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Abstract. The problem of finding a fully abstract model for the polymorpitic
calculus was stated in Pierce and Sangiorgi’s work in 1997 and has remained open
since then. In this paper, we show that a variant of their language has a fully ab-
stract model, which does not depend on type unification or logical relations. This
is the first fully abstract model for a polymorphic concurrent language. In addi-
tion, we discuss the relationship between our work and Pierce and Sangiorgi’s,
and show that their model based on type unification is sound but not complete.

1 Introduction

Finding sound and complete models for languages with polymorphic types is notori-
ously difficult. Consider the following implementation of a polymorphic ‘or’ function
in Java 5.0 [16]:

static<X> X or (X t, X a, X b) {
if (a == t) { return a; } else { return b; }

}

This implementation obr takes a type paramet&r which will be instantiated with

the representation chosen for the booleans, together with three parameters Xif type
a constant for ‘true’, and the values to be ‘or'ed. This function can be called in many
different ways, for exampfe

or.<int> (1, 0, 1); or.<bool> (true, false, true);

In each case, there is no way for the callee to determine the exact type the caller instan-
tiated forx, and sano matter what implementation for is usedthere is no observable
difference between the above program and the following:

or.<int> (1, 0, 1); or.<string> ("true", "false", "true");
or the following:

* This material is based upon work supported by the National Science Foundation under Grant
No. 0430175

3 Java purists should note that this discussion assumes for simplicity that downcasting and reflec-
tion are not being used, and a particular implementation of autoboxing, for example the code
or.<int> (1, 0, 1)isimplemented adnteger x = new Integer(l); Integer y =
new Integer(0); or.<Integer> (x, y, x).



or.<int> (1, 0, 1); or.<int> (2, 3, 2);

However, therds an observable difference between the above programs and:
or.<int> (1, 0, 1); or.<int> (1, 0, 1);

since we can use the following implementatioroefto distinguish them:

static Object x=null;

static<X> X or (X t, X a, X b) {
if (a == x) { System.out.println ("hello"); } else { x=a; }
if (a == t) { return a; } else { return b; }

}

This example demonstrates some subtleties with polymorphic languages: the presence
of impure features (such as mutable fields in this case) and equality testing (such as
a == x in this case) can significantly impact the distinguishing power of tests. In the
case of pure languages such as System F [10], the technitpgiaz] relations[26, 23]

can be used to establish equivalence of all of the above calis, tahich is evidently
broken by the addition of impurity and equality testing.

Much of the work in finding models of pure polymorphic languages comes in find-
ing appropriate techniques for modellipgrametricity[25, 26] to show that programs
are completely independent of the instantiations for their type parameters. Such para-
metricity results are surprisingly strong, and can be used to establish ‘theorems for
free’ [30] such as the functoriality of the list type constructor. The strength of the re-
sulting theorems, however, comes at a cost: the proof techniques required to establish
them are quite difficult. In particular, even proving the existence of logical relations is
problematic in the presence of recursive types [23].

In this paper, we show that providing models for impure polymorphic languages
with equality testing can be surprisingly straightforward, (albeit with some subtlety
of choice of language features, as discussed in Section 4). We believe that the tech-
niques discussed here will extend to the polymorphic features of languages such as
Java 5.0 [16], and C# 2.0 [7]: F-bounded polymorphism [5], subtyping, recursive types
and object features. In this paper, we will investigate a minimal impure polymorphic
language with equality testing and mismatch, based on Pierce and Sangiorgi’s work [22]
on a polymorphic extension of Milnet al’s [20, 19]ecalculus.

Pierce and Sangiorgi have established a sound model for a polymarghiculus,
but they only conjectured the existence of a complete model [22, Sec. 12.2]. In this
paper, we develop a sound and complete model for a polymorpbadculus: the re-
sulting model and proof techniques are quite simple. In particular, our model makes no
use of type unification, which is an important feature of Pierce and Sangiorgi’s model.
We then compare our model to theirs, and show that ours is strictly finer: hence we have
resolved their outstanding conjecture, by demonstrating their model to be sound but not
complete.

This is the first sound and complete model for a polymorphialculus: Pierce
and Sangiorgi [22] and Hondet al. [3] have established soundness results, but not
completeness.

We would like to thank the anonymous referees for their hard work and detailed
comments: this paper is significantly improved by their effort.



a,b,c,d (Names)

X,Y,Z (Variables)
nm:=alx (Values)
PQR:=nX;x:T).P|n(T;f) |0|P|Q (Processes)

|v(a: T)P|!P|ifn=mthenPelseQ

Fig. 1. Syntax

2 An Asynchronous Polymorphic Pi-Calculus

The language we investigate in this paper is an asynchronous variant of Pierce and
Sangiorgi’s polymorphigtcalculus. This is an extension of tmecalculus with type-
passing in addition to value-passing.

2.1 Syntax

The syntax of the asynchronous polymorpticalculus is given in Figure 1. The syn-
tax makes use of types (ranged overThy,V,W) and type variables (ranged over by
X,Y,Z), which are defined in Section 2.3.

Definition 1 (Free identifiers). Write fn(P) for the free names of Fn(n) for the free
names of nfv(P) for the free variables of Fy(n) for the free variables of rftv(P) for
the free type variables of P arfel(T) for the free type variables of T.

Definition 2 (Substitution). Let ¢ be a substitution of the forrV /X;fi/X), and let
n[a], T[o] and Fo] be defined to be the result of applying the capture-free substitution
of type variableX by type& and variables by valuesi, defined in the normal fashion.
Let the domain of a substitutiatom(o) be defined adom(V /X;H/X) = {X,X}.

Definition 3 (Process contexts)A process context[-] is a process containing one
occurrence of a ‘hole{-). Write C[P] for the process given by replacing the hole by P.

We present an example process, following [22], in the untypedlculus, in which
we implement a boolean abstract datatype as:

v(t)v(f)v(test)(getBoolst, f test |1t(x,y). X | f(x,y).y() |!testb,x,y).b(x,y))

This process generates new chanhelsandtest which it publishes on a public channel
getBools It then waits for input on chann&lwhen it receives a paix,y) of channels,
it sends a signal orn The same is true for channgkexcept that it sends the signal gn
Finally, on a test channel we wait to be sent a booleémhich should either beor f)
together with a paifx.y) of channels, and just forwards the pair orbtavhich chooses
whether to signak or signaly as appropriate. This can be typed as:

B, def v(t : Bool)v(f : Bool)v(test: Tes(Bool))(

getBoolgBool;t, f,test |

It(x: Signaly: Signal) . x() |

I'f(x: Signaly: Signal) . y() |

Itest(b : Bool,x: Signaly : Signal) . b(x,y)



where we define:
Signal%f 1l Bool &of [Signal Signal Tes{(T) &f 1[T,Signal Signal

The interesting typing is for the chanmtBoolsvhere the implementation of booleans
is published:
getBools [[X;X, X, Tes{X)]

that is, the implementation typBool is never published: instead we just publish an
abstract typeX together with the values: X, f : X andtest: Tes(X). Since the im-
plementing type is kept abstract, we should be entitled to change the implementation
without impact on the observable behaviour of the system, for example by uniformly
swapping the positions ofandy in outputs:

B, def v(t : Bool)v(f : Bool)v(test: Tes(Bool))(

getBoolgBool;t, f test |

It(x: Signaly: Signal) . y() |

If(x: Signaly: Signal) . X() |

Itest(b : Bool,x: Signaly : Signal) . b(y,x)
)

As Pierce and Sangiorgi observe, as untyped procésesid B, are easily distin-
guished, for example by the testing context:

T 2. |v(a)v(b)(getBoolst, f,test) .t(a,b) [a().c() |b().d())
However, this process does not typecheck, since when we come to typechtek
channel has abstract typx, not the implementation typBool. We expect any sound
and complete model to consider andB; equivalent.
An illustrative example of a contextual inequivalence is given below. For some gen-
erative typeT (that is, T is not a type variable) consider the following processes:

L =v(b: [[T],c: {[T],d: T)(&T,T;b,b,c,d)|c(y: T).fail({))
L'=v(b:][T],c: I[T],d: T)(@&(T,T;b,b,c,d)|c(y:T).0)

and a type environmeffit which contains onlya: [X,Y;1[X],][Y],][Y],X] and a suit-
able type forfail. Now it may at first appear thatandL’ should be considered equiv-
alent with respect to the type information linas the private name is only released
along channeh at some abstract type representeddyysay. And the private name
is only released as a channel which carries values of abstracttygey. In order to
distinguish these processes a test term would need to obtain a value of tysend
onc. However, there is a testing context which allows the ndrteebe cast to typ#:

R=a(X,Y;z: [[X],Z : J[Y],Z' : [[Y],x: X) . (2(x) | Z(y:Y).Z'{(y))

It is easy to check that this process is well-typed with respekt téere, wherR com-
municates witi. andL’, the vector of fresh names is received alarand the variables
zandZ are aliased so that a further internal communication witkisendsd as if it
were of typeX but receives it as if it were of typ¥. It can then be sent alongto
interact with the remainder &f andL’ to distinguish them.



u:=1|c(U;b)|v(@: T)c(U;b) (Untyped Labels)
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Fig. 2. Untyped Labelled Transitior® K p (eliding symmetric rules foP | Q)

2.2 Dynamic Semantics

The untyped transition semantics for the asynchronous polymorptédculus is given
in Figure 2, and is the same as Pierce and Sangiorgi’s.

