Functional Reactive Programming with nothing but Promises

Implementing Push/Pull FRP using JavaScript Promises

Alan Jeffrey

Tom Van Cutsem

Alcatel-Lucent Bell Labs
ajeffrey@bell-labs.com, Tom.Van_Cutsem@alcatel-lucent.com

Abstract

Functional Reactive Programming (FRP) is a model of reactive
programming defined by having a well-defined semantics given
by time-indexed values. Promises are one-shot communication
channels which allow asynchronous programs to be written in
a synchronous style. In this paper, we show how timed promise
lists, a timestamped linked list structure using promises rather
than pointers, can be used to implement FRP. This idea origi-
nated with Elliott’s Push/Pull FRP, and we show that it can be ex-
pressed idiomatically in a strict functional language with promises,
JavaScript. We identify a potential space leak with JavaScript’s
built-in promises and propose an alternative implementation that
avoids the leak.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

1. Introduction
1.1 Overview

Functional Reactive Programming (FRP) [9, 17] is a model of reac-
tive programming distinguished by having a well-defined semantics
given by time-indexed values. It allows a developer to write reac-
tive programs without descending into the ‘callback hell’ of event-
driven systems. FRP is agnostic about its implementation, which
may be pull-driven functions, or push-driven event handlers.

Promises [2, 10] are also intended to avoid the complexity of
event-driven systems, but are one-shot communication channels:
once a promise is resolved to a value, it stays fixed. Promises
were added to JavaScript in ECMAScript 6 (ES6) [7]. They allow
asynchronous programs to be written in a synchronous style.

In this paper, we investigate using promises in an implementa-
tion of FRP. The implementation uses timed promise lists, and is a
port of Elliott’s Push/Pull FRP [8] from Haskell to JavaScript.

1.2 Motivating Example

The ‘hello, world’ application for reactive programming is an echo
chatbot, which just repeats back any messages sent to it, as seen in
Figure 1. Our implementation uses the XMPP [22] chat protocol,
but this is mostly invisible to the developer.

[Copyright notice will appear here once ’preprint’ option is removed.]

REBLS’15

Applications such as this typically use configuration files con-
taining constant bindings such as user identifiers, passwords, and
natural-language strings for internationalization. An example con-
figuration for the echo chatbot is in Figure 2.

For simple systems, a change of configuration is straightfor-
ward: edit the configuration file, then restart the server. This be-
comes problematic as systems become more complex: the delay
and down time of system restart may be unacceptable, and the
server may store session state that has to be saved and restored. As
a result, systems are often better served by dynamic configuration,
which allows configuration change without system restart.

A typical implementation of a chatbot is as an event-driven
system, with explicit event handler registration and deregistration.
Such systems rapidly become complex, especially in the pres-
ence of multiple event sources. For example, the echo chatbot
has two event sources: configuration file changes, and chat mes-
sages. Most implementations of the echo chatbot would suffer
from nondeterministic transient behavior. For example, if the jid
(the XMPP user id) were changed from alice@example.com to
bob@example. com, it would be very easy for a message received
by Alice to be responded to by Bob. Taming such behavior requires
concurrency controls such as locks or transactions.

In this paper, we adopt the philosophy of (discrete-time) Func-
tional Reactive Programming (FRP), in which events are no longer
the primary concern. Instead, the API is concerned with reactive
values, whose semantics is given as time-indexed values. We use
TypeScript [20] as a language of types for JavaScript, writing R<T>
for reactive values of type T. These have semantics as time-indexed
values of type T:

[R<T>] = Time — [T]

A key property of FRP is that the kind of nondeterministic
transient behavior outlined earlier can be prevented by consistently
reading the value of multiple reactive values at the same time ¢.
In FRP terminology, such nondeterministic transient behavior is
called a glitch [4]. It is the task of an FRP library or language to
prevent such glitches.

1.3 Promises

Promises [10] also known as futures [2] were introduced as a mech-
anism that allows a producer thread to calculate a value, and for
any consumer threads to block waiting for the value to be pro-
duced (this is called resolving the promise). The E programming
language [15] pioneered an asynchronous interface to promises:
rather than blocking waiting for the value to be produced, the con-
sumer can register a callback to be executed when the promise is
resolved. The result of registering a callback is itself a promise, so
promises can be chained, in a style similar to monadic program-
ming. ES6 Promises are based on this asynchronous interface.

2015/10/9

NE T 4m0859

) ajeffrey-test@mh.cingme.com
(?.v Available ®

¢ 8:59:33 AM ajeffrey@mh.cingme.com
Foo

& 8:59:33 AM ajeffrey-test@mh.cingme.com
You said: Foo.

& 8:59:35 AM ajeffrey@mh.cingme.com
Bar

& 8:59:36 AM ajeffrey-test@mh.cingme.com
You said: Bar.

¢ 8:59:39 AM ajeffrey@mh.cingme.com
Baz

¢ 8:59:39 AM ajeffrey-test@mh.cingme.com
You said: Baz.

