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Abstract—The use of firewalls to enforce access control poli-
cies can result in extremely complex networks. Each individual
firewall may have hundreds or thousands of rules, and when
combined in a network, they may result in unexpected com-
bined behavior. To mitigate this problem, there has been recent
interest in the use of model checking techniques for analyzing
the behavior of firewall policy configurations, and reporting
anomalies. Existing techniques for firewall policy analysis are
based on decision diagrams, most normally reduced ordered
Binary Decision Diagrams (BDDs). BDDs are a rich data
structure, supporting more logical operations than just solving
boolean formulae. Typically, search algorithms for boolean
satisfiability (so-called SAT-solvers) outperform BDDs. In this
paper, we show that the extra structure provided by BDDs is
not necessary for firewall policy analysis, and that SAT solvers
are sufficient. This argument is supported both by theoretical
analysis and by experimental data.

I. INTRODUCTION

Firewall configuration is a crucial element of implement-
ing a network security policy. Such configurations typically
take the form of filter rulesets or policies specifying proper-
ties of packets to be dropped or accepted. Each filter rule is
given as a condition predicate over packet headers, together
with an action to be performed on matching packets.

Individual firewall configurations are often complex, with
hundreds or thousands of rules, and the behavior of a
network with many firewalls may be difficult to establish
without mechanical assistance. As a result, there has been
increasing interest in tools to analyze network configura-
tions, such as the work of Al-Shaer and Hamed [1], Yuan
et al. [2], and Matoušek et al. [3].

At the heart of any tool for firewall policy analysis is a
model of condition predicates. Existing tools make use of
data structures based on decision diagrams, such as Binary
Decision Diagrams (BDDs) [4], which provide mechanisms
for checking satisfiability of quantified boolean formulae1.

Satisfiability of quantified boolean formulae (QSAT) is
the canonical PSPACE-complete problem, in the same way
that satisfiability of boolean formulae (SAT) is the canonical

1Quantified boolean formulae extend boolean formulae (expressions
written from boolean variables, conjunction, disjunction and negation) with
universal and existential quantification over boolean variables. x∧¬y is a
boolean formula, while ∀x .∃y . (x∧¬y) is a quantified boolean formula.

NP-complete problem. Heuristics for solving NP-complete
problems are known as SAT-solvers, often based on the
DLL [5] search procedure. Modern SAT-solvers include
zChaff [6] and MiniSAT [6], and are surveyed in [7].

The disadvantage of using a SAT-solver compared with
BDDs is expressivity: SAT-solvers only solve SAT, not
QSAT, so tools that use SAT-solvers cannot handle quan-
tifiers in the way that BDD-based tools can. The advantage
is that SAT-solvers are often more efficient than BDDs.

The observation that SAT-solvers can often replace BDDs
in analyzing systems was made in Biere et al.’s seminal
paper on Bounded Model Checking [8], where system
properties (such as assertions in C code failing) are translated
into instances of SAT and passed to a SAT-solver. This
translation requires a bound on size of the problem (such
as the number of lines of C code executed), so does not
support complete analysis of cyclic systems, even in cases
when model checking succeeds.

In this paper, we discuss making use of the techniques
of Bounded Model Checking in analyzing firewall policy
configurations. In particular, we observe that cyclicity in a
firewall configuration is an error (a packet will cycle forever
without being accepted or dropped) and so we can reject
any cyclic policy without further analysis. As a result, model
checking is NP-complete rather than PSPACE-complete, and
so is a suitable target for a SAT-solver.

Our new contribution on firewall policy analysis is:

• a formal model of firewall policy (based on IPta-
bles/Netfilter [9]),

• a proof that reachability and cyclicity of policy config-
urations are both NP-complete2,

• a translation of networks of firewalls into a single
firewall instance, and

• experimental evidence for comparing the performance
of BDDs with SAT-solvers.

