press, 1989.
11. M. Hennessy.Algebraic Theory of Processes. MIT Press, 1988.
12. M. Hennessy and J. Riely. Resource access control in systems of mobile agents.Information

and Computation, 173(1):82–120, 2002.
13. K. Honda and N. Yoshida. On reduction-based process semantics.Theoretical Computer

Science, 152(2):437–486, 1995.
14. A. S. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects.

In Proc. IEEE Logic In Computer Science, pages 101–112. IEEE Press, 2002. Full version
to appear inTheoretical Computer Science.

15. A. S. A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revis-
ited. In Proc. Mathematical Foundations of Programming Semantics, Electronic Notes in
Computer Science. Elsevier, 2003.

16. Sun Microsystems. Release notes Java 2 platform standard edition development kit 5.0,
2004. http://java.sun.com/j2se/1.5.0/relnotes.html.

17. R. Milner. Fully abstract models of typed lambda-calculi.Theoretical Computer Science,
4:1–22, 1977.

18. R. Milner.Communication and Concurrency. Prentice-Hall, 1989.
19. R. Milner.Communication and mobile systems: theπ-calculus. Cambridge University Press,

1999.
20. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II.Information

and Computation, 100(1):1–77, 1992.
21. R. Milner and D. Sangiorgi. Barbed bisimulation. InProc. Int. Conf. Automata, Languages

and Programming (ICALP), volume 623 ofLecture Notes in Computer Science. Springer-
Verlag, 1992.

22. B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.
J. ACM, 47(3):531–584, 2000.

23. A. M. Pitts. Parametric polymorphism and operational equivalence.Mathematical Structures
in Computer Science, 10:321–359, 2000.

24. G. D. Plotkin. LCF considered as a programming language.Theoretical Computer Science,
5:223–255, 1977.

25. J. C. Reynolds. Types, abstraction and parametric polymorphism.Information Processing,
83:513–523, 1983.

26. J. C. Reynolds. An introduction to logical relations and parametric polymorphism (abstract).
In Proc. ACM Symp. Principles of Programming Languages, pages 155–156. ACM Press,
1993.

27. J. C. Reynolds.Theories of Programming Languages. Cambridge University Press, 1998.
28. D. Sangiorgi and D. Walker.The Pi-Calculus: A Theory Of Mobile Processes. Cambridge

University Press, 2001.
29. E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion. InProc. ACM

Symp. Principles of Programming Languages, pages 63–74, 2005.
30. P. Wadler. Theorems for free! InProc. Int. Conf. Functional Programming Languages and

Computer Architecture (FPCA), pages 347–359. ACM Press, New York, 1989.

18

A Bisimulation is a congruence
Definition 11 (Free and bound names of typed labels).Define the free names of a typed label
as:

fn(τ) = /0 fn(ν(~a : ~T)c[~U ;~b]) = fn(ν(~a : ~T)c〈~U ;~b〉) = {c,~b}\{~a}
Define the bound names of a typed label as:

bn(τ) = /0 bn(ν(~a : ~T)c[~U ;~b]) = bn(ν(~a : ~T)c〈~U ;~b〉) = {~a}

Definition 12 (ν-extension of a relation).For any typed relation on closed configurationsR ,
define itsν-extensionRν to be the typed relation on closed configurations generated by:

Γ � [σ]P Rν [ρ]Q wheneverΓ′ � [σ′]P′ R [ρ′]Q′

for some P≡ ν(~a : ~T)P′,Q≡ ν(~a : ~U)Q′

andσ ⊆ σ′,ρ ⊆ ρ′,Γ ⊆ Γ′

Definition 13 (Bisimulation up to ν). A simulation up toν is a typed relation on closed con-

figurationsR such that ifΓ � [σ]P R [ρ]Q and (Γ ` [σ]P)
α- (Γ′ ` [σ′]P′) then we have

(Γ ` [ρ]Q) ==̂
α
⇒ (Γ′ ` [ρ′]Q′) for someΓ′ � [σ′]P′ Rν [ρ′]Q′. A bisimulation up toν is a simula-

tion up toν whose inverse is also a simulation up toν.

Proposition 3 (Soundness of bisimulation up toν). If R is a bisimulation up toν thenR ⊆≈.

Proof. To show this we takeRν itself as the bisimulation witness and demonstrate that this re-
lation is indeed a bisimulation. This is straightforward from the following two, easily verifiable
properties:

– If (Γ ` [σ]ν(~a : ~T)P)
α- (Γ′ ` [σ′]P′) andΓ ⊆ Γ′′, σ ⊆ σ′′ andΓ′′[σ′′] ` P then we have

that (Γ′′ ` [σ′′]P)
α′
- (Γ′′′ ` [σ′′′]P′′′) whereσ′ ⊆ σ′′′, P′ ≡ ν(~a : ~T \bn(α))P′′′ andα′ is

ν(~c\~a)c〈~U ;~c′〉 if α is ν(~c)c〈U ;~c′〉 andα otherwise.

– If (Γ′′ ` [σ′′]P)
α′
- (Γ′′′ ` [σ′′′]P′′′) andΓ⊆Γ′′, σ⊆σ′′, {~a},Γ distinct andΓ[σ]` ν(~a :~T)P

then(Γ ` [σ]ν(~a : ~T)P)
α- (Γ′ ` [σ′]P′) whereσ′ ⊆ σ′′′, P′ ≡ ν(~a : ~T \bn(α))P′′′ andα′

is as above.

Proposition 4 (Reduction under type substitution).For any process P and type substitutionσ,

P[σ]
µ- Q if and only if we can find µ′ and Q′ such that P

µ′- Q′, µ= µ′[σ] and Q= Q′[σ].

Proof. Follows by an easy induction on the derivation ofP[σ]
µ- Q and conversely on the

derivation ofP
µ′- Q′.