Type your message here Send

Figure 1. An echo chatbot screenshot

{ "mep": {
"jid": "ajeffrey-test@Omh.cingme.com",
"password": "abc"
}7
"strings": {
"prefix": "You said: ",
n suffixﬂ B " . n
}}

Figure 2. Echo chatbot configuration

In this paper, for simplicity we are ignoring errors, and the
fragment of ES6 promises [7] we are using is given in Figure 3.
The type Promise<T> is inhabited by promises which resolve to a
(possibly undefined) value of type T. Note that in ES6 promises,
then and resolve are overloaded to operate both on promise and
non-promise values. As a result, the API doesn’t allow for the
construction of a Promise<Promise<T>>.

There is also a function race(ps), which is resolved when
the first ps[i] is resolved. It plays a similar role to McCarthy
amb [13], and we use it for the same reason as Elliott [8, §10].

1.4 Contributions

In §2 we present a simple library for reactive programming in
JavaScript. The API of this library is fairly straightforward and
is not this paper’s main contribution. Our main contribution is
described in §3 where we show how FRP can be implemented using
ES6 promises, using a data structure we are calling a timed promise
list. This data structure is essentially the same as Elliott’s Push/Pull
FRP implementation of reactives [8]. We show that timed promise
lists can be expressed idiomatically in a strict functional language
with promises.

In §4 we identify a potential space leak when implementing FRP
using JavaScript’s built-in Promise API. We provide an alternative
Promise implementation using which the leak can be avoided.

REBLS’15

interface Promise<T> {
then (fun: (arg?: T) => Promise<U>): Promise<U>;
then (fun: (arg?: T) => U): Promise<U>;
}
function resolve<T> (val?: Promise<T>): Promise<T>;
function resolve<T> (val?: T): Promise<T>;
function race<T> (ps: Promise<T>[]): Promise<T>;

Figure 3. Promises API (ignoring errors)

2. Using Reactive Values

Before diving into the details of how we represent reactive values
using timed promise lists, we discuss how one can use reactive
values using a simple JavaScript API. We use the running example
of the echo chat bot from the Introduction to illustrate the API.

Recall that our chat bot has two event sources: configuration
file changes, and chat messages. Let’s first focus on dealing with
configuration file changes. Our file system API includes a func-
tion readJSON that reflects the current contents of a JSON file.
In an event-driven system, using readJSON requires registering
event handlers to respond to each file change. In our FRP system,
readJSON just returns a reactive value:

function readJSON (name: string): R<any>;

Since file names are often specified in configuration files, (and
TypeScript supports function overloading) we can give a type for
readJSON that allows the file name to be reactive:

function readJSON (name: R<string>): R<any>;

Our XMPP API further includes a function 1ogin which logs into
an XMPP server, and returns two values: an inbox with the input
messages, and a send(outbox) function called with the output
messages:

function login (config: R<any>): {
inbox: R<any>;
send (outbox: R<any>);

};

In Figure 5 we give an echo chatbot implementation. For read-
ability, the types for each variable are listed separately. To under-
stand the code, one must consider two layers of abstraction: the
code makes use of high-level bridging functions for converting re-
active objects to and from objects containing reactives. These con-
venience functions are implemented in terms of a simple core APL.
We first explain the convenience functions and then the core APL

Bridging Objects and Reactives filter is a bridging function
to convert from reactives-containing-objects to objects-containing-
reactives. The filter function on a reactive takes as its argument
a pattern. A pattern is either:

e true, which matches anything,

e false, which matches nothing,

e aregular expression r, with the usual definition of matching,
e a function £, which matches v if £ (v) is true, or

® an object o, which matches an object v if o.f matches v.f for
every field £ of o.

On reactives, filter is undefined when the pattern does
not match. If vs is a reactive, and pattern p has field £, then so
does vs.filter(p). Moreover vs.filter(p) .f is equivalent to
map(getF, vs.filter(p)) where getF(v) is v.f when v is
defined, and undef ined otherwise. The map function is part of our
core API, explained below.

2015/10/9

function constant<T> (
val: T

): R<T>;

function map<T,U> (
fun: (arg: T) => U,
vals: R<T>

): R<U>;

function zip<T1,T2,U> (
fun: (argl: T1, arg2: T2)=> U,
valsl: R<T1>,
vals2: R<T2>

): R<U>;

[constant (V)](t) = [v]
[map(t,ve)](t) = [£]([vs](®))
[zip(E,vs,ue)[(t) = [£]([vs](?), [ws](?))