In this paper, we will investigate two properties of firewall
policy configurations:

• Reachability: for each rule r of the policy, there is a

2At first sight, this appears to contradict prior work [2] which shows
reachability to be O(n), but that result assumed O(1) operations on packet
sets. This is discussed further in Section II-B.
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iptables -N FWDIN
iptables -A FWDIN -i eth0 -s 192.168.1.0/24 -j FWDOUT
iptables -A FWDIN -i eth1 -s 192.0.2.0/24 -j FWDOUT
iptables -A FWDIN -i eth2 -s ! 192.168.1.0/24,192.0.2.0/24 -j FWDOUT
iptables -A FWDIN -j DROP

iptables -N FWDOUT
iptables -A FWDOUT -o eth0 -i ! eth2 -d 192.168.1.0/24 -j ACCEPT
iptables -A FWDOUT -o eth1 -d 192.0.2.0/24 -j ACCEPT
iptables -A FWDOUT -o eth2 -j ACCEPT
iptables -A FWDOUT -j DROP

iptables -A FORWARD -j FWDIN

Figure 1. Example iptables configuration script

packet p which causes rule r to fire (a firewall contain-
ing unreachable rules is probably misconfigured)

• Cyclicity: there is a packet p which causes the firewall
to enter an infinite loop, without accepting or rejecting
the packet (a cyclic firewall is certainly misconfigured).

Extending those properties to the case of multiple firewalls
and network configurations makes them even more interest-
ing, where reachability of rules is related to host reachability.
Our analysis is not limited to these properties, and we expect
would scale to a language for specifying firewall properties.

II. THE MODEL

In this section we will start by modeling single firewall
policy. We will then discuss the complexity of both reacha-
bility and cyclicity checking. We will then present the model
for network configuration as a single firewall instance.

A. Firewall Configuration

The following model of firewall policies is based on
IPtables/Netfilter [9]. An example IPtables configuration
script is given in Figure 1. An atomic model M = (Σ, Φ, σ)
consists of a finite set of atoms Σ, a finite set of atomic
propositions Φ and a valuation function σ : Σ × Φ → Bool.
We will often write M for the set Σ, for example writing
M→ X for the set of functions Σ → X .

We shall use an atomic model of records where:
• atoms are records of the form {f1=v1, . . . , fn=vn},
• atomic properties are equalities of the form f = v, and
• valuation σ(r, f = v) is true whenever (f=v) ∈ r.

Our examples include atomic models for packets such as:
{dst0=192, dst1=168, dst2=1, dst3=1, dport=80, . . .}

and atomic models for firewall states such as:
{chain=forward, rule=0, oiface=eth0, . . .}
We can form the product of atomic models M = M1 ×

M2, where Σ = Σ1×Σ2, Φ = Φ1+Φ2, and σ(x1, x2, φ) =
σi(xi) when φ ∈ Φi.

Let B(M) be the boolean formulae over atomic proposi-
tions drawn from M, that is formulae given by the grammar:

A, B, C ::= true | false | A ∧ B | A ∨ B | ¬A | φ
where φ is an atomic proposition from M. We extend

the valuation function to σ : Σ × B(M) → Bool, and write
x � A whenever σ(x, A) = true.

A firewall policy configuration C = (P ,S, γ, δ) consists
of an atomic model of packets P , an atomic model of states
S, a decision function γ : S → B(P × S) and a transition
relation δ ⊆ S × Bool × S. We write p � s → t whenever
(s, σ(p, s, γ(s)), t) ∈ δ. A firewall policy configuration is
deterministic when the transition relation is a function δ :
S × Bool →S.

Such firewall configurations can be viewed graphically as
decision graphs, for example in Figure 2 we give the decision
graph for the IPtables configuration script in Figure 1.

For readers familiar with temporal logic (see, for ex-
ample [10] and [11]) a firewall policy configuration is
essentially a Kripke structure indexed by a packet model.