Proposition 5 (Output reduction). If Γ ` P and P
ν(~a:~T)c〈~U ;~b〉- P′ then ~T are generative,

Γ,~a : ~T ` c〈~U ;~b〉 andΓ,~a : ~T ` P′.

Proof. It is not difficult to check thatP
ν(~a:~T)c〈~U ;~b〉- P′ tells us thatP≡ ν(~a : ~T)(c〈~U ;~b〉 |P′). We

know thatΓ ` P also so we know from rule T-NEW that~T is generative and moreover, from rule
T-PAR, thatΓ,~a : ~T ` c〈~U ;~b〉 andΓ,~a : ~T ` P′ as required.

Proposition 6 (Input reduction). If Γ ` P and P
c(~X;~b)- P′ and {~X} ∩ dom(Γ) = /0 then

Γ ` c(~X;~x :~V) and~X,Γ,~b :~V ` P′.

19

Proof. This is proved similarly to the previous lemma, however in this case we must also make
use of the substitution lemma below.

Lemma 1 (Substitution).Suppose~Y,Γ,∆ `~n : ~U [~T/~X], then

1. ~Y,~X,Γ,~x : ~U ,∆ ` P implies~Y,Γ,∆[~T/~X] ` P[~T/~X;~n/~x] and
2. ~Y,~X,Γ,~x : ~U ,∆ ` ~m :~V implies~Y,Γ,∆[~T/~X] ` ~m[~n/~x] :~V[~T/~X]

Proof. Standard induction on the derivations of the type judgements.

Proposition 7 (Closed subject reduction).If Γ is a closed typing context,Γ ` P and P
τ- P′

thenΓ ` P′.

Proof. This is entirely analogous to the proof in [22].

We recall the property ofopen subject reductionas stated in Proposition 2.

(Open subject reduction)If Γ ` P andP
τ- P′′ then either:

1. Γ ` P′′, or

2. P
ν(~a:~T)c〈~U ;~b〉- c(~X;~b)- P′ whereP′′ ≡ (ν(~a : ~T)P′)[~U/~X].

Proof. We first of all introduce an annotation to theτ label. We will writeτc for τ actions from
P which have been derived as a communication on channelc which is free inP. We will write τν
for communications on a private channel.

There are essentially two parts to this proof, first we show that communications on free
channel names always guarantee commuting visible input and output actions. This case leads to
conclusion (2) above:

if Γ ` P andP
τc- P′′ thenP

ν(~a:~T)c〈~U ;~b〉- c(~X;~b)- P′ whereP′′ ≡ ν(~a : ~T)P′[~U/~X].

The only interesting case here occurs as an instance of the R-COM rule. Here we haveP≡P0 |Q0

for someP0
c(~U ;~b)- P′0, Q0

ν(~a:~T)c〈~U ;~b〉- Q′
0 andP′′≡ ν(~a :~T)(P′0 |Q′

0). Given this, we immediately

haveP
ν(~a:~T)c〈~U ;~b〉- (P0 |Q′

0) and, by the receptivity of types on rule R-IN we can always choose

~X such thatP0
c(~X;~b)- P′′0 andP′′0 [~U/~X]≡ P′0. Therefore,

P
ν(~a:~T)c〈~U ;~b〉- (P0 |Q′

0)
c(~X;~b)- (P′′0 |Q′

0)

with ν(~a : ~T)(P′′0 |Q′
0)[~U/~X]≡ ν(~a : ~T)(P′0 |Q′

0)≡ P′′ as required.
Secondly, we show by induction over the derivation of the silent transition the following

property:

If Γ ` P and either (P
τc- P′ such that there is a unique typeT with Γ ` c : T) or

(P
τν- P′) thenΓ ` P′.

We show the two interesting cases in which the last derivation rule used is R-NEW and R-COM,
respectively. If the last rule used is R-NEW then we have three sub-cases:

1. If P
τν- P′, then it is easy to check thatP≡ ν(~a : ~T)P0 for someP0 such thatP0

τ- P′0
with P′ ≡ ν(~a : ~T)P′0. We now have two sub-sub-cases:

(a) If P0
τν- P′0 then the inductive hypothesis will guaranteeΓ,~a : ~T ` P′0 and we use type

rule T-NEW to finish.

20

(b) If P0
τc- P′0 with c∈~a, P≡ ν(~a : ~T)P0 then we know thatΓ,~a : ~T ` P0 and moreover,

there is a unique typeT0 such thatΓ,~a : ~T ` c : T0, therefore the inductive hypothesis
can be applied to obtainΓ,~a : ~T ` P′0 and again, T-NEW can be used to finish.

2. If P
τc- P′ then we proceed similarly to the first sub-sub-case above.

Suppose then that the last rule used is R-COM so that

P
c(~U ;~b)- P′ Q

ν(~a:~T)c〈~U ;~b〉- Q′ {~a}∩ fn(P) = /0

P|Q τc- ν(~a : ~T)(P′ |Q′)

We know thatΓ ` P|Q and by analysis of the transition rules we must have

P≡ ν(~a′ : ~T ′)(c(~X;~x : ~T0) .P′′ |P′′′)
Q≡ ν(~a : ~T)(c〈~U ;~b〉 |Q′)
P′ ≡ ν(~a′ : ~T ′)(P′′[~U/~X;~b/~x] |P′′′)

so we are required to show thatΓ,~a : ~T ` P′ |Q′.
We know thatΓ ` Q so this easily implies thatΓ,~a : ~T ` Q′. It remains to show that

Γ,~a : ~T ` ν(~a′ : ~T ′)(P′′[~U/~X;~b/~x] |P′′′)
Given thatΓ`P we know (using weakening) thatΓ,~a :~T,~a′ :~T ′ `P′′′ so we reduce our obligation
to proving

Γ,~a : ~T,~a′ : ~T ′ ` P′′[~U/~X;~b/~x]

Note thatΓ ` Q also implies thatΓ,~a : ~T ` c〈~U ;~b〉. This implies further that

Γ ` c : l[~X′;~T ′
0]

Γ,~a : ~T `~b : ~T ′
0[~U/~X′]

for some~X′ and~T ′
0. Note now thatΓ `P impliesΓ,~a′ : ~T ′ ` c(~X;~x : ~T0) .P′′ and that this (together

with c∈ dom(Γ)) further impliesΓ ` c : l[~X;~T0]. The hypothesis states that there is a unique type
for c in Γ, so we know~X = ~X′ and~T0 = ~T ′

0. This (with appropriate weakening) allows us to

derive~X,Γ,~a′ : ~T ′,~x : ~T0 ` P′′. We can use this and the typing for~b above (also with appropriate
weakening) as hypotheses to the Substitution lemma to obtain our goal.