Figure 4. Core FRP API

This feature lets us use the familiar dot-notation to access prop-
erties on reactive objects. In the example code, config is a reactive
value constructed by filter. In the call to XMPP.login, we can
simply write config.xmpp to construct a derived reactive value.
Given the transformation described above, this is equivalent to:

function getXMPP(c) { return c.xmpp; }
var xmpp = XMPP.login(Reactive.map(getXMPP, config))

The other way around, Reactive.build converts an object-
containing-reactives to a reactive-containing-objects. build takes
as its single argument an object whose properties may contain
reactive values (let’s call these “sources”). It returns a new reactive
value that, at any given time ¢, has the same shape as its input
argument but with all sources replaced by their value at time ¢.
In order to consistently read the value of multiple reactives, the
implementation of build depends on a core API function called
zip. In Figure 5, build is used to construct a reactive value called
output. It is equivalent to:

function mkOut(c,i) { return { message: {
to: i.message.from,
body:
[c.strings.prefix,
i.message.body,
c.strings.suffix]
Yo}

var output = Reactive.zip(mkOut,config,input);

Core API The bridging functions are essentially convenience
functions to work with reactive values using an object-oriented
API. Under the hood, however, these functions rely on a functional
core API, which is given in Figure 4. constant lifts any value
inside a reactive value. map maps a unary function over a single
reactive, returning a new reactive. Finally, zip maps a binary func-
tion over two reactive values. Given zip, it is easy to construct a
multi-way map that operates on three or more inputs.

As we shall see later, mapping a function over a single reactive
is much more straightforward than mapping a function over multi-
ple reactive values. This is because zip must pair elements from its
input reactive values such that the function passed to zip only ever
sees values consistent with time. In other words, zip must prevent
glitches.

A program using the bridging functions of our FRP library
can be thought of as a staged computation: in the first stage, the
bridging functions internally ‘link up’ reactive values via calls to

REBLS’I5 3

var XMPP = require(’frp-xmpp’);
var FS = require(’frp-fs’);
var Reactive = require(’frp-reactive’);

// Load and validate configuration
var config = FS.readJSON(’config.json’).filter({
Xmpp: true,
strings: {
prefix: true,
suffix: true

}B;

// Log in to the xmpp server
var xmpp = XMPP.login(config.xmpp) ;

// Grab the input messages
var input = xmpp.inbox.filter ({
message: {
from: true,
body: true
B

// Generate the output messages
var output = Reactive.build({
message: {
to: input.message.from,
body:
[config.strings.prefix,
input .message.body,
config.strings.suffix]

}B;

// Send the output
xmpp . send (output) ;

// The types of the above variables
declare var config: R<{

Xmpp: any;

strings: { prefix: any; suffix: any; };
>
declare var xmpp: {

inbox: R<any>;

send (outbox: R<any>);
};
declare var input: R<{

message: { from: any; body: any; };
>
declare var output: R<{

message: { to: any; body: anyl[]l; };
>;

Figure 5. Echo chatbot source code

constant, map and zip. The ‘residual’ of this stage is effectively
an implicitly constructed dataflow dependency graph. In the next
stage, reactive values start changing and their updated values flow
through this graph. At this stage, only core API functions are
involved.

So far, we have considered values of type R<T> as black boxes
to be manipulated using the core API. In the next section, we turn
our attention to the representation of reactive values, and how to
implement the core FRP API given a concrete representation.

2015/10/9

3. Implementing Reactive Values

Recall that reactive values R<T> have semantics as time-indexed
values of type T. We therefore aim to represent a reactive value
as a linked list of timestamped values, each entry representing its
value at the given time. A reactive value is “updated” simply by
appending a new timestamped entry to its list. Memory is reclaimed
by the garbage collector in the usual fashion; the implementation
takes care not to keep list entries alive longer than necessary.

We make no assumptions on the particular timestamps used
other than that they are comparable numbers. In particular, note that
the timestamps are only loosely coupled to wall clock time. Due to
processing delays, a change with timestamp t may be processed
at a time significantly later than t. In an extreme case (such as a
laptop or virtual machine being suspended and resumed) there can
be arbitrary delay. A timestamp may also represent logical time,
implemented as a simple counter.

3.1 Attempt 1: linked lists

Our first attempt at representing reactive values uses a traditional
linked list implementation, where a list is either empty (represented
by the object { first: undefined }) or a cons cell with a
timestamp t, a head v and a tail vs (represented by the object
{ first: { time: t, head: v, tail: vs } }).

interface List<T> {
first?: Cons<T>;

}

interface Cons<T> {
time: number;
head: T;
tail: List<T>;

}

We use this to represent a reactive value by recording the times
when the value changes, for example a reactive value which starts
out as hello, and at time t becomes world is represented as:

var hw = { first: {
time: -Infinity,
head: "hello",
tail: { first: {
time: t,
head: "world",
tail: { first: undefined }
LIS

In a lazy language, this could form the basis of a streaming 1I/O
library, in the style of Haskell’s lazy I/O, but in a strict language
such as JavaScript, lists do not allow for future behaviour, where
the list’s contents are only known after the list is created.