B. NP-hardness

An atomic model M = (Σ, Φ, σ) is boolean-valued
whenever Σ ⊆ Boolk and and Φ is a set of boolean formulae
in k chosen variables. A rooted atomic model is an atomic
model M together with a boolean formula init ∈ B(M). In
our examples, init is (chain = forward). For the remainder of
this section, we assume packet models to be boolean-valued,
and state models to be rooted.

A state t ∈ S is reachable in a firewall configuration
whenever there exists a packet p and state s such that p �
s → · · · → t and s � init.

A firewall policy configuration is cyclic whenever there
exists a packet p and states s and t such that p � s→· · ·→
t → · · · → t and s � init.

It is direct to see that checking reachability and cylicity
are NP-hard. For reachability, given any boolean formula A
in k variables, we let the packet model be Boolk, and the
firewall configuration be given by:

chain=forward
A

chain=accept
true

chain=drop
true

true

false

The state {chain = accept} is reachable in this firewall
configuration precisely when A is satisfiable. Cyclicity is
similar, except that the configuration is given by:

chain=forward
A

chain=loop
true

chain=drop
true

true

false

Note that these constructions rely on an arbitrary packet
model P . If P is fixed, then we can exhaustively search the
packet space in fixed time. So reachability and cyclicity in
firewall configurations collapse to reachability and cyclicity
in graphs, which can be performed in linear time.

The difference between a fixed and variable packet model
is the reason why previous work [2] provides a linear time
algorithm for reachability: they rely on O(1) set operations
on packets. In practice, the number of bits may be fixed
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chain=forward
true

chain=fwdin, rule=0
iiface = eth0

∧ src0 = 192 ∧ src1 = 168 ∧ src2 = 1

chain=fwdout, rule=0
oiface = eth0 ∧ iiface �= eth2

∧ dst0 = 192 ∧ dst1 = 168 ∧ dst2 = 0

chain=accept
true

chain=fwdin, rule=1
iiface = eth1

∧ src0 = 192 ∧ src1 = 0 ∧ src2 = 2

chain=fwdout, rule=1
oiface = eth1

∧ dst0 = 192 ∧ dst1 = 0 ∧ dst2 = 2

chain=fwdin, rule=2
iiface = eth2

∧ ¬(src0 = 192 ∧ src1 = 1 ∧ src2 = 168)
∧ ¬(src0 = 192 ∧ src1 = 0 ∧ src2 = 2)

chain=fwdout, rule=2
oiface = eth2

chain=drop
true

true

true

true

true

true

true

false

false

false

false

false

false

Figure 2. Example decision graph

(e.g. the 104 bits of IP packet headers), so the linear time
result is justified. We note, however, that a constant factor of
2104 is quite high (for example, there have been ∼280 1GHz
CPU cycles since the big bang). Moreover, extensions to the
model, for example to support IPSec tunneling will require
a variable packet model.

Theorem 1: Checking reachability and cyclicity of fire-
wall policy configurations are both NP-hard.

C. NP-completeness

We now show that checking reachability and acyclicity of
firewall configurations is in NP, by reduction to SAT. This
reduction forms the heart of our model-checker, as discussed
in Section III-A.

For a given firewall configuration C = (P ,S, γ, δ), we
introduce boolean variables:

• xi for each i ≤ k, the chosen variables for the packet
model P ⊆ Boolk, and

• y(s,b,t) for each (s, b, t) ∈ δ, which is true in any run
which includes the transition s, b, t.