Proposition 8 (Labelled Subject Reduction).If (Γ ` [σ]P)
α- (Γ′ ` [σ′]P′) and(Γ ` [σ]P) is

a closed configuration then(Γ′ ` [σ′]P′) is also a closed configuration.

Proof. For α a τ action, we simply note thatΓ′ andσ′ are unchanged and that (using Proposi-

tion 4) P
τ- P′ impliesP[σ]

τ- P′[σ]. Closed subject reduction then gives the result. Forα a
receptivity action, we need only observe thatΓ,~a : ~T ` c〈~U ;~b〉 implies(Γ,~a : ~T)[σ] ` c〈~U ;~b〉[σ].

For α a send action the difficulty lies in demonstrating that(~X,Γ,~b : ~V)[~U/~X,σ] is a closed
environment. Indeed, we know thatΓ[~U/~X,σ] = Γ[σ] is closed so we need to check that anyb∈~b
has a unique typing in(~X,Γ,~b :~V)[~U/~X,σ]. We knowΓ[σ] ` P. By unfolding this derivation we
can obtain

Γ[σ],~a : ~T `~b : ~W[U/X]
Γ[σ],~a : ~T ` c : l[X;~W]

for some~W. We also have thatΓ ` c(~X;~x :~V), and it is easy to checkΓ[σ] ` c(~X;~x :~V[σ]), which
yields Γ[σ] ` c : l[~X;~V[σ]]. As Γ[σ] is a closed environment we must have a unique type for
c. Therefore,~V[σ] must be~W. Now, take anyb ∈~b. If b 6∈ dom(Γ) then we must haveb ∈ ~a,
uniquely asai say. Thus,b must have a unique type (Ti = Vi [~U/~X,σ]) in (~X,Γ,~b : ~V)[~U/~X,σ].
Otherwise, we haveb∈ dom(Γ). In this case though, we know thatb : V[~U/~X,σ] already appears
in Γ[σ] becauseΓ[σ],~a : ~T `~b :~V[~U/~X,σ].

21

We can now prove Theorem 1: ifΓ � P≈◦ Q then∆ � C [P]≈◦ C [Q] for any∆ ` C [Γ].

Proof. We show that≈◦ is preserved by each of the process operators, from which the result
follows by induction onC . The difficult case is to show that≈◦ is preserved by|, which follows
if we can establish that the following relation is a bisimulation up toν:

Γ � [σ]P|R[σ] R [ρ]Q|R[ρ] wheneverΓ � [σ]P≈ [ρ]Q
andΓ ` R
andσ andρ are type substitutions

SinceR is symmetric, it suffices from Proposition 3 to show thatR is a simulation up toν.
Consider any transition of the form:

(Γ ` [σ]P|R[σ])
α- (Γ′ ` [σ′]P′′)

where:
Γ � [σ]P≈ [ρ]Q Γ ` R

We are required to establish a matching weak transition for(Γ` [ρ]Q|R[ρ]), for which we proceed
by case analysis onα. The interesting case is whenα = τ, so from Rule TR-SILENT we have:

P|R[σ]
τ- P′′

and we proceed by case analysis on the derivation of this transition. The interesting case is when
the symmetric form of Rule R-PAR was used, and we have:

R[σ]
τ- R′′′ P′′ = P|R′′′

for which we use Proposition 4 to get that:

R
τ- R′′ R′′′ = R′′[σ]

We then use Proposition 2 to get two cases, of which the interesting one is 2, where we have:

R
ν(~a:~T)c〈~U ;~b〉- c(~X;~b)- R′ R′′ ≡ (ν(~a : ~T)R′)[~U [σ]/~X,σ]

so we can use Propositions 5 and 6 to get that~T are generative and:

Γ,~a : ~T ` c〈~U ;~b〉 Γ,~a : ~T ` c(~X;~x :~V) ~X,Γ,~a : ~T,~b :~V ` R′

Hence we can use Rules TR-RECEPand TR-OUT-W to establish:

(Γ ` [σ]P)
ν(~a:~T)c[~U ;~b]- (Γ,~a : ~T ` [σ]P|c〈~U [σ];~b〉)

c〈~X;~b:~V〉- (~X,Γ,~a : ~T,~b :~V ` [~U [σ]/X,σ]P|0)

Note that this step makes use of input receptivity, hence our use of asynchronous rather than
synchronousπ-calculus. SinceΓ � [σ]P≈ [ρ]Q we have:

(Γ ` [ρ]Q) =======
ν(~a:~T)c[~U ;~b]

⇒ (Γ,~a : ~T ` [ρ]Q′′)

====
c〈~X;~b:~V〉

⇒ (~X,Γ,~a : ~T,~b :~V ` [~W/~X,ρ]Q′)

where:
~X,Γ,~a : ~T,~b :~V � [~U [σ]/X,σ]P≈ [~W/~X,ρ]Q′

From Proposition 4 we have:

R[ρ]
ν(~a:~T[ρ])c〈~U [ρ];~b〉- c(~W;~b)- R′[~W/~X,ρ]