3.2 Attempt 2: promise lists

Promises are designed for exactly this kind of future behaviour,
where the value a promise contains is only known after the promise
is created. We can adapt the traditional linked list to a promise list.

interface PList<T> {
first: Promise<PCons<T>>;
}
interface PCons<T> {
time: number;
head: T;
tail: PList<T>;
}

Promise lists are a well-known folklore data structure. They are
a common idiom in the E language [15] and have their roots
in concurrent logic programming [19] (where an unbound logic

REBLS’15

variable plays the role of a promise). They are related to lazy linked
lists, except that a lazy list is often driven by the consumer of the
list, while promise lists can only be driven by the producer.

The representation of reactive values is the same as for linked
lists, but with promises, for example:

var hw = { first: resolve({
time: -Infinity,
head: "hello",
tail: { first: resolve({
time: t,
head: "world",
tail: { first: resolve() }
HDIH K

We now need to implement the three core API functions, assum-
ing reactive values are represented as promise lists. The functions
constant and map are simple to implement:

function constant(x) { return {
first: resolve({
time: -Infinity,

head: x,
tail: resolve()
» X3

function map(f,xs) { return {
first: xs.first.then(function(cons) { return {
time: cons.time,
head: f(cons.head),
tail: map(f,cons.tail)

D1}

The main challenge lies in the implementation of zip. On ordi-
nary lists, zip traditionally pairs elements from the input lists based
on their position in the list. However, given two promise lists, our
zip function needs to pair up elements by time, not position, which
merely indicates event arrival order. The diagram below depicts two
reactive values xs and ys. When zipped, x3, which is the third up-
date to xs, must be paired with y2, as that is the value of ys at time
t3, even though y2 is only the second update of ys.

x1 X2 x3 x4

= @ ® o

yl y2 y3 y4 y5
r* @—@ "0 —0—
-Infinity t1 t2 t3 t4 t5 t6 t7

Unfortunately, zip cannot be implemented for promise lists.
The problem is that in zip (f ,xs,ys) we may have thatys.first
resolves to { time: t7, head: y5, tail: vs }.In order for
zip(f,xs,ys) to resolve to { time: t7, } we need to
know that xs does not have any changes before time t7. Currently,
the implementation has no way to get this negative information: we
can find out that a list has an element at time t, but not that it has
no elements before time t.

3.3 Finally: timed promise lists

The ability to find out if a list has any elements before time t is
the missing piece of the implementation. We can add this function,
remembering that this is potentially future information, and so must
be wrapped in a promise.

interface TPList<T> {
first: Promise<TPCons<T>>;
before (time : number) : Promise<boolean>;

}

2015/10/9

interface TPCons<T> {
time: number;
head: T;
tail: TPList<T>;

}

If xs.before(t) eventually resolves to false, then we know
that xs will not generate any elements timestamped before t. In
other words, the next element of xs will have a logical timestamp
greater than t.

Timed promise lists were introduced (using different terminol-
ogy) in Push/Pull FRP [8]. The representation of reactive values is
the same, but with negative information given by the before func-
tions, for example:

var ptrue = resolve(true);
var pfalse = resolve(false);
function p(b) { return (b? ptrue: pfalse); }
var hw = {
before: function() { return ptrue; 1},
first: resolve({
time: -Infinity,
head: "hello",
tail: {
before: function(u) { return p(t <= u); }
first: resolve({

time: t,
head: "world",
tail: {

before: function() { return pfalse; }
first: resolve()

PO DO K
We maintain some invariants for TPList objects:

1. Any externally visible list xs has xs.first resolve to cons
where cons.time is -Infinity.

2. If xs.first resolves to consl and consl.tail.first re-
solves to cons2 then consl.time < cons2.time.

3. xs.before(t) istrueif and only if xs . first resolves to cons
where cons.time <= t.

In implementing zip the important function is mint (xs) (t),
which returns the smaller of xs’ timestamp or t.

function getTime(cons) {
return (cons? cons.time: Infinity);
}
function mint(xs) { return function(t) {
return xs.before(t).then(function(b) {
return (b? xs.first.then(getTime): t);

P; r}

From this, we can write a function first (xs,ys), which returns
the smaller timestamp of xs and ys.

function first(xs,ys) {
var p = xs.first.then(getTime) .then(mint(ys));
var q = ys.first.then(getTime) .then(mint(xs));
return race([p,ql);

}

From first, we can implement zip. We first implement a function
ffwd (t) (xs) (Where xs is a cons cell) which returns the first suffix
ys of xs such that ys.tail.before(t) resolves to false:

function ffwd(t) { return function(xs) {
return xs.tail.before(t).then(function (b) {
return (b? xs.tail.first.then(ffwd(t)): xs);
P; 1}

REBLS’15

We then implement zip on cons cells by finding the timestamp of
the first change, fast-forwarding both lists to that time, and building
the result (for simplicity, we ignore the case of the empty list, but it
is straightforward to handle):

function zipc(f,xs,ys) {
return first(xs.tail,ys.tail).then(function(t) {
return ffwd(t) (xs).then(function(xs) {
return ffwd(t) (ys).then(function(ys) {

return {
time: t,
head: f(xs.head,ys.head),
tail: {

before: either(xs.tail,ys.tail),
first: zipc(f,xs,ys)
}FrH D B3

where either lifts disjunction up to acting on before functions:

function either(xs,ys) { return function(t) {
return xs.before(t).then(function (b) {
return b || ys.before(t);
P>}