We define the free names of a latie(p) asfn(t) = 0, fn(c(U;b)) = {c,b} and
fn(v(d@: T)c(U;b)) = {c,b} \ {&}. We also define the bound names of a label) as
bn(t) = bn(c(U;b)) = @ andbn(v(a: T)c(U; b)) = {a}. We defineveak transitionsis
follows:

P — P’ wheneveP — ... — P

P P wheneveP — . % . — P/
P T:> P’ whenevelP — P
P —— P whenevelP — P/ (in the casqu# 1)

The untyped semantics is useful for defining the run-time behaviour of processes, but
is not immediately appropriate for defining a notion of equivalence, as it distinguishes
terms such aB; andB; which cannot be distinguished by any well-typed environment:

l

v(t:Bool, f:Bool,test Tes{Bool))getBoolgBoolit,f tesy  t(a,b) ()

v(t:Bool, f:Bool,test Tes{Bool))getBoolgBool;t, f .tesh  t(ab) ()

_— —
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X,Y,Z (Type Variables)
T,U,V,W = X | [[X;T] (Types:X is non-generative}[X; T] is generative)
rAaz=Xa:T (Typing Contexts)

Xerl X,T-T {X}ndom(I') =0 X disjoint
—— (T-TVAR : = T-CHAN
M=X ( ) r=1XT] ( )
XET ko (n:T)erl
TnTre CEW) gy (TVAL)
FEn:[XT] X,MLx:THP {X,X}Ndom(F) =0 Xdisjoint(T_IN)
FEnX;x:T).P
Fn:{[X;0 :U[T/X
ren I[X,U}itl—ﬁ [T/ }(T_OUT)
I =n(T;n)
Mo FTFP THQ
o (T-NiL) W (T-PAR)
Na:TEP a¢dom(l) ftv(T)Cdom(l) T is generative
FEv(@:T)P (T-New)
H—P(T—REPL) rEn:T TFeEm:U TEP r}_Q(T—TEST-W)

r=1p [+ ifn=mthenPelseQ

Fig. 3. Type System, with judgemenfs- T, Fo,FFn: T andl - P

These behaviours correspond to the untypedfebut do not correspond to any well-
typed test, which only has access to the abstract ¥/@&ad not to the concrete type

b
Bool. As a result, no well-typed test can cause the actiGhl to be performed. We
will come back to this point in Section 3.2.

2.3 Static Semantics

The static semantics for the asynchronous polymorpkialculus is given in Figure 3
where the domain of a typing contesdm(I") is dom(X;fi: T) = {X,f}, the free
names of a typing contesth(I) arefn(X;A: T) = fn(fi), the free variables of a typ-
ing contextfv(I") arefv(X;f: T) = fv(f), and the free type variables of a typing context
fv(F) areftv(X;f: T) = {X} Uftv(T). We say that a typing contex is closed if
fv(A) = ftv(A) = 0 and moreover for angt: T € Aanda: U € AthenT =U. We write
['[o] as the typing context given LX;fi: T)[W/Y;m/y] = (X \ Y;R[m/y] : TW/Y)).



This is quite a simple type system, as it does not include subtyping, bounded poly-
morphism, or recursive types, although we expect that such features could be added
with no essential difficulty.

In Section 4, we will discuss the relationship between this type system and that of
Pierce and Sangiorgi. For the moment, we will just highlight one crucial non-standard
point about our typing judgement: we are allowing identifiers to have more than one
type in a typing context. For example:

X,Yia: TIIXLTY]L b T[X] b T[Y] - alb, b)

To motivate the use of these multicontexts consider the processes

P (X, Yix: J[1XL Y] - x(y: TX].2: T[Y]) X(y.2
Q™! v(a: [1fint], fint]})v(b: [ine]cfint, int; ) | a(b, b

which can interact as follows:

PIQ — v(a: {[{fint], I[int]])(aly: {[int].2: [[int]) .a(y,2) [v(b: I[int])(alb,b))
5 v(a: [[I[int], [[int]])v(b: I[int])a(b,b)

This interaction comes about due to the following labelled transitions fPofwith
appropriate matching transitions fra@):

c(int,int;a)
—_—

P a(y: [[int],z: [[int]) .aly,2)

200) (b, b)

Now, P typechecks as:
¢ XY TITIXL TV =P

and we would like to find an appropriate typing fafb, b). The obvious typing would
be to useQ's choice of concrete implementation ¥fandY asint; however in order

to reason abou® independently of) we must choose a typing which preserves type
abstraction and is independent of any choice provide@.bio do this we use a typing
which more closely resemblé&ss view of the interaction:

XY5e TGYS TITIXL TV @ TITIXL TIYDL b TIX], b T1Y] - adb, b)

which makes a use of two different types foin the type environment.

Note that multiple typings for the same identifier are only required in giving the
labelled transition system semantics in Section 3.2. In particular, type-checking closed
terms can be performed without ever using an environment with multiple bindings for
the same variable.

Pierce and Sangiorgi do not allow multiple typings for the same identifier: instead,
they useype unificatiorfor the same purpose. In their model, the typesndY above
would be unified, and sb would just have one typb : [[X]. This produces a model
which is sound, but not complete, as we discuss in Section 4.

An alternative strategy to either multiple typings for variables or type unification
would be subtyping with intersection types [6, 27], which ensure that meets exist in



the subtype relation. Subtyping with meets are used, for example, by Hennessy and
Riely [12] to ensure subject reduction. Intersection types would provide this language
with pleasant properties such as principal typing, which it currently lacks, but at the
cost of complexity.

3 Equivalences for Asynchronous Polymorphic Pi-Calculus

Process equivalence has a long history, including Milner’s [18] bisimulation, Brookes,
Hoare and Roscoe’s [4] failures-divergences equivalence, and Hennessy’s [11] testing
equivalence. In this paper, we will follow Pierce and Sangiorgi [22] and investigaie
textual equivalencen processes [13, 21], and prove that it coincides with an appropri-
ate bisimulation. We conjecture that our results would carry over to other equivalences
such as relating failures-divergences and testing: the shift from a labelled transition
system to a failures set should not be affected by the polymorphic nature of the labels.

Contextual equivalence has a very natural definition: it is the most generous equiv-
alence satisfying three natural propertieiuction closurdthat is, respecting the op-
erational semanticsgontextuality(that is, respecting the syntax of the language), and
barb preservatiorthat is, respecting output on visible channels).

Unfortunately, although contextual equivalence has a very natural definition, it is
difficult to reason about directly, due to the requirement of contextuality. Since con-
textuality requires processes to be equivalent in all contexts, to show contextual equiv-
alence ofP andQ, we have to show contextual equivalenceddP| and C[Q] for any
appropriately typed context: moreover, attempts to show this by induction@break
down due to reduction closure.

The problem of showing processes to be contextually equivalent is not restricted
to polymorphictecalculi, for example this problem comes up in treatments ofAthe
calculus [2], monomorphicr-calculus [19] and object languages [1]. The standard so-
lution is to ask for dully abstractmodel, which coincides with contextual equivalence,
but is hopefully more tractable.

The problem of finding fully abstract models of programming languages originates
with Milner [17], and was investigated in depth by Plotkin [24] for the functional lan-
guage PCF. For polymorphic functional languages, logical relations [26] allow for the
construction of fully abstract models [23] but require an induction on type, and so break
down in the presence of recursive types. Sumii and Pierce have recently shown that
bisimulation based on sets of relations [29] yields a fully abstract model in the presence
of recursive types.

To date the only known models for polymorphic process languages have been sound
but not complete [22, 3]. We will now show that a very direct treatment of type-respecting
labelled transitions generates a fully abstract bisimulation equivalence which makes no
use of logical relations or type unification.