22

and so it is routine to establish using Rules R-PAR and R-COM:

Q|R[ρ] ==⇒ ν(~a : ~T[ρ])Q′ |R′[~W/~X,ρ]

and hence using TR-SILENT:

(Γ ` [ρ]Q|R[ρ]) ==⇒ (Γ ` [ρ]ν(~a : ~T[ρ])(Q′ |R′[~W/~X,ρ]))

Finally, since~X,Γ,~a : ~T,~b :~V � [~U [σ]/X,σ]P≈ [~W/~X,ρ]Q′ we have by definition ofR :

~X,Γ,~a : ~T,~b :~V � [~U [σ]/X,σ]P|R′[~U [σ]/X,σ] R [~W/~X,ρ]Q′ |R′[~W/~X,ρ]

and hence by definition ofRν:

Γ � [σ]ν(~a : ~T[σ])(P|R′[~U [σ]/X,σ]) Rν [ρ]ν(~a : ~T[ρ])(Q′ |R′[~W/~X,ρ])

which is as required.

B Completeness of bisimulation for contextual equivalence
Definition 14. We define a typed relation∼=p on closed configurations by asking that∼=p be the
largest relation which is symmetric, reduction closed, barb preserving (with these concepts lifted
to configurations in the obvious way), and is closed with respect to the following condition:

Γ,Γ′ � [σ]P|R[σ] R [ρ]Q|R[ρ] wheneverΓ � [σ]P≈ [ρ]Q
andΓ,Γ′ ` R
andσ andρ are type substitutions

Note immediately, thatΓ � P∼= Q implies Γ � P∼=p Q. Therefore it is sufficient to prove com-
pleteness of≈ with respect to∼=p. Before we can do this we show two Propositions which will
be used to execute the proof. We omit the proofs of these as they follow the lines of similar
propositions for the (higher-order)π-calculus [15].

Proposition 9 (Output Contextuality). For any closed configuration(Γ ` [σ]P), if

(Γ ` [σ]P)
ν(~a)c〈~X;~b:~V〉- (Γ′ ` [σ′]P′)

where P
ν(~a:~T)c〈~U ;~b〉- P′ then there exists some process R, andext, fail 6∈ dom(Γ) such that

Γ,ext : l[~X;~V], fail : l[] ` R

and

P|R[σ] ==⇒ ν(~a : ~T)(P′ | ext〈~U ;~b〉) ν(~a : ~T)(P′ | ext〈~U ;~b〉) 6 ⇓fail.

Moreover, for any closed configuration(Γ ` [ρ]Q) such that Q|R[ρ] ==⇒ Q′′ with Q′′ 6 ⇓fail we
have

Q′′ ≡ ν(~a : ~T ′)(Q′ | ext〈~W;~b〉)

and Q========
ν(~a:~T ′)c〈~W;~b〉

⇒ Q′ for some~W.

Proof. (Outline) We show how to define the processR in two simplified cases, from which the
proof for the general case can be inductively derived.

Firstly, suppose the typed output transition is labelledc〈~X;b : V〉 and is derived from an un-
derlying untyped action labelledc〈~U ;b〉. We know then, thatΓ ` c(~X;x : V) .0 andσ′ = (~U/~X,σ)
andΓ′ = (~X,Γ,b : V). From Proposition 5 we haveΓ[σ] ` c〈~U ;b〉, and sob∈ dom(Γ). Thus, we
have that the process

R= fail〈〉 |c(~X;x : V) . if x = bthenfail() . ext〈~X;x〉else0

23

is well-typed with respect toΓ,ext : l[~X;V], fail : l[], andP |R[σ] will reduce as required. More-
over, for anyQ,ρ such thatQ |R[ρ] ===⇒ Q′′ 6 ⇓fail we must have a communication onfail,
which demands an earlier communication onc of the form c〈~W;b〉. These facts tell us that

Q′′ ≡ (Q′ | ext〈~W;b〉) such thatQ ===
c〈~W;b〉

⇒ Q′ as required.
Secondly, suppose that the typed output transition is labelledν(b)c〈~X;b : V〉 and is dervied

from an underlying untyped action labelledν(b : T)c〈~U ;b〉. We letRbe defined as

R= fail〈〉 |c(~X;x : V). (if x = a1 then 0
else if x = a2 then 0
else if . . .
...
else fail() . ext〈~X;x〉)

where~ai are all of the names such thatai ∈ dom(Γ). It is easy to check thatR is well-typed
with respect toΓ,ext : l[~X;V], fail : l[]. It is also easy to check thatP |R[σ] reduces as expected.
This is because we know thatb is fresh toΓ, and soai 6= b for any of theai . For any other closed
configuration(Γ` [ρ]Q) such thatQ|R[ρ] ==⇒ Q′′ 6 ⇓fail, we know similarly that there must have
been an communication onc of the formν(b′ : T ′)c〈~W;b′〉. This name must be different to every
ai , and so must be fresh, and hence can beα-converted tob, henceQ′′ ≡ ν(b : T ′)(Q′ |ext〈~W;b〉)

andQ ========
ν(b:T ′)c〈~W;b〉

⇒ Q′ as required.

Proposition 10 (Extrusion). If

Γ,ext : l[~X;~V] � [σ]ν(~a : ~T)(P| ext〈~U ;~b〉)∼=p [ρ]ν(~a : ~T ′)(Q| ext〈~W;~b〉)

with~a⊆~b andext 6∈ fn(P,Q) then

~X;Γ,~b :~V � [~U/~X,σ]P∼=p [~W/~X,ρ]Q.

Proof. The proof of this is again similar to the proof of the analogous property in [15].

We can now prove Theorem 3: ifΓ � P∼= Q thenΓ � P≈◦ Q.