From this, zip is direct:

function zip(f,xs,ys) {
return xs.first.then(function(xs) {
return ys.first.then(function(ys) {
return {
before: function(t) { return ptrue; },
first: zipc(f,xs,ys)
PP ;3

With zip completed, we have now fully implemented the core
reactive API for timed promise lists. Note how zip is much more
involved and less efficient than map. This is because zip needs
to match up elements from the corresponding timed promise lists
based on their timestamp, not their position. It is this correlation of
elements based on their time that prevents glitches.

4. External resources and space leaks
4.1 Interfacing to event-driven APIs

Most libraries for reactive programming in JavaScript are event-
driven, so we provide a binding from callbacks to reactive values
(implemented as timed promise lists). Ignoring errors, the API for
doing so is:

function mapGenerator<T,U> (
generator: (
value: T,
init: (arg: U) => void,
append: (arg: U) => void
) => { close () => void I},
values : R<T>
) : R<U>;

This calls generator (value,i,a) for each value in the input
reactive, where 1i is a function to initialize the output reactive and a
is a function to update the output reactive (i.e. append a new item to
its TPList). Each call to generator may append multiple values,
all of which are ‘flattened’ into a single output reactive.

The generator function may allocate resources. These should be
cleaned up by the close method returned by the callback, which is
called every time the input reactive changes.

As an example, consider creating a reactive value that represents
the current contents of a file. Whenever the file is updated, the value
should be updated as well. Moreover, the file to read from may

2015/10/9

itself change over time (e.g. its name may be read from a reactive
configuration file). Reading the contents of the file must be done
using the platform’s built-in event-driven API (e.g. node.js’s fs
module), which uses callbacks, so we need to bridge between the
FRP world and the event-driven world using mapGenerator:

function readText(fnames: R<string>): R<string> {
function generator(fname,init,append) {
fs.readFile(fname, function(err,data) {
init(data);
B;
var watcher = fs.watch(fname, function() {
fs.readFile(fname, function(err,data) {
append (data) ;
» B
return {close: function() {watcher.close()}};
}
return mapGenerator (generator, fnames);

}

mapGenerator internally timestamps each item. Items added with
init have the same timestamp as the value that generated them,
after that the wall clock is used to generate timestamps. By gener-
ating the timestamps inside the FRP library, we can maintain the
invariants on time described earlier.

An issue with interfacing events to FRP using mapGenerator is
what to do with events which are generated ‘too late’. For example,
if mapGenerator (g, vs) is used to generate an event stream, and
vs contains v at time s and w at time t, then g will be called twice,
with value v then value w. If the first call generates an item at
time u>t, then what should be done with it? If we emit the item,
then it was an event generated from v rather than w, and so we
have a potential violation of consistency. If we don’t emit the item,
then we are losing events. There is no clear winner here; in our
implementation we chose to lose events and keep consistency.

4.2 Space usage

The timed promise list implementation has mostly the same space
usage as any linked list implementation does. Care must be taken
not to keep lists live longer than necessary, as this can cause an
entire event stream to buffer in memory, and not to be garbage
collected. There is one such source of space leaks, caused by the
space usage of the promise library. To understand the leak, we first
need to briefly outline the implementation of promises.

A promise may hold onto two resources: if it is resolved, it
stores a reference to its resolved value. If it is unresolved, it holds a
queue of observers to be notified with its value, if and when the
promise gets resolved. When using p2 = p.then(f) to map a
function £ over a promise p, an observer is added to p which, when
notified of the promise’s value v, in turn resolves p2 with £ (v).

Our implementation of zip(f,xs,ys) makes use of a call
to Promise.race([p,ql), where p is a promise waiting on
xs.first to resolve, and q is a promise waiting on ys.first.
If xs is a slow-changing value (for example a configuration file)
and ys is a fast-changing value (for example a stream of chat mes-
sages) then there may be many calls of race([p,ql) where q
resolves much faster than p. This is fine, as long as race([p,ql)
reclaims any space used (in particular, observers it has registered
with all the promises that lost the race) once either p or q has re-
solved. Unfortunately, the space model for ECMAScript promises
does not make this guarantee, and so there is a potential space leak.

The solution to this leak is to reimplement race as follows: in a
call to race(ps), when ps [i] wins the race, race must explicitly
deregister the observers still registered on each of the other ps [j]
input promises. Unfortunately, the ECMAScript Promise API does
not export a ‘deregister’ method to be able to remove a previously

REBLS’15

registered observer from a promise. As such, our only option is
to reimplement the entire Promise API. A reimplementation of
the core Promise API with a leak-free implementation of race is
provided in the appendix. The trade-off is thus between using built-
in promises (with the potential for significant performance gains
and optimization) against non-native promises (with stronger space
usage guarantees).