3.1 Contextual Equivalence

Process contexts are typed as follos: C[I'] whenevel/(I" - P). (AF C[P]). Atyped
relation on closed process&sis a set of tripleqI’,P,Q) such that™ - P andl - Q
andr is closed. We will typically writd” E P ® Q wheneverT",P, Q) € R. Given any
typed relation on closed process®s we can define its open extensi&i to be the
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o :=1|v(@: T)c[U;b] | v(d)c(X;b: V) (Typed Labels)
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Fig. 4. Typed Labelled Transitior® —% C’

typed relation on processes given by P ®° Q whenever [a],A E P[o] R Q[o] for
any closed typing context of the for(f[a],A).

Definition 4 (Reduction closure) A typed relatior®_on closed processes is reduction-

closed whenevefA F P ® Q and P—. P implies there exists some’ Quch that
Q= QandAEP R Q.

Definition 5 (Contextuality). A typed relation® on closed processes is contextual
whenevel EP R° Q andA - C[I'] impliesA = C[P] R° C[Q].

Definition 6 (Barb preservation). A typed relation® on closed processes is barb-
a a
preserving whenevex = P ® Q and PLO implies Q% .

We can now define contextual equivalergeas the open extension of the largest
symmetric typed relation on closed processes which is reduction-closed, contextual
and barb-preserving. The requirement of contextuality makes it very difficult to prove
properties about contextual equivalence, and so we investigate bisimulation as a more
tractable proof technique for establishing contextual equivalence.

3.2 Bisimulation

As a first attempt to find a more tractable presentation of contextual equivalence, we
could usebisimulation Unfortunately, as we discussed in Section 2.2, our untyped la-
belled transition system does not respect the type system, and so gives rise to too fine
an equivalence. We therefore investigate a restricted labelled transition system which
respects types: this is defined in Figure 4. The transition system is given by a relation:

(F'+[o]P) =~ (I'+ [0']P)

between configurations of the for(h I~ [0]P). These comprise three constituent parts:



— Pis the process being observed: after the transition, it becomes piicess

— I is theexternalview of the typing contexP operates in. This external view may
not have complete information about the types, for exarfbeay have exported
the concrete typént as an abstract typ€. Only X will be recorded in the typing
context. AsP exports more type informatio, may grow to becomé’. It is here
that we make use of the multiple entries in type environments.

— 0 is a type substitution, mapping the external view to the internal view. This map-
ping provides complete information about the types exporte®,bipr example
int/X records that external typ€ is internal typeint. Note that this substitution is
not applied toP, we represent unapplied substitutiong@#$, and applied substi-
tutions asP[o]. We will elide the type substitution when it is empty.

A configuration(I" + [a]P) is closed whenever[o] - P andl'[g] is closed. There are
three kinds of transitions:

— Silent transitiongT + [o]P) = (I - [o]P") which are inherited from the untyped
transition system.

— Receptivity transitiongr - [o]P) “EVY (. T+ [o]P| (c(T;B)[o])) which

allow the environment to send data to the process. We require the message to type-
check, and we allow the environment to generate new names, which are recorded
in the type environment. We are modelling an asynchronous language, and so pro-
cesses are always input-enabled. Note that the process is sending no information to
the environment, so the type substitutiomoes not grow. Note also that the mes-
sage is typed using the external viéwbut must have the type mappiagapplied

to it for it to be mapped to the internal type consistent vidth

_ Output transitiongT + [o]P) Y2X*Y) (% r B:V - [U /X, 0]P’) which allow the
process to send data to the environment. The channel being used to communicate
with the environment must be typé@X; V], so the typing context is extended with
abstract typeX and the new type informatiom: V. This may result in more than
one type being given to the same name, which is why we allow duplicate entries in
typing contexts. The procefsmust have provided concrete implementationef
the abstract typeX: these are recorded in the type substitution.

To demonstrate how our typed labelled transitions can be used we return to the example
above of processds andL’ and type environment. We show a sequence of typed
transitions from(I" - L) which cannot be matched i§f - L'):

(I_ - L) v(b,c,d)é{X,Y;b:I[X],b:[[Y],c:I[Y],d:YZ (r, - [o]c(y: I[T]) mo)

whereo is [T, T/X,Y] andl" is X,Y,T,b: [[X],b: [Y],c: [[Y],d: X. At this point we
would like to use Rule TR-BCEPto provide a message on changeb facilitate a
communication, however, there is no name of the appropriate type list€édaind the
restriction to generative types for the fresh names means that this cannot yet be done.

10



However, note the following transitions:

(I+ [ole(y: [T]) - fail()) ?ﬂ’ (I + [o]e(y:: I[T]) . fail() | b(d))
P rdY F [olety: 1)) Fail()
(r',d:Y+r[olc(y: [[T] (

in which the second type listed ftwrin I’ is used to justify thdo(d) transition. These
transitions serve to mimic the typecasting and subsequent use of the extruded name

by a testing context which are crucial to distinguishingndL’.
We now formalise our notion of bisimulation equivalence. A typed relation on

closed configurationg_is a set of 5-tuplef, g, P,p, Q) such thaf [o] - Pandl' [p] - Q
and botH [o] andrl" [p] are closed. For convenience we will writé= [6]P R [p]Q when-

ever(l,o0,P.p,Q) € X..

Definition 7 (Bisimulation). A simulation® _is a typed relation on closed configura-
tions such that if” F [0]P R [p]Q and(I" - [0]P) = (I + [0']P’) then we can show

(= [pIQ) = (MF[p'|Q) for somel™” = [0'|P' R [p']Q. A bisimulation is a simu-

lation whose inverse is also a simulation. lzebe the largest bisimulation.

As an example, a possible executiorBafis as follows:

(r - Bl) v(t.,f,test)getBooIséX;t:X,f:XA,testTes(X)Z (r, - [BOO|/X]B/1)

r < getBools J[X; X, X, Tes(X)]
M9 X r ot X, f X, test: Tes(X)
B} def It(x: Signaly: Signal) . X{) |
1f(x: Signaly: Signal) . y() |
Itest(b: Bool,x: Signaly : Signal) . b(x,y)

Note that in this output action, only the abstract typés revealed: the concrete type
Bool is kept hidden, and is recorded in the type substituBonl/X. At this point, the
type requirements of Rule TRE#REPblock any communication on the channelnd
f, since they are only known at the abstract tyfeAs a result, the only productive
action at this point is to use Rule TREREPto communicate on chann&tst, for

example:

(' - [Bool/x|B) YESGnlbSonaltesttal] 50| x8, | festit,a, b))
—~ (I'"+ [Bool/X]B, |t(a, b))

where the environment has generated two new naaraesd b, which are recorded in

the type environment:
" %' a: Signalb: Signal

11



Again, the environment only knows abdudt abstract typ&, not at channel type, and
S0 cannot observe the output on charingb the only output which is observable is the
one on channd given by:

(F" + [Bool/X|B, |t(a,b)) —» (I + [Bool/X|B}|a())

AL (r7 - [Bool/X]B))
Note thatB, has a matching behaviour:
(r - Bz) v(t.f,test)getBooIséX;t:X,f:X,testTes(X)Z (r, - [BOO|/X]B/2)
v(a:S|gnaLb:S|gnal)test{t,a,bl (r,, - [BOO|/X]B’2 |Fst<t,a, b))
— (I + [Bool/X]B, |t(b, a))
—+ (I + [Bool/X]B, |a())

L (1 [Bool/X|B))

B, %' 1t(x: Signaly : Signal).y() |

1f(x: Signaly: Signal) . x() |
Itest(b : Bool,x : Signaly : Signal) . b(y, x)

We can now show thdt £ By ~ By by defining an appropriate relation and showing
that it is a bisimulation. The details of this are routine, apart from a slight complica-
tion caused by Rule TR-RCEPbeing allowed at any point, even on channels (such as
getBool3 which are intended for use only as output channels. We avoid this complica-
tion by looking atbisimulation with t f test inputs

Definition 8 (Configuration with € inputs). A process P witlT inputs is one where
any subprocess of the forni¥;X: T) . Q has ne {}. A configuration(T + [o]P) with
€ inputs is one where P is a process witinputs.

Definition 9 (Bisimulation with € inputs). A simulation witht inputs® _is a typed re-
lation on closed configurations with ¢ inputs such that if we Hate[c]P % [p]Q and

(T [o]P) 2 (I + [0']P"), for o not a receptivity transition on a channel outside
then we can sho@l - [p]Q) — (I [p')Q) forsome™ = [0'|P R [p']Q. A bisim-
ulation with € inputs is a simulation witl@ inputs whose inverse is also a simulation
with € inputs.

Proposition 1. If R is a bisimulation witht inputs ther® C =.