Proof. If suffices to prove the result for closed processes and for∼=p in place of∼=. We proceed
by coinduction by definingR to be

Γ � [σ]P R [ρ]Q wheneverΓ � [σ]P∼=p [ρ]Q

and showing thatR forms a bisimulation up to≡. Suppose thatΓ � [σ]P R [ρ]Q and further

suppose that(Γ ` [σ]P)
α- (Γ′ ` [σ′]P′). We must show that(Γ ` [ρ]Q) has a matching tran-

sition. This is straightforward in the cases in whichα is generated by rules (TR-SILENT) or
(TR-RECEP). Otherwise,α is generated by rule (TR-OUT-W), that is

– α is of the formν(~a)c〈~X;~b :~V〉,
– Γ′ is ~X;Γ,~b :~V
– σ′ is [~U/~X,σ]

– andP
ν(~a:~T)c〈~U ;~b〉- P′

We can now appeal to Proposition 9 to find a processRsuch thatΓ,ext : l[~X;~V], fail : l[] `Rand

P|R[σ] ==⇒ ν(~a : ~T)(P′ | ext〈~U ;~b〉) ν(~a : ~T)(P′ | ext〈~U ;~b〉) 6 ⇓fail.

We know thatΓ � [σ]P∼=p [ρ]Q and, by definition, this gives us

Γ,ext : l[~X;~V], fail : l[] � [σ]P|R[σ]∼=p Q|R[ρ]

24

also. As∼=p is reduction-closed and barb-preserving, we must haveQ |R[σ] ==⇒ Q′′ for some
Q′′ 6 ⇓fail such that (strengthening to removefail from the environment)

Γ,ext : l[~X;~V] � ν(~a : ~T)(P′ | ext〈~U ;~b〉)∼=p Q′′. (1)

By Proposition 9 we haveQ′′≡ ν(~a :~T ′)(Q′ |ext〈~W;~b〉) for someQ′ and~W andQ =======
ν(~a:~T ′)c〈~W;~b〉

⇒ Q′.
This tells us that

(Γ ` [ρ]Q)
α- (Γ′ ` [~W/~X,ρ]Q′)

and moreover, by applying Proposition 10 to (1), we see that

~X;Γ,~b :~V � [~U/~X,σ]P′ ∼=p [~W/~X,ρ]Q′.

which is to say
Γ′ � [σ′]P′ R [~W/~X,ρ]Q′.

as required.

C Pierce and Sangiorgi’s polymorphic bisimulation is our unifying
bisimulation

Pierce and Sangiorgi’s definition of polymorphic bisimulation relies on an ‘allow relation’ [22,
Defn 12.1.1] which, rewritten to fit our notation, is almost the same as in Definition 15. The
‘almost’ is the addition of the condition ‘~T are generative’ to Rule A-INP which is missing in
their formulation: this appears to be a slight error in their definition.

Definition 15 (Allow Relation). The allow relation(Γ‖σ)
µ- (Γ′ ‖σ′), whereΓ[σ] andΓ′[σ′]

are closed, is defined by:

(Γ‖σ)
τ- (Γ‖σ)

(A-TAU)

Γ,~a : ~T ` c〈~U ;~b〉 {~a}∩dom(Γ) = /0 ~T are generative

(Γ‖σ)
c[~U [σ];~b]- (Γ,~a : ~T ‖σ)

(A-I NP)

Γ ` c(~X;~x :~V) ~Y,Γ,~a :~Y `~b : ~W
{~a,~X,~Y}∩dom(Γ) = /0 (mgu(~V, ~W);σ′) = (~T/~Y,σ)

(Γ‖σ)
ν(~a:~T)c〈~U ;~b〉- ((~X,~Y,Γ,~a :~Y)[mgu(~V, ~W)]‖σ′)

(A-OUT)

The weak, asynchronous formulation of Pierce and Sangiorgi’s definition of polymorphic bisim-
ulation [22, Defn 12.2.2] is then as in Definition 16. Readers familiar with their paper will note
that this is the definition without clause 3(a), which is their conjectured fully abstract model.

Definition 16 (Polymorphic bisimulation). A polymorphic (asynchronous weak) simulationR
is a typed relation on closed configurations such that ifΓ � [σ]P R [ρ]Q then:

1. if P
τ- P′ then we have Q==⇒ Q′ for someΓ � [σ]P′ R [ρ]Q′;

2. if (Γ‖σ)
c[~U ;~b]- (Γ′ ‖σ′) then(Γ‖ρ)

c[~W;~b]- (Γ′ ‖ρ′) and(Q |c〈~W;~b〉) ==⇒ Q′ for some
Γ′ � [σ′](P|c〈~U ;~b〉) R [ρ′]Q′;

25

3. if (Γ‖σ)
ν(~a:~T)c〈~U ;~b〉- (Γ′ ‖σ′) and P

ν(~a:~T)c〈~U ;~b〉- P′ then(Γ‖ρ)
ν(~a:~V)c〈~W;~b〉- (Γ′ ‖ρ′) and

Q =======
ν(~a:~V)c〈~W;~b〉

⇒ Q′ for someΓ′ � [σ′]P′ R [ρ′]Q′.

A polymorphic bisimulation is a simulation whose inverse is also a simulation. Let' be the
largest polymorphic bisimulation.

Proposition 11. ' and≈u coincide.

Proof. We have to show two properties:≈u is a polymorphic simulation, and' is a simulation.
We consider each of these in turn. For convenience we will drop the subscript on≈u for the
remainder of this proof.

≈ is a polymorphic simulation. Consider anyΓ � [σ]P≈ [ρ]Q.

1. If P
τ- P′ then by Rule TR-SILENT and the definition of bisimulation, we have

Q ==⇒ Q′ for someΓ � [σ]P′ ≈ [ρ]Q′ as required.