5. Discussion and Related Work
5.1 Synchronous vs non-synchronous FRP

FRP systems embedded in strict languages, and JavaScript-based
FRP systems in particular, typically employ an evaluation strategy
that involves the construction of a dependency graph between re-
active values, combined with an update propagation algorithm that
fires updates in strict dependency order (to prevent glitches) [4].
In these systems, updates propagate through the dataflow graph
synchronously, i.e. all nodes must be visited before the next event
is processed. Changes are not (and need not be) explicitly time-
stamped. Exemplars include FlapJax [14] and BaconJS [1].

Elm [5] is a strict functional language that compiles to JavaScript.
In Elm, multiple updates can propagate in a pipelined fashion
through the dataflow graph, each node processing its inputs at its
own pace. Each input edge in the dataflow graph acts as a buffer
to hold input events as they await processing. Glitches are pre-
vented by a global scheduler that sends out a special noChange
event to all nodes whose input does not change. As such, there is a
single global update rate for all reactive values (called ‘Signals’),
permitting simple and fast position-based rather than time-based
pairing of multiple inputs. The downside of this strategy is that
the overall rate of updates through the graph is determined by the
fastest-changing signal, even if the majority of input signals change
only slowly.

RxJS [18] is a port of the .NET Rx library to JavaScript. How-
ever, RxJS’s reactive values (called Observables) have no time-
indexed semantics and in fact RxJS does not prevent glitches. RxJS
exposes a zip function that pairs elements from multiple Observ-
ables based on position, not based on time.

Our representation of reactive values as timed promise lists —
a timestamped linked list structure — is based on Elliott’s work
on Push/Pull FRP [8]. We depart from the synchronous update
strategy, instead allowing updates to take place completely asyn-
chronously (i.e. without a global scheduler). Glitches are prevented
by 1) explicitly timestamping values and 2) keeping a history of
values (as opposed to only the most recent value), thus allowing a
program to observe a consistent view across multiple reactive val-
ues at any time ¢ by using only values whose timestamp indicates
it is valid at time ¢. Timed promise lists thus act as buffers, keeping
history as long as necessary for the slowest reader to catch up.

The strategy of keeping a history of timestamped values bears
resemblance to Multiversion Concurrency Control (MVCC) [3], an
optimistic concurrency control protocol for databases and software
transactional memory. An MVCC system stores multiple versions
of each value, allowing a transaction to access the version of the
value in place when the transaction started, even if it was modified
in the mean time by another transaction. This ensures that the
transaction always sees a consistent ‘snapshot’ of the database at
a particular point in time. Space leaks can be prevented by storing
only the last n versions. A lagging transaction that requests a
‘forgotten’ version can simply be rolled back and restarted.

5.2 Applicative vs monadic FRP

An issue brought up by mapGenerator is that of resource reclama-
tion. We allow resources to be cleaned up in mapGenerator by the
close method returned by the callback. For example, in readText

2015/10/9

we use resource reclamation to stop watching a file. There is no
other support for resource reclamation, and in general there is no
way for a user of a timed promise list to indicate that no further
items are required, and that the list should reclaim any resources it
has allocated.

This is visible from the fact that our FRP library is an applicative
functor [12] rather than a monad [16, 21]. In particular there is no
function to flatten a reactive-of-reactives to a reactive:

function doesntExist<T> (xss: R<R<T>>): R<T>;
[doesntExist (xss)](t) = [xss](¢¥)(t)

The reason why no such function exists is that it causes problems
for resource reclamation. If xss includes ys at time s and zs at
time t, then at time t, we should close down ys, and reclaim any
of its resources. However, no such function exists on timed promise
lists, and introducing one would require implementing a form of
reference counting garbage collector. Note that Elliott [8] provides
a monadic FRP implementation using timed promise lists. This is
not a contradiction, as he does not provide bindings to event-driven
systems, and so does not need a treatment of resource reclamation.

This is an instance of the general difference between FRP as an
applicative functor, and FRP as a monad [5, §3.3]. FRP implemen-
tations typically build a data flow graph which is then executed. In
applicative FRP (e.g. this work and Elm [5]) the data flow graph is
static, and does not change after it has been built. In monadic FRP,
the data flow graph is dynamic, and may change after it is first built
(as in FlapJax [14]). When the data flow graph is dynamic, nodes in
the graph may become unreachable and require garbage collection.

6. Further Work

There are a number of issues left unresolved by the implementation
of FRP using timed promise lists.

Errors: In this paper, we have ignored errors, but this should be
addressed. A treatment of errors may distinguish between catas-
trophic errors (such as programmer error) and expected errors (such
as missing files or parse errors).