Proof. Let R’ be defined a§,AF [0]P|RR’ [p]Q| Rwheneverdom (') Ndom(A) =0

andr E [o]P % [p]Q andR s of the form[]; (T;;bi) wherea ¢ {c}. It is routine to
show that®’ is a bisimulation, and henc® C R’ C ~. a

If we define®_ such that:
M=B; R B

12



and:
[’,d: Signalk [Bool/X](B] | P1) R [Bool/X](B}|P2)

whereP; is of the form:
Py = []testivi,bi, ) | []w5(d;, ) | [] )
i j k

with P, of the form:

=[] testvi, bi,ci) [ [ Wi(ey, dj) | Hﬂ()
i j k
and:
vi,wj € {t,f} bi,ci,dj,ej, fk € {a}

then it is direct to show thaR _is a bisimulation with, f,testinputs, and hencB; and
B, are bisimilar.

We are now in position to show full abstraction of bisimulation for contextual equiv-
alence, and so provide a tractable model of polymorpigalculus.

3.3 Soundness of Bisimulation for Contextual Equivalence

The difficult property to show is that bisimulation is a congruence: from this it is routine
to establish that bisimulation implies contextual equivalence. Showing congruence for
bisimulation is a well-established problem for process languages, going back to Mil-
ner [18]. In the case of polymorphit, the problem is in showing that bisimulation is
preserved by parallel composition. We do this by constructing a candidate bisimulation:

I F [o]P|Ro] R [p]Q|R[p|] whenever = [o]P ~ [p]Q
andln - R
ando andp are type substitutions

and then showing that this is a bisimulation (up to some technicalities which we shall
elide for the moment). This has a routine proof, except for one case, which is when
Rlo] — R/a]. It is straightforward to establish that type substitutions do not influ-
ence reduction, and so we haRé] — R/[p], and all that remains is to show that

I = [0]P|R[o] R [p|Q]| R[p]. Unfortunately, this is not directly possible, due to the
requirement thaf + R. If we had a subject reduction result for open processes, then
this would be routine, but this result is not true due to channels with multiple types:

(>|a(x:Y).B(x> — 0|b(c) B
X,Y;a: [[X],a: [[Y],b: [[Y],c: X + ac)|a(x:Y).b(x)
X,Y;a: [[X],a: [[Y],b: [[Y],c: X I/ 0O]b{c)

Pierce and Sangiorgi’s technique for dealing with this problem is to introduce type uni-
fication to ensure that every channel has a unique type. Unfortunately, as we will discuss
in Section 4, the resulting semantics is incomplete. Instead of using such unifications,
we observe that in any case where subject reduction fails, it does so because of com-
munication on a visible channel: if the channel was hidden wbander, then it would

have only one type, and so subject reduction holds. We therefore observe that in the
cases where subject reduction fails to hold, there must be a pair of matching visible
reductions which caused the communication.

13



Proposition 2 (Open subject reduction)If I + P and P—'+ P’ then either:
1.TFP’ or
2, p YETIUD)  <XB) b \where B = (v(@: T)P)[U/X].

Proof. Given in Appendix A.

Here, we are working up to structural equivalence, which has its usual definition [19].

Definition 10 (Structural equivalence).Let = be the equivalence generated by treat-
ing | as a commutative monoid with uif satisfying scope extrusiotR = !P| P, and
closed undef andv(a: T).

In the example (up to structural equivalence):

alc)|a(x:Y).b(x) == 0]a(x:Y).b(x)

— 0[b(c) -
J,e:X = ale)fa(x:Y).b(x)
X,c:Y F Ola(x:Y).b(x)
X,c:Y F 0[blc)

X,Y:a'I[X] a:[Y]b:][Y
X,Y;a: [[X],a: [[Y],b: ][Y],c:
],c:

X,Y;a: [[X],a: [Y],b: ][Y],

The crucial point is that these extra transitions by the testing context correspond to
complementary typed transitions by the process such that, after the &@é&ibleutput
action, the typing context is extended withc : Y. The problematic residual of the
test termR’ (0| b(c) in the example) can now be typed in this extendiednd the
bisimulation argument can be completed.

We can now show that bisimulation is a congruence, from which soundness follows
directly. We recall that? is the open extension af.

Theorem 1 (Bisimulation is a congruence)lf I' E P = Q thenA F C[P] = C[Q] for
anyA+ C[I].
Proof. Given in Appendix A.

Theorem 2 (Soundness of bisimulation for contextual equivalencelf ' E P & Q
thenl EPx=Q.

Proof. It suffices to prove the result for closed processes, for which we need to show
that~ is symmetric, reduction-closed,contextual and barb-preserving. All of these are
direct, except for contextuality, which follows from Theorem 1.

3.4 Completeness of Bisimulation for Contextual Equivalence

The proof of soundness for bisimulation required some non-standard techniques. In
comparison, the proof of completeness is quite straightforward, and follows the usual
definabilityargument [11, 9, 15] of showing that for every visible actigrwe can find

a procesR which exactly tests for the ability to perform Once we have established
definability, completeness follows in a straightforward fashion.

Theorem 3 (Completeness of bisimulation for contextual equivalencdf.l' EP= Q
thenl EP =~ Q.

Proof. Given in Appendix B.
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4 Comparison with Pierce and Sangiorgi

In this paper, we have shown that weak bisimulation is fully abstract for observational
equivalence for an asynchronous polymorpficalculus. This is almost enough to set-

tle the open problem set by Pierce and Sangiorgi [22] of finding a fully abstract seman-
tics for their polymorphicrecalculus. There are, however, some differences between

their setting and ours, most of which we believe to be routine, with one important ex-
ception: the type rule for if-then-else.

4.1 Minor differences
The minor differences between our polymorpticalculus and theirs are:

1. We are considering weak bisimulation rather than strong bisimulation.

2. Since we are considering weak bisimulation, we have not inclided in our
language of processes. We speculate that this could be handled in the usual fashion,
by defining observational equivalence on processes in the style of Milner [18].

3. We have treated an asynchronous rather than a synchronous language, since the
soundness result follows more naturally for the resulting asynchronous transition
system. We speculate that a fully abstract bisimulation for a synchronous language
can be given by adding transitions for synchronous input as well as receptivity:

P P g Told:b)

{@Nndom(I)=0 T are generative

(r F [o]P) YEDUD) 3.7+ [o]P)

Note that the label used here for synchronous input is distinct from the label used
for receptivity.

4. We have used Honda and Yoshida’s definition of observational equivalence [13] as
our touchstone equivalence. Although this has been proposkd @&trongin the
literature [28], where it has been shown not to coincide with Milner and Sangiorgi’s
notion of observational equivalence, [21], it is important to note that in the presence
of a variable-name distinction, the discrepancy between these two definitions dis-
appears as variable-open terms are more clearly identified and congruence with
respect to input prefixing is guaranteed. See [8] for further information on the rela-
tionship between Honda and Yoshida's work and that of Milner and Sangiorgi [21].

5. Our type system keeps track explicitly of free type variables, rather than treating
them implicitly: this makes some of the book-keeping easier, at the cost of some
additional syntactic overhead.

(TR-IN)

We do not consider these issues any further in this paper.

4.2 Major difference: typing if-then-else

There is, however, one important difference between our language and Pierce and San-
giorgi’s, even though it may appear at first sight to be a minor point: the type rule for
if-then-else. In their paper, a strong type rule is given:

FrEn:T IT'eEm:T
r-P reQ

FFifn= mthenPelseQ 1 1E5TS)
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In our work, the weaker type rule TEBTW is used, which allows andm to have
different types: name equality testing is essentially untyped in this setting. Note thatin a
language with subtyping and a top type (such as Java or C#), these rules are equivalent,
since we can always choo3eto be the top type, and use subsumption to derive T-
TESTW from T-TESTS. In the absence of subtyping, however, the ruleEGTW
allows more processes to typecheck, so raises the expressive power of tests, and hence
makes observational equivalence finer. For example:

p&f v(b: [[int])v(c: [[string])a(int,string; b, C)

def

Q = v(b: [[int])a(int,int; b, b)
As long asa: [[X,Y;][X],][Y]] these processes cannot be distinguished by any test
which uses the type rule TEGTS, but they can be distinguished by:
R a(X,Y;x: [[X],y: [[Y]).ifx=ythend()else O
which typechecks using type rule TESTW. In fact, there is a third possible type rule
for if-then-else, which makes use of type unification:

FrM-n:T TEm:uU
mgu(T,U)=0=T[o]FPlo] T+Q
I Fifn=mthenPelseQ

(T-TESTU)

wheremgu(T,U) builds the most general type substitutiorsuch thafT [o] = U|[o].