and define boolean formula trans(C) over those variables as:

trans(C) = ∀(t, c, u) ∈ δ . y(t,c,u) →
trans(t, γ(t)) ↔ c

∧ trans(t, init) ∨ ∃(s, b, t) ∈ δ . y(s,b,t)

where trans(s, A) is defined to be:

trans(s, true) = true
trans(s, false) = false

trans(s, B ∧ C) = trans(s, B) ∧ trans(s, C)
trans(s, B ∨ C) = trans(s, B) ∨ trans(s, C)

trans(s,¬B) = ¬trans(s, B)

trans(s, φ) =
{

φ when φ ∈ P
σ(s, φ) when φ ∈ S

A satisfying assignment for trans(C) corresponds to a set
of runs of C. We can then define a boolean formula for
reachability of a state t as:

reach(C, t) = trans(C) ∧ ∃(s, b, t) ∈ δ . y(s,b,t)

and cyclicity as:

cyclic(C) = trans(C)
∧∀(s, b, t) ∈ δ . y(s,b,t) →∃(t, c, u) ∈ δ . y(t,c,u)

A satisfying assignment for reach(C, t) corresponds to a
set of runs of C, one of which contains state t, and hence
to reachability of t. A satisfying assignment for cyclic(C)
corresponds to a set of runs of C where every reachable state
has a successor, and hence to cyclicity of C. Together, these
translations give an algorithm for translating reachability
and cyclicity of firewall configurations into SAT, and so
(together with the previous NP-hardness) are NP-complete.
This makes them good candidates for implementing using a
SAT-solver.

Theorem 2: Checking reachability and cyclicity of fire-
wall configurations are both NP-complete.

D. Conjunctive Firewall Configurations

A potential argument against our model of firewall config-
urations is that it is more expressive than is seen in practice,
as it allows an arbitrary boolean formula γ(s) to be used as
the condition in state s, whereas firewall implementations
such as IPTables [9] have limited support for disjunction. In
this section we shall show that firewall policies with arbitrary
conditions can be reduced in linear time to ones with no uses
of disjunction, and so our model is just as succinct as the
model without disjunction.

Define a boolean formula over atomic model M to be
conjunctive when it does not use disjunction, and negation
is only allowed on atoms, that is given by the grammar:

A, B, C ::= true | false | A ∧ B | φ | ¬φ
A firewall configuration is conjunctive whenever γ(s) is,

for every s. To reduce an arbitrary firewall configuration to
a conjunctive one, we first use De Morgan duality to push
negation to atoms, then rewrite:

· ·

A ∨ B as A B

· ·

true

false

true

false

true

false

This reduction gives us that conjunctive firewall configura-
tions are equally expressive and succinct as arbitrary firewall
configurations.

Theorem 3: Checking reachability and cyclicity for fire-
wall configurations reduces in linear time to checking con-
junctive firewall configurations.

6262



Figure 3. Sample network configuration

chain=forward,
rule=0

dst0 = 20 ∧ dst1 = 0

chain=accept,
oiface = if1

true

chain=forward,
rule = 1

dst0 = 20 ∧ dst1 = 128

chain=accept,
oiface = if2

true

chain=accept,
oiface = eth0

true

true

false

true

false

Figure 4. Router policy configuration

E. Network Configurations

Another potential argument against our model of firewall
policies is that it only deals with a single firewall, and
ignores the network topology. In this section we give a model
of network topology with multiple firewalls, and show that
it can be reduced to a single firewall configuration. We will
consider the sample network configuration given in Figure 3.

We first observe that our model of firewall configuration
supports packets which terminate at the firewall, and which
can make routing decisions based on packet headers. We
can therefore model subnets and routers as firewalls, and
can focus on networks where every node in the network
acts as a firewall.

A network element E = (C, I,O, ι, α) is a firewall
configuration C = (P ,S, γ, δ) together with a finite set
of input interfaces I, a finite set of output interfaces O,
an initial state function ι : I → S, and an accepting state
function α : O → S.

A network configuration N = (V , E , ρ) is an atomic
model V of vertices, a network element Ev for each vertex
v ∈ V , and a routing function ρ : O → I (where we define
I =

∑{Iv | v ∈ V} and O =
∑{Ov | v ∈ V}).