Optimization: There are many opportunities for optimizing FRP
programs. In particular, map is much more efficient than zip, as
it does not need to use first to find the smallest timestamp of
its arguments. In the case where xs and ys produce changes at
the same rate, however, zip(f,xs,ys) can be implemented with
the same efficiency as map(f,xs) (zip can then simply pair up
elements from the lists by their arrival position).

One way of achieving this optimization is by changing the timed
promise list representation such that the timestamps are separated
from the actual values. If we call a promise list of timestamps a
“clock”, and if we link each reactive value to such a clock, then
zip(f,xs,ys) can simply check whether the clocks of xs and ys
are the same. If they are, xs and ys will update at the same rate and
zip can use simple positional pairing of elements. If they are not,
zip must continue to use time-based pairing.

Distribution: Existing approaches to distributed FRP are based
on propagating updates in explicitly constructed dependency graphs
[6, 11]. The main issue with distributing our FRP implementation
is that timestamps are given as numbers, and so there is a global to-
tal order on timestamps. This is problematic for distribution, which
would more naturally use a partial order such as vector clocks. It is
not obvious how to use timed promise lists in the case of partially
ordered time.

7. Conclusion

We have shown how Elliott’s Push/Pull FRP [8] can be idiomati-
cally expressed in a strict language (JavaScript) using promises.

REBLS’15

The key observation is that reactive values can be represented
as timed promise lists. A simple reactive API (consisting of
constant, map and zip functions) can be implemented on top
of timed promise lists. The implementation of zip is challenging,
as elements must be paired based on time, not position, in order to
prevent glitches. Internally, zip uses JavaScript’s Promise.race
function, which can lead to space leaks when racing a fast-changing
with a slow-changing timed promise list. Avoiding this space leak
requires extending the Promise API with the ability to deregister
Promise observers.

References
[1] Bacon.js. https://baconjs.github.io/.

[2] H. Baker and C. Hewitt. The incremental garbage collection of
processes. In Proc. Symp. Artificial Intelligence Programming Lan-
guages, pages 55-59, 1977.

[3] P. A. Bernstein and N. Goodman. Concurrency control in distributed
database systems. ACM Comput. Surv., 13(2):185-221, 1981.

[4] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in
a call-by-value language. In Proc. ESOP 2006, pages 294-308, 2006.

[5] E. Czaplicki. Elm: Concurrent FRP for functional guis. Senior thesis,
Harvard U., 2012.

[6] J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini. Distributed
REScala: An update algorithm for distributed reactive programming.
In Proc. OOPSLA 2014, pages 361-376, 2014.

[7] Draft 6th ed ECMAScript language specification. ECMA-262, 2015.

[8] C. Elliott. Push-pull functional reactive programming. In Proc.
Haskell Symp., 2009.

[9] C. Elliott and P. Hudak. Functional reactive animation. In Proc. Int.
Conf. Functional Programming, pages 263-273, 1997.
[10] D. Friedman and D. Wise. Aspects of applicative programming for
parallel processing. In Proc. Int. Conf. Parallel Processing, pages
263-272, 1976.

[11] A. Margara and G. Salvaneschi. We have a DREAM: Distributed
reactive programming with consistency guarantees. In Proc. DEBS
2014, pages 142-153,2014.

[12] C. McBride and R. Paterson. Applicative programming with effects.
J. Functional Programming, 18(1):1-13, 2008.

[13] J. McCarthy. A basis for a mathematical theory of computation. In
Computer Programming and Formal Systems. North-Holland, 1963.

[14] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: A programming lan-
guage for ajax applications. In Proc. OOPSLA 2009, pages 1-20,
20009.

[15] M. S. Miller, E. D. Tribble, and J. S. Shapiro. Concurrency among
strangers: Programming in E as plan coordination. In Proc. Int. Symp.
Trustworthy Global Computing, pages 195-229, 2005.

[16] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55-92, 1991.

[17] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive pro-
gramming, continued. In Proc. Workshop on Haskell, pages 51-64,
2002.

[18] Rxjs: The reactive extensions for javascript.
codeplex.com/.

https://rxjs.

[19] E. Shapiro, editor. Concurrent Prolog: Collected Papers. MIT Press,
1987.

[20] Typescript. http://typescriptlang.org/.

[21] P. Wadler. Comprehending monads. Mathematical Structures in
Computer Science, 2:461-493, 1992.

[22] The XMPP standards foundtion. http://xmpp.org/.