2. If (Γ‖σ)
c[~U [σ];~b]- (Γ,~a : ~T ‖σ) then by Rule A-INP we have:

Γ,~a : ~T ` c〈~U ;~b〉 {~a}∩dom(Γ) = /0 ~T are generative

and so we also have:

(Γ‖ρ)
c[~U [ρ];~b]- (Γ,~a : ~T ‖ρ)

Moreover, we have:

(Γ ` [σ]P)
ν(~a:~T)c[~U ;~b]- (Γ,~a : ~T ` [σ]P|c〈~U [σ];~b〉)

and so by definition of bisimulation:

(Γ ` [σ]Q) =======
ν(~a:~T)c[~U ;~b]

⇒ (Γ,~a : ~T ` [ρ]Q′) Γ,~a : ~T � [σ]P|c〈~U ;~b〉 ≈ Q′

which must come from Rules TR-SILENT and TR-RECEPwhere:

Q ==⇒ Q′′ Q′′ |c〈~U [ρ];~b〉 ==⇒ Q′

and so from R-PAR we have:

Q|c〈~U [ρ];~b〉 ==⇒ Q′

as required.

3. If (Γ‖σ)
ν(~a:~T)c〈~U ;~b〉- (Γ′ ‖σ′) andP

ν(~a:~T)c〈~U ;~b〉- P′ then by Rule A-OUT we have:

Γ′ = (~X,~Y,Γ,~a :~Y)[mgu(~V, ~W)] Γ ` c(~X;~x :~V) ~Y,Γ,~a :~Y `~b : ~W
{~a,~X,~Y}∩dom(Γ) = /0 (mgu(~V, ~W);σ′) = (~T/~Y,σ)

and by Rule TR-OUT-U we have:

(Γ ` [σ]P)
ν(~a:~Y)c〈~X;~b:~V〉- (Γ′ ` [σ′]P′)

and so, by definition of≈ we have:

(Γ ` [ρ]Q) =========
ν(~a:~Y)c〈~X;~b:~V〉

⇒ (Γ′ ` [ρ′]Q′) Γ′ � [σ′]P′ ≈ [ρ′]Q′

which must come from Rules TR-SILENT and TR-OUT-U where:

Q ========
ν(~a:~T ′)c〈~U ′;~b〉

⇒ Q′

as required.

26

' is a simulation. Consider anyΓ � [σ]P' [ρ]Q.

1. If (Γ ` [σ]P)
τ- (Γ ` [σ]P′) then by Rule TR-SILENT and the definition of polymor-

phic bisimulation, we have(Γ ` [ρ]Q) ==⇒ (Γ ` [ρ]Q′) for someΓ � [σ]P′ ' [ρ]Q′ as
required.

2. If (Γ ` [σ]P)
ν(~a:~T)c[~U ;~b]- (Γ,~a : ~T ` [σ]P′) then by Rule TR-RECEPwe have:

P′ = P|c〈~U ;~b〉[σ] Γ,~a : ~T ` c〈~U ;~b〉 {~a}∩dom(Γ) = /0 ~T are generative

and so by Rule A-INP we have:

(Γ‖σ)
c[~U [σ];~b]- (Γ,~a : ~T ‖σ)

which means by definition of polymorphic bisimulation we have:

Q|c〈~U [ρ];~b〉 ==⇒ Q′ Γ,~a : ~T � [σ]P′ ' [ρ]Q′

so by Rules TR-RECEPand TR-SILENT we have:

(Γ ` [ρ]Q) =======
ν(~a:~T)c[~U ;~b]

⇒ (Γ,~a : ~T ` [ρ]Q′)

as required.

3. If (Γ ` [σ]P)
ν(~a:~Y)c〈~X;~b:~V〉- (Γ′ ` [σ′]P′) then by TR-OUT-U we have:

Γ′ = (~X,~Y,Γ,~b :~Y)[mgu(~V, ~W)] P
ν(~a:~T)c〈~U ;~b〉- P′

Γ ` c(~X;~x :~V) ~Y,Γ,~a :~Y `~b : ~W
{~a,~X,~Y}∩dom(Γ) = /0 (mgu(~V, ~W);σ′) = (~T/~Y,σ)

and so by Rule A-OUT we have:

(Γ‖σ)
ν(~a:~T)c〈~U ;~b〉- ((~X,~Y,Γ,~a :~Y)[mgu(~V, ~W)]‖σ′)

which means by the definition of polymorphic bisimulation we have:

(Γ‖ρ)
ν(~a:~T ′)c〈~U ′;~b〉- (Γ′ ‖σ′) Q ========

ν(~a:~T ′)c〈~U ′;~b〉
⇒ Q′ Γ′ � [σ′]P′ ' [ρ′]Q′

so by Rule A-OUT we have:

(mgu(~V, ~W);ρ′) = (~T ′/~Y,ρ)

and hence by Rules TR-OUT-U and TR-SILENT we have:

(Γ ` [ρ]Q) =======
ν(~a:~Y)c〈~X;~b〉

⇒ (Γ′ ` [ρ′]Q′)

as required.

Thus,≈ and' coincide.

D Strong typing for if-then-else
Definition 17 (Strong typing).WriteΓ `s P when the process typingΓ `P can be derived using
RuleT-TEST-S in place of T-TEST-W.

Definition 18 (Strong typed contextual equivalence).Let ∼=s be the contextual equivalence
generated by type systemΓ `s P.

Definition 19 (Strong closing substitution).A substitutionσ strongly closesΓ if:

27

1. dom(σ)⊆ dom(Γ),
2. Γ[σ] is closed,
3. for any n: T ∈ Γ and m: U ∈ Γ, if n = m then T= U, and
4. for any n: T ∈ Γ and m: U ∈ Γ, if n[σ] = m[σ] and T= U then n= m.

Note that the empty substitution strongly closes any closedΓ. A configuration(Γ ` [σ]P) is
strongly closed wheneverΓ[σ] ` P andσ strongly closesΓ: for the remainder of this section all
configurations are considered to be strongly closing.