For example, the network in Figure 3 has six network
elements: internet, fw, router, subnet1, subnet2, and dmz.
Each has appropriate interfaces, for example Irouter =
Orouter = {eth0, if0, if1}, and a routing function given by
the network topology, for example ρ(eth0) = eth2, ρ(if0) =
sub1 and ρ(if1) = sub2. Each node has a configuration, for
example Crouter is given in figure 4.

A state of such a network configuration is given as coming
from S =

∑{Sv | v ∈ V}. We write p � s→ t for the state
transition relation given by either:

• an intra-firewall transition where s, t ∈ Sv and p � s→t
in Cv, or

• an inter-firewall transition where s = αv(O) and t =
ιw(ρ(O)), for some O ∈ Ov and ρ(O) ∈ Iw.

We can then define the reachable states and cyclic network
configurations as before.

We note that this model is considerably more complex
than the model for a single firewall configuration, and
that configurations may display misconfigurations that arise
due to interactions of apparently well-configured network
elements. For example, in Figure 3, if fw is configured to
route packets with destination 20. ∗ . ∗ .∗ to output interface
eth2, then a packet with destination 20.1.1.1 will cause
a cycle, with fw forwarding the packet to router, which
forwards it back to fw. Such misconfigurations which arise
due to network element interaction are difficult to detect
other than by analysis tools.

We will now show that analysis of network configurations
can be reduced to analysis of single firewalls in linear time.

Given a network configuration N , define the firewall
configuration C(N ) = (P ,S, γ, δ) to be one which inherits
S and γ from N , and where δ is defined to be:

δ
def= {(s, b, t) ∈ δv | s, t ∈ Sv}

∪ {(αv(O), b, ιw(ρ(O))) | O ∈ Ov, ρ(O) ∈ Iw}
A run for C(N ) corresponds to a run of N , which gives us
the desired reduction.

Theorem 4: Checking reachability and cyclicity for net-
work configurations reduces in linear time to checking
firewall configurations.

III. EXPERIMENTAL METHODOLOGY

A. Implementation

The implementation of the model is a realization of
the reduction described in section II-C to generate a SAT
instance, which is then handed to a SAT-solver for solu-
tion. The core component of the system maps a network
configuration to a boolean expression in conjunctive normal
form. Reachability and cyclicity properties can be checked
by finding a satisfying assignment to the model with certain
additional constraints.

Figure 5 shows a high level view of the implementation.
Following is a functional summary for each component.

• The network configuration file describes the network
topology, IP addresses and subnet masks. The policy
files give firewall configurations for each node.

• The solver maps the configuration to a SAT instance,
with boolean variables xi for packet header bits (104
variables for the basic five tuples), and transition vari-
ables y(s,b,t) (2 variables per rule).

• The model is solved first for testing cyclicity in the
configuration. If the configuration is acyclic, reachabil-
ity for each rule is tested.
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Figure 5. Implementation Components

Topology variables 2 − 28 interfaces (in/out) and policies
Transition variables 29 − 60 two variable per rule

Packet variables 61-164

Table I
VARIABLE INDEXES GENERATED BY MINISAT

• The satisfying assignment of the model gives a com-
plete run for a packet entering the network. This in-
cludes the possible packet reaching the rule, all rules in
the configuration that have been fired, and rules tested
but not fired.

• The packet header fields are then converted to readable
format for future inspection.

Our implementation reads configurations in IPTables format,
and writes packets in tcp-dump format.

The SAT and BDD components are both generic classes
that use any SAT-solver or any BDD package. For our
experiments, an incremental solver (MiniSAT [12]) was
used, and BuDDy [13] was used for the BDD class.

We also implemented the Fireman algorithm [2] for com-
parison. Experimental results are presented in Section IV.