This type rule is strictly weaker than TEBT=W, and raises the expressive power of

tests even further, and hence makes observational equivalence even finer. For example:
p&f v(c: I[int,string])v(d : {[int])a(int,string; c,d) . b(string;c) .d(x : int) . &(X)

Q% v(c: I[int,string])v(d : {[int])a(int,string; c,d) . b(string; )

Aslongasa: [[X,Y;1[X,Y],1[X]],b: 1[Z; ][int,Z]] ande: ][int], these processes cannot
be distinguished by any test which uses FsT-W, but they can be distinguished by:

R def alX,Y;x: TX,Y]L,y: 11X]).b(Z;z: [[int,Z]) . if x = ztheny(5) else O

which typechecks using type rule TEST-U. We have that:

— The type rule T-ESTW has a matching fully abstract bisimulation equivalenge
which for purpose of this discussion we shall refer tegs(shown in Theorems 2
and 3).

— The type rule T-ESTS has a matching fully abstract bisimulation equivalence
= (shown in Appendix D).

— The type rule T-EsTU has a matching fully abstract bisimulation equivalence
~, (shown in Appendix E).

Moreover:
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— We have inclusions on these equivalence§:if P =,, Q thenl E P =, Q for any
I+ Pandl ¢ Q (and similarly forx,, and=,,).

— The above examples show that the inclusions are strict: we Ihave #,, Q and
I'E P~ Qfor somel -, P andl ¢ Q (and similarly forx, and=s,,).

— The type rule for if-then-else used by Pierce and Sangiorgi i€$7S.

— Pierce and Sangiorgi’s bisimulation is the strong, synchronous versien(@hown
in Appendix C).

Hence, since synchrony and weak bisimulation play no role in the above examples, we
have a resolution of Pierce and Sangiorgi's conjecture:

— Pierce and Sangiorgi's polymorphic bisimulation is sound, but not complete, for
their polymorphicre-calculus.

These arguments are formalised in Appendices C, D and E. We note that the only parts
of the proof which significantly change are the proofs of two propositions: Proposi-
tions 9 (Output Contextuality) and 10 (Extrusion).

5 Conclusions

This paper gives the first fully abstract semantics for a polymorphic process language.
Moreover, due to careful choice of language features (in particular the typing rule for
if-then-else), the semantics is straightforward: the only nonstandard part of the presenta-
tion is that names are given more than one type in a type environment. This corresponds
to the ability for a polymorphic program to be sent the same channel at multiple differ-
ent types. In contrast to polymorphiecalculi, polymorphicrecalculi have the ability

to compare names for syntactic equality, and so there is an internal test which can detect
when the same name has been given multiple different types.

We believe that the techniques given in this paper are quite robust (for example
there are no uses of type induction) and could be scaled with little difficulty to larger
type systems with features such as subtyping, F-bounded polymorphism, and recursive
types. Moreover, object languages such asctbalculus support object equality, and
so we believe that adapting our previous fully abstract semantics [14] for objects [1] to
deal with generic objects would also be possible.
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A Bisimulation is a congruence

Definition 11 (Free and bound names of typed labelsPefine the free names of a typed label
as:

—

fn(1) =0 fn(v(d:T)clU;b]) =fn(v(a: T)c(U;b)) = {c,b} \ {a}
Define the bound names of a typed label as:

bn(t) =0 bn(v(d@: T)c[U;b]) = bn(v(a: T)c(U;b)) = {a}

Definition 12 (v-extension of a relation).For any typed relation on closed configuratiofg
define itsv-extension® to be the typed relation on closed configurations generated by:

F [0]P ®Y [p]Q whenevef' F [0']P R [p'|Q

for some P=v(a: T)P,Q=v(a:U)Q
andoC o', pCp/,rCr’

Definition 13 (Bisimulation up to v). A simulation up tov is a typed relation on closed con-
figurations ® such that iff" = [o]P & [p]Q and (I - [6]P) — (I’ I- [o']P) then we have

(FH[PIQ) N (I +[p']Q) for some™ = [0']P’ RV [p']Q. A bisimulation up tw is a simula-
tion up tov whose inverse is also a simulation up#to

Proposition 3 (Soundness of bisimulation up tw). If R is a bisimulation up te then® C ~.

Proof. To show this we take®’ itself as the bisimulation witness and demonstrate that this re-
lation is indeed a bisimulation. This is straightforward from the following two, easily verifiable
properties:

a

— If (T + [o]v(@: T)P) — (I + [0/]P) andl C T, 6 C 0” andl[0”] I P then we have
that(r”k[o”]P) s (" - ["]P") whered’ C 6", P' = v(d: T\ bn(a))P” andd’ is
v(e\ a)cU; ) isv(€)c(U;T) anda otherwise.
— If (M"+[0"] ) ( "+ [ "P") andlr C ", 6 C o”, {&},T distinctand [o] Fv(a: T)P
then(I" + [o]v(a: T)P) — (I'' - [0']P') whered’ C 6", P’ =v(&a: T \ bn(a))P” anda’
is as above.

Proposmon 4 (Reduction under type substitution).For any process P and type substitution
Plo] L Q if and only if we can find’pand @ such that PH Q, u=Y[o] and Q= Q'[o].

Proof. Follows by an easy induction on the derivationRjb] L Q and conversely on the

derivation ofP '~ Q.
Proposition 5q(Output reduction). If ' - P and Pw» P’ thenT are generative,
r,a:TrcU;b)andlr,a: T+ P.

Proof. Itis not difficult to check thaP “ % p/ telis us thaP = v(a: T)(c(U; b) | ). We

know thatl” + P also so we know from rule T-Kw thatT is generative and moreover, from rule
T-PaR, that,d: T Fc(U;b) andl,&: T + P as required.
Proposmon 6 (Input reductlon) Ifr-pPand P—— SXB)
MEc(X;X:V) andX,r,b:V+P.

P’ and {X} Nndom(I) = 0 then
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Proof. This is proved similarly to the previous lemma, however in this case we must also make
use of the substitution lemma below.

Lemma 1 (Substitution). Suppos&,I,At+fi:U[T/X], then

1. Y,X,r,%:U,A+ PimpliesY,l,A[T /X] - P[T /X;A/%] and
2. Y,X,I,%:0,Am:V impliesY,[,A[T /X] F m[fi/x] : V[T /X]

Proof. Standard induction on the derivations of the type judgements.

Proposition 7 (Closed subject reduction)If I is a closed typing context, - P and P P
thenl - P'.

Proof. This is entirely analogous to the proof in [22].

We recall the property abpen subject reductioas stated in Proposition 2.
(Open subject reduction)If I - P andP I P’ then either:

1. TP’ or
T)e(U;b X:b = o
2. p YETCE 20 b whereP” = (v(@: T)P)[U /X,
Proof. We first of all introduce an annotation to théabel. We will write 1. for T actions from
P which have been derived as a communication on chazw&ich is free inP. We will write T
for communications on a private channel.

There are essentially two parts to this proof, first we show that communications on free
channel names always guarantee commuting visible input and output actions. This case leads to
conclusion (2) above:

: c aT)c(U:b X:b L

if F - PandP % P” thenp YE1EUR - ) b \herep” = v(a: 7)P/[0 /X].

The only interesting case here occurs as an instance of thefRr@le. Here we have = Py | Qg
for someP, @D 5. Qo vaTon) QyandP” =v(d: T)(P)| Qp). Given this, we immediately

v(a&T)c(U;b)

haveP (Po| Qp) and, by the receptivity of types on rule R-We can always choose

% such thaPy <L P! andPY[U /X] = P}, Therefore,

v(&T)e(U;b) c(X;p)

(Po| Qo) — (Py | Q)
with v(&@: T)(PY | Qy)[U/X] = v(d: T)(P,| Qy) = P” as required.

Secondly, we show by induction over the derivation of the silent transition the following
property:

If '+ P and either P I P such that there is a unique tyfewith T +c: T) or

(P = P')thenl - P.

We show the two interesting cases in which the last derivation rule used isVRaNd R-CGM,
respectively. If the last rule used is REN then we have three sub-cases:

P

1. 1fP 2 P, then it is easy to check th&t=v(&: T’)Po for someP, such thatPy e P
with P’ = v(&: T)P). We now have two sub-sub-cases:

(@) IfPy o Py then the inductive hypothesis will guaranfeg: Tr Py and we use type
rule T-New to finish.
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(b) If Py X Pywithce d P=v(d: 'T')Po then we know thak,a: T Py and moreover,
there is a unique typ& such that™,&: T + c: To, therefore the inductive hypothesis
can be applied to obtain,&: T I Pj and again, T-w can be used to finish.