Definition 20 (Strong typed labelled transitions).Write C
α-

s C′ when the labelled transi-

tion C
α- C′ can be derived using RuleTR-OUT-S in place of TR-OUT-W.

P
ν(~a:~T)c〈~U ;~b〉- P′ Γ ` n(~X;~x :~V) .0 (n,~m)[σ′] = (c,~b)
σ′ = (~U/~X,σ,~c/~z) strongly closesΓ′ = (~X,Γ,~m :~V)

(Γ ` [σ]P)
ν(~z)n〈~X;~m:~V〉- (Γ′ ` [σ′]P′)

(TR-OUT-S)

Note, we must also modify Rule TR-RECEPslightly, to use variables,~x in place of names~a, and
to use values~n,m in place of names~b,c.

Definition 21 (Strong typed bisimulation).Write≈s for the bisimulation generated by the la-

belled transition system C
α-

s C′.

Theorem 4 (Full abstraction of strong typed bisimulation for strong typed contextual equiv-
alence).Γ � P≈s

◦ Q if and only ifΓ � P∼=s Q.

Proof. The proof of this follows along the same lines as the proof of Theorems 2 and 3. The
significant differences occur in the Output Contextuality and Extrusion Propositions. We will
outline the changes to these below.

Proposition 12 (Strong Typing Output Contextuality). For any strongly closed configuration
(Γ ` [σ]P), if

(Γ ` [σ]P)
ν(~z)n〈~X;~m:~V〉- (Γ′ ` [σ′]P′)

where P
ν(~a:~T)c〈~U ;~b〉- P′ then there exists some process R, andext, fail 6∈ dom(Γ) such that

Γ,ext : l[~X;~V], fail : l[] ` R

and

P|R[σ] ==⇒ ν(~a : ~T)(P′ | ext〈~U ;~b〉) ν(~a : ~T)(P′ | ext〈~U ;~b〉) 6 ⇓fail.

Moreover, for any strongly closed(Γ ` [ρ]Q) such that Q|R[ρ] ==⇒ Q′′ with Q′′ 6 ⇓fail we have

Q′′ ≡ ν(~a′ : ~T ′)(Q′ | ext〈~W;~b′〉)

and Q=========
ν(~a′:~T ′)c′〈~W;~b′〉

⇒ Q′ where(n,~m)[ρ′] = (c′,~b′) andρ′ = (~W/~X,ρ,~c′/~z) strongly closesΓ′.

Proof. (Outline) Again, we show how to define the processR in two simplified cases, from which
the proof for the general case can be inductively derived.

Firstly, suppose the typed output transition is labelledn〈~X;m : V〉 and is derived from an
underlying untyped action labelledc〈~U ;b〉. We know then, thatσ′ = (~U/~X,σ) andΓ′ = (~X,Γ),

28

so by definition of strong closure,m : V ∈ Γ, and moreover,(n,m)[σ] = (c,b). In particular, we
notice that the process

R= fail〈〉 |n(~X;x : V) . if x = mthenfail() . ext〈~X;x〉else0

is well-typed with respect toΓ,ext : l[~X;V], fail : l[], andP |R[σ] will reduce as required. More-
over, for anyQ,ρ such thatQ|R[ρ] ==⇒ Q′′ 6 ⇓fail we must have a communication onfail, which
demands an earlier communication onc′ = n[ρ] in which a nameb′, say, is sent fromQ. Fur-
thermore, we know thatb′ = m[ρ] as the conditional test is passed successfully. These facts tell

us thatQ′′ ≡ (Q′ | ext〈~W;b′〉) such thatQ ====
c′〈~W;b′〉

⇒ Q′ as required. Sinceρ′ = (~W/~X,ρ) andρ
strongly closesΓ, we have thatρ′ strongly closesΓ′ as required.

Secondly, suppose that the typed output transition is labelledν(y)n〈~X;y : V〉. We let R be
defined as

R= fail〈〉 |n(~X;x : V). (if x = n1 then 0
else if x = n2 then 0
else if . . .
...
else fail() . ext〈~X;x〉)

where~ni are all of the values such thatn : V ∈ Γ. It is easy to check thatR is well-typed with
respect toΓ,ext : l[~X;V], fail : l[]. It is also easy to check thatP |R[σ] reduces as expected. This
is because we know thaty is fresh toΓ, andσ′ strongly closesni [σ] 6= b for any of theni . For any
other process and mapping,Q,ρ such thatQ |R[ρ] ==⇒ Q′′ 6 ⇓fail, we know similarly that there
must have been an output fromQ along channelc′ = n[ρ] of a nameb′, say. This name must be
different to everyni [ρ] so it must be the case that,ρ′ = (~W/~X,ρ,b′/y) and sinceρ strongly closes
Γ, we have thatρ′ strongly closesΓ′ as required.

Proposition 13 (Strong typing extrusion).If

Γ,ext : l[~X;~V] � [σ]ν(~a : ~T)(P| ext〈~U ;~b〉)∼=p [ρ]ν(~a′ : ~T ′)(Q| ext〈~W;~b′〉)
with~a⊆~b,~a′ ⊆~b′, ext 6∈ fn(P,Q) and

σ′ = (~U/~X,σ,~b/~y) andρ′ = (~W/~X,σ,~b′/~y) both strongly closeΓ′ = (~X,Γ,~y :~V)

thenΓ′ � [σ′]P∼=p [ρ′]Q.

Proof. The proof of this is again similar to the proof of the analogous property in [15].

E Unifying typing for if-then-else
Definition 22 (Unifying typing). Write Γ `u P when the process typingΓ ` P can be derived
using RuleT-TEST-U in place of T-TEST-W.

Definition 23 (Unifying typed contextual equivalence).Let∼=u be the contextual equivalence
generated by type systemΓ `u P.

Definition 24 (Unifying typed labelled transitions).Write C
α-

u C′ when the labelled tran-

sition C
α- C′ can be derived using RuleTR-OUT-U in place of TR-OUT-W.