2015/10/9

A. Leak-free Promises

Based on https://github.com/then/promise/blob/master/lib/core.js

// Adds two new callbacks to promise creation:

/7

// new Promise(init,undo,redo);

/7

// acts as new Promise(init) except that when there are no more observers,
// undo() is called, and if new observers then arrive, redo() is called.
// A typical usage is with:

/7

// function init(resolve,reject) { ...; allocate resources; }

// function undo() { deallocate resources; }

/7 function redo() { allocate resources; }

/7

// Under the hood, this uses reference counting

var uids = 0;

function doResolve(fn, onFulfilled,
var done = false;
try {

fn(function (value) {
if (dome) { return; }
done = true;
onFulfilled(value);

function (reason) {
if (done) { return; }
done = true;
onRejected(reason);
b
catch (ex) {
if (dome) { return; }
done = true;
onRejected (ex);

onRejected) {

¥,

-

¥

function Promise(fn,undo,redo) {
// typechecking on fn, undo,
var state = null;

null;

resolves = {};

rejects = {};

observers = 0;

self = this;

redo omitted

var value =

this.then = function(onFulfilled,
var resolve3; var reject3;
function init(resolve, reject) {
function resolve2(val) {
var ret;
try { ret = onFulfilled(val);
resolve(ret);

onRejected) {

} catch (e) { return reject(e); }

function reject2(err) {
var ret;
try { ret = onRejected(err);
resolve(ret);

} catch (e) { return reject(e); }

resolve3 = (typeof onFulfilled >function’? resolve2: resolve);

reject3 = (typeof onRejected ’function’? reject2: reject);
self.addObservers(resolve3, reject3);
¥
function undo() {
self.rmObservers(resolve3, reject3);
¥
function redo() {
self.addObservers (resolve3, reject3);
}
return new Promise(init,undo,redo);
};

this.catch = function(onRejected) {
return self.then(null,onRejected);

this.addObservers = function(resolve,reject) {
if (state null) {

if (typeof resolve ’function’) {

if (!resolve.uid) { resolve.uid =

++uids; }

if (!resolves) { resolves = {}; rejects = {}; if (redo) { redo();
if (lresolves([resolve.uid]l) {
resolves[resolve.uid] = resolve; observers++;

¥

>function’) {
++uids; }
rejects =

if (typeof reject
if (lreject.uid) { reject.uid =
if (!rejects) { resolves = {}; {}; if (redo) { redo(); }
if (!rejects[reject.uid]l) {

rejects[reject.uid] = reject; observers++

} else if (state) {

process.nextTick(function() { resolve(value); });
} else {
process.nextTick (function() { reject(value); })

this.rmObservers = function(resolve,reject) {
if (observers) {

if (resolve && resolve.uid &% resolves([resolve.uidl) {

delete resolves[resolve.uid]; observers-

if (reject && reject.uid && rejects[reject.uid]l) {
delete rejects[reject.uid]; observers--;

REBLS’15

¥

¥

Promise.resolve =

};

Promise.reject =

¥

Promise.all =

};

Promise.race =

};

b
if (!observers) {

resolves = null; rejects = null; if (undo) { undo(); }
}

¥
¥

function resolve(newValue) {
try

if (newValue === self) { throw new TypeError (’A promise cannot be
resolved with itself.’); }
if (newValue && (typeof newValue
typeof newValue

var then = newValue.then;

if (typeof then >function’) {
return doResolve (then.bind(newValue),

Jobject’ ||
Jfunction’)) {

resolve, reject);
}
}
state = true;
value = newValue;
finale () ;
} catch (e) { reject(e); }
}

function reject(newValue) {

state = false;
value = newValue;
finale();

function finale() {
var cbs = (state? resolves: rejects);
process.nextTick (function() { for (var i in cbs) { cbs[il(value);

F B

observers = 0;
resolves = null;
rejects = null;

}

doResolve (fn, resolve, reject);

function(val) {

if (val instanceof Promise) { return val; }

return new Promise(function(resolve) {
resolve(val);

12N

function(val) {

return new Promise (function(resolve,reject) {
reject(val);

1N

function(ps) {
var unresolved = ps.length;
var result = new Array(ps.length);
var resolves; var reject2;
var gs = ps.map(Promise.resolve);
function init(resolve,reject) {
resolves = ps.map(function(p,i) { return function(val) {
if (result[i] === undefined) {
result[i] = val;
if (--unresolved

0) { resolve(result); }
¥

JEE DN

reject2 = reject;

for (var i=0; i<ps.length; i++) {
qs[i].addObservers(resolves[i],reject);

}
function undo() {
for (var i=0; i<ps.length; i++) {
gqs[il.rmObservers(resolves[il,reject2);
¥
¥
function redo() {
for (var i=0; i<ps.length; i++) {
qs[i].addObservers(resolves[i],reject2);

}

return new Promise(init,undo,redo);

function(ps) {

var gs = ps.map(Promise.resolve);

var resolve2; var reject2;

function init(resolve,reject) {
resolve2 = function(val) { resolve(val); undo();
reject2 = function(err) { reject(err); undo()
for (var i=0; i<ps.length; i++) {

gqs[il.addObservers(resolve2,reject2);

¥

};//fixes space leak!

}
function undo() {
for (var i=0; i<ps.length; i++) {
qs[i].rmObservers (resolve2,reject2);

}
function redo() {
for (var i=0; i<ps.length; i++) {
qs[i].addObservers(resolve2,reject2);
}
}

return new Promise(init,undo,redo);

2015/10/9