2. 1fP % P then we proceed similarly to the first sub-sub-case above.
Suppose then that the last rule used is BMGs0 that
p U8 b o YETUE oy qn(P) = 0
P|Q = v(@: T)(P'|Q)

We know that” - P|Q and by analysis of the transition rules we must have

P=v(@:T)(c(X;X:Tp).P"|P")

Q=v(@: T)(e{U;b)|Q)

P =v(@ :T)(P'[U/X;b/X]|P")
so we are required to show thatd: T - P | Q. B

We know that™ - Q so this easily implies thdt,&: T - Q. It remains to show that
ra:Trv@ :T)(P'[U/X;b/x | P")

Given thaf” - P we know (using weakening) thtad: T,& : T’ - P so we reduce our obligation
to proving

r,a:T,@:7'+P'[U/X;b/X
Note that” - Q also implies thaf ,&: T I c(U;b). This implies further that
M=c: X,
ra:THb:THU/X]
for someX’ andT}. Note now thaf + Pimpliesl, & : T’ - ¢(X;X: To) . P” and that this (together
with ¢ € dom(I")) further impliesT™ - ¢ : [[X; To]. The hypothesis states that there is a unique type
for cin T, so we knowX = X" andTp = Ty. This (with appropriate weakening ) allows us to

deriveX, I, & : T/,%: To - P”. We can use this and the typing fombove (also with appropriate
weakening) as hypotheses to the Substitution lemma to obtain our goal.

Proposition 8 (Labelled Subject Reduction)If (I - [0]P) —» (I [o’]P) and (T I [o]P) is
a closed configuration theff” I- [0']P’) is also a closed configuration.

Proof. Fora at action, we simply note thdt’ ando’ are unchanged and that (using Proposi-

tion 4) P P impliesP[o] — P’[o]. Closed subject reduction then gives the result.drar
receptivity action, we need only observe tha&: T +- c(U;b) implies (I, a: T)[o] - c(U;b)[a].
Fora a send action the difficulty lies in demonstrating ttétr,b: V)[U /X, 0] is a closed

environment. Indeed, we know tHaiJ /X, 6] = I'[0] is closed so we need to check that &nyb
has a unique typing itX,,b: V)[U /X, a]. We knowr [o] - P. By unfolding this derivation we
can obtain oL

MNol,a: THb:W[U/X]

Mol d:TFc: [[X;W]
for someW. We also have thdt - ¢(X;X: V), and it is easy to chedk[o] + ¢(X;X: V[a]), which
yields '[o] - ¢ : [[X;V[o]]. As I'[o] is a closed environment we must have a unique type for
c. ThereforeV o] must beW. Now, take anyb € b. If b ¢ dom(I") then we must have < &,
uniquely asa; say. Thusp must have a unique typ&i(= Vi[J /X, a]) in (X,I,b:V)[J/X,a].
Otherwise, we havk € dom(I"). In this case though, we know thatV[U /X, o] already appears
in I'[o] becausé[0],a: T +b:V[U/X,a].
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We can now prove Theorem 1:fifE P~ Q thenA E C[P] = C[Q] for anyA + C[I].

Proof. We show that~® is preserved by each of the process operators, from which the result
follows by induction onC. The difficult case is to show thaf is preserved by, which follows
if we can establish that the following relation is a bisimulation up:to

I F [o]P|Rlo] R [p]Q|R[p] whenever F [0]P ~ [0]Q
andl FR
ando andp are type substitutions

Since R is symmetric, it suffices from Proposition 3 to show tifatis a simulation up to.
Consider any transition of the form:

(T F [o]P|Rla]) —> (I +[¢']P")

where:
FrEolP~[p|Q THR

We are required to establish a matching weak transitiofifer[p]Q| R[p]), for which we proceed
by case analysis om. The interesting case is when= 1, so from Rule TR-8 ENT we have:

P|Rjo] — P”

and we proceed by case analysis on the derivation of this transition. The interesting case is when
the symmetric form of Rule RAR was used, and we have:

Ro] — R" P'=P|R"
for which we use Proposition 4 to get that:
R R R"” =R'[0]
We then use Proposition 2 to get two cases, of which the interesting one is 2, where we have:

R YETCUD) X8 o g — (y(@: T)R)[0[o]/X, o]

so we can use Propositions 5 and 6 to get Thate generative and:
ra:TrelU;b) r,a:TreX;x:V) X,ra:T,b:VFR

Hence we can use Rules TREREPand TR-QUT-W to establish:

VETUE (- 4. T 0P |c(U][o]:B))

(X,r,a:T,b:V+[U[o]/X,0]P|0)

Note that this step makes use of input receptivity, hence our use of asynchronous rather than
synchronoust-calculus. Sincé = [0]P ~ [p]Q we have:

(" +[o]P)
c(X;b:V)

(FH-[plQ) =—== ("&:T+[p)
==L (X,r,a:T,b:VFW/X,plQ)
where:
X,T,&:T,b:VE[U[o]/X,0]P~ W/X,p|Q
From Proposition 4 we have:

aT(p)cUlpl;b)  c(W:b -
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and so itis routine to establish using Rules RRRANd R-®M:
QIR[p] == v(a: T[p))Q' |RW/X,p]
and hence using TR4&ENT:
(T = [PIQIRIp]) == (T [pv(a: T[p])(Q'|RW/X,p]))
Finally, sinceX,I,a: T,b:V k [U[o]/X,0]P ~ W/X,p|Q we have by definition off :
X,r,&:T,b:V & [U[o]/X,0]P|R[U[0]/X,0] & W/X,p]Q [RW/X,p]
and hence by definition &}:
M= [o]v(@: Tlo])(P|R(U[o]/X,0]) R [p]v(a: T[p])(Q |RIW/X,p])

which is as required.

B Completeness of bisimulation for contextual equivalence

Definition 14. We define a typed relatiolP on closed configurations by asking ttaP be the
largest relation which is symmetric, reduction closed, barb preserving (with these concepts lifted
to configurations in the obvious way), and is closed with respect to the following condition:

r,I"F [0]P|Ro] R [p]Q|R[p] whenever = [a]P ~ [p]Q
andl," R
ando andp are type substitutions

Note immediately, thaf = P = Q impliesl F P =P Q. Therefore it is sufficient to prove com-
pleteness of with respect to=P. Before we can do this we show two Propositions which will

be used to execute the proof. We omit the proofs of these as they follow the lines of similar
propositions for the (higher-ordergcalculus [15].

Proposition 9 (Output Contextuality). For any closed configuratiofi” - [a]P), if

v(@)c(X;b:V)

(I - [o]P) 'k [a'1P)

v(@T)cU;p)

where P P’ then there exists some process R, axtdfail ¢ dom(I") such that

ext: [[X;V],fail: [[[FR
and
PIRj0] = v(@: T)(P'[et(U;b))  v(@:T)(P'|ext(U;b) Hair

Moreover, for any closed configuratigh + [p]Q) such that QR[p] == Q" with Q" J.; we
have

Q' =v(@: T')(Q |ext(W;b))
v(@T")c(W;b) -
and Q =—————= Q' for someWw.

Proof. (Outline) We show how to define the procd®# two simplified cases, from which the
proof for the general case can be inductively derived.

Firstly, suppose the typed output transition is labetiéd; b : V) and is derived from an un-
derlying untyped action labellez{U ; b). We know then, thaft + c(X;x:V).0andd’ = (U /X, 0)
andr’ = (X,I,b: V). From Proposition 5 we havgla] - t(U; b), and sdb € dom(I"). Thus, we
have that the process

R="fail() |c(X;x:V).if x=bthenfail() . ext(X;x) else 0
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is well-typed with respect t6, ext : [[X;V], fail : |[], andP | R[o] will reduce as required. More-
over, for anyQ,p such thatQ | Rjp] == Q’ A We must have a communication dail,
which demands an earlier communication onf the formt(W;b). These facts tell us that

Q' = (Q/ | ext(W;b)) such thaQ M Q as required.

Secondly, suppose that the typed output transition is labellegt(X;b : V) and is dervied
from an underlying untyped action labelle¢b : T)c(U; b). We letR be defined as

R=fail() |c(X;x: V). (if x=aj then 0
else if x=ap then 0
elseif ...

else fail() . ext(X;x))

whered; are all of the names such thate dom(I"). It is easy to check thaR is well-typed
with respect td™,ext : [[X;V],fail : ][] Itis also easy to check th&| R[o] reduces as expected.
This is because we know thiais fresh tol", and sag; # b for any of theg;. For any other closed
configuration(I” + [p]Q) such thaQ|R[p] == Q" 4+ail, we know similarly that there must have
been an communication arof the formv (b’ : T/)c(W;b'). This name must be different to every
a, and so must be fresh, and hence canmnverted td, henceQ”’ = v(b: T')(Q' |ext(W; b))
v(b:T)T(W;b) .
andQ ————=—= Q' as required.