P
ν(~a:~T)c〈~U ;~b〉- P′ Γ ` c(~X;~x :~V) ~Y,Γ,~a :~Y `~b : ~W

{~a,~X,~Y}∩dom(Γ) = /0 (mgu(~V, ~W);σ′) = (~T,~U/~Y,~X,σ)

(Γ ` [σ]P)
ν(~a:~Y)c〈~X;~b:~V〉- ((~X,~Y,Γ,~a :~Y)[mgu(~V, ~W)] ` [σ′]P′)

(TR-OUT-U)

29

Definition 25 (Unifying typed bisimulation). Write≈u for the bisimulation generated by the

labelled transition system C
α-

u C′.

Theorem 5 (Full abstraction of unifying typed bisimulation for unifying typed contextual
equivalence).Γ � P≈u

◦ Q if and only ifΓ � P∼=u Q.

Proof. The proof of this also follows similar lines to Theorems 2 and 3 so we do not repeat the
details here. As in the previous section though, the significant changes to the proof lie in the
Output Contextuality and Extrusion Propositions. We show these below.

The main change that needs to occur is that after testing for each output action, the process which
receives this output must re-emit on theext channel, not just the values communicated but also
representative values for the entire environment. This is because the type unification allows us to
update the types of previously emitted values. The following notation is useful: write~aΓ to mean
fn(Γ) rendered as a value and write(Γ) to mean the collection of typesT such thata : T ∈ Γ for
somea.

Proposition 14 (Unifying Output Contextuality). For any closed configuration(Γ ` [σ]P), if

(Γ ` [σ]P)
ν(~a:~Y)c〈~X;~b:~V〉- (Γ′ ` [σ′]P′)

where P
ν(~a:~T)c〈~U ;~b〉- P′ then there exists some process R, andext, fail 6∈ dom(Γ) such that

Γ,ext : l[~X;(Γ′)], fail : l[] ` R

and

P|R[σ] ==⇒ ν(~a : ~T)(P′ | ext〈~U ;~aΓ′〉) ν(~a : ~T)(P′ | ext〈~U ;~aΓ′〉) 6 ⇓fail.

Moreover, for any closed configuration(Γ ` [ρ]Q) such that Q|R[ρ] ==⇒ Q′′ with Q′′ 6 ⇓fail we
have

Q′′ ≡ ν(~a : ~T ′)(Q′ | ext〈~W;~aΓ′〉)

and Q========
ν(~a:~T ′)c〈~W;~b〉

⇒ Q′ for some~W.

Proof. (Outline) Again, we only show how to define the processR in the same two simplified
cases.

Firstly, suppose the typed output transition is labelledz〈~X;b : V〉 and is derived from an
underlying untyped action labelledc〈~U ;b〉. We let

R= fail〈〉 |z(~X;x : V) . if x = bthenfail() . ext〈~X;~aΓ〉else0

and check thatR is well-typed with respect to the environmentΓ,ext : l[~X;(Γ′)], fail : l[] where
Γ′ = (~X,Γ)[mgu(V,W)] andΓ ` b : W. This results in checking that

Γ,ext : l[~X;(Γ′)], fail : l[],x : V ` if x = bthenfail() . ext〈~X;~aΓ〉else0

We can see that this holds true though as the type rule T-TEST-U allows us to reduce this to
checking that

(~X,Γ)[mgu(V,W)] `~aΓ : (Γ′)

This follows easily because(Γ′) = ((~X,Γ)[mgu(V,W)]) andfn(Γ) = fn(Γ′). It is easy to see that
P|R[σ] reduces as required.

Take, anyQ,ρ such thatQ|R[ρ] ==⇒ Q′′ 6 ⇓fail we must have a communication onfail, which
demands an earlier communication onc in which a nameb′, say, is sent fromQ. Furthermore, we

30

know thatb′ = b as the conditional test is passed successfully. ThereforeQ′′ ≡ (Q′ | ext〈~W;b〉)

such thatQ ===
c〈~W;b〉

⇒ Q′ as required.
Secondly, suppose that the typed output transition is labelledν(b : Y)c〈~X;b : V〉. We letRbe

defined as
R= fail〈〉 |z(~X;x : V). (if x = a1 then 0

else if x = a2 then 0
else if . . .
...
else fail() . ext〈~X;~aΓ,x〉)

where~an are all of thea in dom(Γ).
Note, that, in this case we usemgu(V,Y) asΓ,b : Y ` b : Y. Therefore,

Γ′ = (~X,Y,Γ,b : Y)[mgu(V,Y)] = ~X,Γ,b : V

Again, we need to check thatR is well-typed with respect toΓ,ext : l[~X;(Γ′)], fail : l[]. This time
we cannot make any use of unification for the output onext as we are using theelse branch of a
conditional. Note though that

~X,Γ,x : V `~aΓ,x : (Γ′)

because(Γ′) = (Γ),V.
Clearly,P |R[σ] reduces as expected because we know thatb is fresh toΓ. For anyQ,ρ such

thatQ|R[ρ] ==⇒ Q′′ 6 ⇓fail, we know that there must have been an output fromQ along channel
c of a nameb′, say. This name must be different to everyai so it must be fresh toΓ and bound in
Q. By alpha-conversion inQ, we can therefore chooseb′ to beb to obtain the required properties
of Q.

Proposition 15 (Unifying Extrusion). If

Γ,ext : l[~X;(Γ′)] � [σ]ν(~a : ~T)(P| ext〈~U ;~aΓ′〉)∼=p [ρ]ν(~a : ~T ′)(Q| ext〈~W;~aΓ′〉)

with~a⊆~aΓ′ andext 6∈ fn(P,Q) then

Γ′ � [~U/~X,σ]P∼=p [~W/~X,ρ]Q.

whenever these are configurations.

Proof. The proof of this is straightforward and similar to that found in [15].

31