Proposition 10 (Extrusion). If
Mext: [[X;V]F [o]v(d: T)(P|ext(U;b)) =P [plv(a: T')(Q|ext(W;b))
with @ C b andext ¢ fn(P,Q) then
X;T,b:VE[G/X,0]P =P W/X,p|Q.
Proof. The proof of this is again similar to the proof of the analogous property in [15].
We can now prove Theorem 3:lifE P~ Qthenll E P~ Q.
Proof. If suffices to prove the result for closed processes ané:fbin place of~. We proceed
by coinduction by definingg_to be
I & [0]P R [p]Q whenever k [o]P =P [p]Q

and showing that® forms a bisimulation up tes. Suppose thak F [o]P R [p]Q and further

suppose thatl” - [0]P) 2 (I + [0']P"). We must show thafl™ I [p]Q) has a matching tran-
sition. This is straightforward in the cases in whighss generated by rules (TRHENT) or
(TR-RecEeP. Otherwiseq is generated by rule (TR-@r-W), that is

a is of the formv(&)c(X;b: V),

risX;r,b:v

o is[U/X,0]

_ andpP v(@T)c(U;b) p

We can now appeal to Proposition 9 to find a prodesach thaf,ext : [[X;V], fail : [[] - Rand

P|Rlo] == v(&:T)(P'|ext(U;b))  v(@:T)(P|ext(U;B)) Ltail-
We know that” F [0]P 2P [p]Q and, by definition, this gives us
I ext: [[X;V],fail : |[] E [0]P|Ro] =P Q| R[p]
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also. As=P is reduction-closed and barb-preserving, we must l@\8[c] == Q" for some
Q" M such that (strengthening to remofed from the environment)

Mext: [[X;V]Ev(@: T)(P |ext(U;b)) =P Q. @)
By Proposition 9 we hav®”’ = v(a: T')(Q |ext(W; b)) for someQ’ andW andQ % Q.
This tells us that

(MEIPIQ) — (I W/X,pIQ)
and moreover, by applying Proposition 10 to (1), we see that
X;F,b:VE[U/X,0]P =P W/X,0]Q.
which is to say
"E 0P R W/X, Q.
as required.

C Pierce and Sangiorgi’s polymorphic bisimulation is our unifying
bisimulation

Pierce and Sangiorgi’s definition of polymorphic bisimulation relies on an ‘allow relation’ [22,
Defn 12.1.1] which, rewritten to fit our notation, is almost the same as in Definition 15. The
‘almost’ is the addition of the conditionT* are generative’ to Rule ANP which is missing in
their formulation: this appears to be a slight error in their definition.

Definition 15 (Allow Relation). The allow relation(T" || ) —*» (I*||¢’), wherel [o] and [0

are closed, is defined by:

———— (A-TAv)
(Fo) — (Tlo)

ra:TkcU;b)y {d@nNdom(M) =0 T are generative (A-INP)
I

rlo) Y (1 a:7)0)
M-cX;x:V) Y,ra:Yeb:W
{éXY}ﬂdo MN=0 (mgu( ,W);O’)z(f/\?p)

(r o) YERUE) (% 9.1 4:9)[meu(V. W) | &)

m(
(U

The weak, asynchronous formulation of Pierce and Sangiorgi’s definition of polymorphic bisim-
ulation [22, Defn 12.2.2] is then as in Definition 16. Readers familiar with their paper will note
that this is the definition without clause 3(a), which is their conjectured fully abstract model.

Definition 16 (Polymorphic bisimulation). A polymorphic (asynchronous weak) simulati®n
is a typed relation on closed configurations such thatkf [o]P R [p]Q then:

CifP s P’ then we have G== Q' for somel” = [o]P' R [p]Q

2. if (FHG) (F’Ho)then(l’ lp) — [W (r’ ||p)and(Q\C<\7v,B>) == Q for some
r’HG](F’|C<U b)) R [0'Q';
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T aV)c(W;b

EDeUR) P then(F || p) “&"WE (1) o) and

3. if(F||o) v(@T)e(U:p)

avyc
Q % Q for some™ E [0']P R [p'|Q.
A polymorphic bisimulation is a simulation whose inverse is also a simulation~Lie¢ the
largest polymorphic bisimulation.

(r'||o’)yand P

Proposition 11. ~ and~, coincide.

Proof. We have to show two properties, is a polymorphic simulation, and is a simulation.
We consider each of these in turn. For convenience we will drop the subscript, dor the
remainder of this proof.

~ is a polymorphic simulation. Consider any F [o]P ~ [p]Q.

1. If P —» P then by Rule TR-8ENT and the definition of bisimulation, we have
Q = Q for somerl F [0]P’ =~ [p]Q as required.
. f (T o) ﬂ (T,a:T| o) then by Rule A-NP we have:
r.a:TrcU;b) {d8Nndom(F)=0 T are generative

and so we also have: L

cUlplib]

(Fllp) — (r.&@:T|p)

Moreover, we have:

v(@T)cd ;B

(T'+ [o]P) (r,&: T+ [o]P|c(U[o];b))

and so by definition of bisimulation:
b0 E . ) .
(T [0]Q) “EDYY r 4.7 [pQ) r.a:TF[olP|cU:B) ~ O

which must come from Rules TRHENT and TR-RecEPwhere:
Q=— Q" Q'|c(W[p]:b) = Q
and so from R-RR we have:
Qlc(lplib) — @

as required. B
3. If(I'||o) M (r']|o’) andP v@T o g P’ then by Rule A-QiT we have:
M= (XV ,a:Y)[mgu(V,W)] THe(X;x:V) Y,ra:Yrb:W
{&X,Y}ndom(I") =0 (mgU(\7 N);o') = (T/Y,0)

and by Rule TR-@T-U we have:
(T - [o]p) YEYEXDY) oy
and so, by definition of we have:

(r-pQ “EE2 (1) Tk ()P ~ o))

which must come from Rules TRHENT and TR-QuT-U where:
v@T)cusb
_ Q

as required.
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~ is a simulation. Consider any F [0]P ~ [p]Q.

1. If (T [o]P) — (T  [o]P’) then by Rule TR-8ENT and the definition of polymor-
phic bisimulation, we have I [p]Q) == (I - [p]Q') for somer F [0]P’ ~ [p]Q’ as
required. B

2. If (I'+[a]P) YET)AOH (r,a: T+ [o]P) then by Rule TR-RCEPwe have:

P =P|c(U;b)jo] T,a:Trc(U;b) {d@Ndom(F)=0 T are generative
and so by Rule A-ip we have:

(rlo) B r a: 7o)

which means by definition of polymorphic bisimulation we have:
QlcUlp);b) == Q@ T.,d:Tk[o]P ~[p|Q
so by Rules TR-Rcepand TR-SLENT we have:

(r-pjQ “EEE (r 571 gQ)

as required. B
3. 1 (T [o]P) YEEXEY) 1/ 571P) then by TR-QuT-U we have:

M= (X,Y,r,b:Y)[mgu(V,W)] P
rec(X;X:V) Y,ra:yr
{&X,YIndom(M) =0 (mgu(V,W);c’

and so by Rule A-OT we have:

I
3
~
4-<l
)

(o) YEOB (R 9.1 &: ) [mgu(V, W) || )

which means by the definition of polymorphic bisimulation we have:

(Fllp) (Mo QUEEER & e 0P ~ p)Q

so by Rule A-Qut we have:
(mgu(V,W);p') = (T'/Y.p)
and hence by Rules TR4@-U and TR-SLENT we have:

v(@T)clU’;b)

v(&Y)e(X;b)
— L

(F=[PlQ) (M=)

as required.
Thus,~ and~ coincide.

D Strong typing for if-then-else

Definition 17 (Strong typing). Writel” ¢ P when the process typig- P can be derived using
RuleT-TEST-Sin place of T-TESTW.

Definition 18 (Strong typed contextual equivalence)Let =, be the contextual equivalence
generated by type systdnt-¢ P.

Definition 19 (Strong closing substitution).A substitutioro strongly closes§ if:
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1. dom(o) C dom(I),

2. I'[o] is closed,

3. foranyniTelandm:U €T, ifn=mthen T=U, and

4. foranyn: T el and m:U €T, if njo] = mio] and T=U then n=m.

Note that the empty substitution strongly closes any cldsed configuration(I" + [o]P) is
strongly closed whenevéi{o] - P ando strongly closes : for the remainder of this section all
configurations are considered to be strongly closing.

Definition 20 (Strong typed labelled transitions).Write C A s C' when the labelled transi-
tion C -2 C’ can be derived using RUER-OUT-Sin place of TR-OuT-W.

p YEDCUY o rinsix:V).0 (nm)[o’] = (cb)
! — (17 /X I _ (¥ -\
o' = (U/X,0,t/Z) strongly closes’ = (X,I,m:V) (TR-OUT-S)

(T [o]p) EMXMY) - 0/ oy

Note, we must also modify Rule TREREPslightly, to use variableX in place of namesg, and
to use valuesi, min place of names, c.

Definition 21 (Strong typed bisimulation). Write ~ for the bisimulation generated by the la-
belled transition system c% ..

Theorem 4 (Full abstraction of strong typed bisimulation for strong typed contextual equiv-
alence).l' E P=¢ Qifand only ifl F P2 Q.

Proof. The proof of this follows along the same lines as the proof of Theorems 2 and 3. The
significant differences occur in the Output Contextuality and Extrusion Propositions. We will
outline the changes to these below.

Proposition 12 (Strong Typing Output Contextuality). For any strongly closed configuration
(T [o]P), if
v(@R(X;mV)

(FF[a]P) (M F[01P)

v(@T)c(U;b)

where P P’ then there exists some process R, axdfail ¢ dom(I") such that

ext: [[X;V],fail: [[[FR
and
P|Rlo] == v(@: T)(P'|ext(U;b))  v(@:T)(P |ext(U;D)) Aail-
Moreover, for any strongly closed - [p]Q) such that QR[p] == Q" with Q" },; we have
Q'=v(@: T)(Q [ext(W;b'))

v(@: ’) wibf / / W / NI !
and Q:> Q where(n,m)[p'] = (¢,b') andp’ = (W/X,p,T /2) strongly closes$”.

Proof. (Outline) Again, we show how to define the procBsa two simplified cases, from which
the proof for the general case can be inductively derived.

Firstly, suppose the typed output transition is Iabeﬂéi;m :V) and is derived from an
underlying untyped action labelledU ; b). We know then, that’ = (U/ o) andl’ = (X,I),
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so by definition of strong closuren:V € I', and moreover(n,m)[c] = (c,b). In particular, we
notice that the process
R=fail() [n(X;x: V) .if x = mthen fail () . ext(X; x) else 0
is well-typed with respect t6, ext : [[X; V], fail : ][], andP| R[o] will reduce as required. More-
over, for anyQ, p such thaQ |R[p] == Q" }.ii we must have a communication éxil, which
demands an earlier communication @n= n[p] in which a namd, say, is sent fronQ. Fur-
thermore, we know thdt’ = m[p] as the conditional test is passed successfully. These facts tell
us thatQ’ = (Q/ | ext(W; b)) such thatQ ST, Q as required. Sincp’ = (W/X,p) andp
strongly close$’, we have thap’ strongly close$’ as required.
Secondly, suppose that the typed output transition is labellgth(X;y : V). We letR be
defined as - .
R=fail() | n(X;x:V). (if x=ny then O
else if Xx=ny then 0
elseif ...

else fail() .ext(X; X))
whererj are all of the values such that V € T. It is easy to check tha is well-typed with
respect td”, ext : [[X;V],fail : [[]. Itis also easy to check th&t R[o] reduces as expected. This
is because we know thgis fresh tol", anda’ strongly closes;[a] # b for any of then;. For any
other process and mappir@,p such thaQ|R[p] == Q" A.;, we know similarly that there
must have been an output froghalong channet’ = n[p] of a namey', say. This name must be
different to evenyn; [p] so it must be the case thaf,= (W /X, p,b/ /y) and sincep strongly closes
I, we have thap’ strongly close$”’ as required.

Proposition 13 (Strong typing extrusion).If
Mext: [[X;V]E[ojv(@: T)(P|ext(U;b)) =P [pjv(d@ : T')(Q|ext(W;b'))
withaC b,& C b/, ext & fn(P,Q) and
o' = (U/X,0,b/y) andp’ = (W/X,0,b'/¥) both strongly closé&”’ = (X,I,y:V)
thenl” E [0']P =P [0']Q.

Proof. The proof of this is again similar to the proof of the analogous property in [15].

E Unifying typing for if-then-else

Definition 22 (Unifying typing). Write I =, P when the process typidgt P can be derived
using RuleT-TESTU in place of T-TESTW.

Definition 23 (Unifying typed contextual equivalence)Let=, be the contextual equivalence
generated by type systdnt-, P.

Definition 24 (Unifying typed labelled transitions). Write C —% , C’ when the labelled tran-
sition C - C’ can be derived using RUlER-OuT-U in place of TR-OUT-W.

(TR-OuT-U)




Definition 25 (Unifying typed bisimulation). Write =, for the bisimulation generated by the
labelled transition system c% .C

Theorem 5 (Full abstraction of unifying typed bisimulation for unifying typed contextual
equivalence)l' F P~ Qifand only ifl F P2, Q.

Proof. The proof of this also follows similar lines to Theorems 2 and 3 so we do not repeat the
details here. As in the previous section though, the significant changes to the proof lie in the
Output Contextuality and Extrusion Propositions. We show these below.

The main change that needs to occur is that after testing for each output action, the process which
receives this output must re-emit on e channel, not just the values communicated but also
representative values for the entire environment. This is because the type unification allows us to
update the types of previously emitted values. The following notation is useful: @ritemean

fn(I") rendered as a value and wr{té) to mean the collection of typés such that: T € I for

somea.

Proposition 14 (Unifying Output Contextuality). For any closed configuratiofl” F [o]P), if

(r L [0} P) v(&Y)c(X;b:Vv) (r, L [0’}P’)
where P vET)e D) P’ then there exists some process R, axdfail ¢ dom(I") such that
Mext: [[X; ()], fail : [ F R
and

PIRjo] == v(@: T)(P'|ex(U;dr))  v@:T)(P'|et(U;dr)) i

Moreover, for any closed configuratidfi - [p]Q) such that QR[p] == Q" with Q" J¢.; we
have
Q' =v@: )(Q |ex(W:ar))
v(&T")c(W;b) -
and Q ————== Q' for somew.

Proof. (Outline) Again, we only show how to define the proc&m the same two simplified
cases.

Firstly, suppose the typed output transition is labettéd;b : V) and is derived from an
underlying untyped action labellaqU ; b). We let

R="fail() |z(X;x: V) .if x= bthenfail() . ext(X;ar ) else 0

and check thaR is well-typed with respect to the environméntext : [[X; ()], fail : {[] where
I = (X,I)[mgu(V,W)] andrl" - b: W. This results in checking that

Cext: [[X; ()], fail : 1[],x: V F if x = bthen fail() .ext(X; &r ) else 0

We can see that this holds true though as the type rul&e3+U allows us to reduce this to
checking that

(X,T)[mgu(V,W)] & : ()
This follows easily becaus@’) = ((X,I")[mgu(V,W)]) andfn(I") = fn(I"’). It is easy to see that
P| R[o] reduces as required.

Take, anyQ, p such thaQ|R[p] == Q" }+.ii we must have a communication fxil, which
demands an earlier communication@in which a naméy, say, is sent fronQ. Furthermore, we
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know thatb’ = b as the conditional test is passed successfully. Ther&6re (Q' | ext(W;b))
such thaQ M Q as required.
Secondly, suppose that the typed output transition is Iabe(lledY)C(f(; b:V). We letRbe
defined as o .
R=fail{) |z(X;x: V). (if x=4az then O
else if x=ay then 0
elseif ...

else fail () . ext(X; dr,x))

whered, are all of thea in dom(I").
Note, that, in this case we usegu(V,Y) asl,b: Y F b:Y. Therefore,

r=XY,[Lb:Y)mguV,Y)]=X,Ib:V

Again, we need to check thRtis well-typed with respect t6, ext : [[X; (I'")], fail : []. This time
we cannot make any use of unification for the outputrinas we are using thelse branch of a
conditional. Note though that

X,F,x:VFar,x: ()

becausdl’) = (IN),V.

Clearly,P | R[o] reduces as expected because we knowlttimfresh tol. For anyQ, p such
thatQ|R[p] == Q" Y+ai1, we know that there must have been an output f@along channel
c of a name, say. This name must be different to everyo it must be fresh t6 and bound in
Q. By alpha-conversion i), we can therefore choo$éto beb to obtain the required properties

of Q.
Proposition 15 (Unifying Extrusion). If
Mext: [[X; ()] [o]v(@: T)(P|ext(U;dr)) =P [plv(a: T')(Q|ext(W; &)
with & C & andext ¢ fn(P,Q) then
Ik [U/X, 0P =P W/X,pQ.
whenever these are configurations.

Proof. The proof of this is straightforward and similar to that found in [15].
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