Example: We will show here a sample SAT instance
generated for the small network from figure 3. Policies are
defined for the firewall, router and each subnet. The overall
number of rules is 16. Subnet policies have only two rules;
accept packet if the destination is in the subnet, otherwise
forward packet to the router. Table I shows the indexes
generated by MiniSat for each model variable. Clauses
generated for the SAT instance are shown in table II.
The first group of clauses describes the connectivity of
interfaces in the network. The second corresponds to the
transitions between rules. A transition from the first routing
rule in figure 4 to the first rule in the first subnet will happen
when a packet satisfies dst0 = 20∧dst1 = 0. The final group
models the transition when the condition is not satisfied.

B. Datasets

Extensive evaluation of the model was performed on
single firewall policy configuration. Policies were generated
with different sizes (10−3000 filtering rules). Three classes
of synthetic policies were considered:

1) Random policies: are policies generated with random
assignment to packet header fields for each policy rule.
The fields are defined using masks for IP addresses,
and ranges for port numbers.

Interface -2 13 v2 ⇒ v13

connection 2 -13 v13 ⇒ v2

variables . . .
True -29 -61 v29 ⇒ ¬v61

transition -29 62 v29 ⇒ ¬v62

clauses -29 63 v29 ⇒ ¬v63

. . .
False -45 61 -62 -63 . . . v45 ⇒ v61 ∧ ¬v62 . . .

transition . . .

Table II
GENERATED CLAUSES FOR THE NETWORK IN FIGURE 3

2) Structured policies: are more representative of actual
policies defined on firewalls. The policies are struc-
tured so that specific rules have more priority and
reflect exceptions to more general rules with lower
priority and opposite action. For example a rule that
accepts traffic to host 10.0.0.20 has higher priority
than a rule that denies 10.0.0.0/24. Those policies
also span a limited portion of the domain of all packet
fields, so they are more representative of a single
domain-specific firewall configuration.

3) Structured with don’t care: This is a more realistic
class of policies where some of the packet header
fields might not be mentioned in the filtering decision
(don’t care). For example, the source port number is
rarely if ever used in rule specifications, and specific
port values are more common than general port ranges.

Random policies may be helpful in testing a wide range of
configurations, as there is no attempt to model the structure
of real-world firewalls. In particular, they may uncover
corner cases which structured policies do not. However,
they may not model real-world performance. Moreover,
all algorithms for SAT-solving (including BDDs) perform
extremely poorly on random input, and rely on regularity in
the SAT instance to perform optimization, so we expect to
see significantly higher performance on structured datasets.

IV. EXPERIMENTAL RESULTS

We compare four algorithms:

• our translation of firewall policy to SAT, solved using
BDDs,

• our translation of firewall policy to SAT, solved using
a SAT-solver,

• Yuan et al.’s translation of firewall policy to SAT, solved
using BDDs, and

• Yuan et al.’s translation of firewall configurations to
SAT, solved using a SAT-solver.

For each experiment, we considered the run times for trans-
lating the problem into SAT, for solving for cyclicity (which
is not covered by Yuan et al.) and for solving for reachability
for each policy rule. Each experiment was carried out with
random, structured and structured-with-don’t-care datasets.

The results here are presented considering a single policy
configuration. As discussed earlier, network configurations
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Figure 6. Performance of our algorithm using different policy classes

can be reduced to single firewall configurations in linear
time, so the analysis here is sufficient.

A. Dataset selection

Figure 6 shows the comparison between each policy class
when applying our algorithm. As predicted, random policies
always take more time than structured policies. For all cases,
the model initialization time is linear. The reachability and
cyclicity tests are very efficient with realistic policies.

We will proceed now by evaluating SAT implementation
versus BDD implementation using structured policies.

B. Results for our algorithm in SAT vs in BDDs

We will first investigate the implementation of our model
using a SAT-solver (MiniSat) and BDDs (Buddy). Our initial
experiment used a set of policies with small number of rules
(1–100). The BDD performed very poorly on most of the
cases, where the run time for 100-rule policy would take 2
minutes as opposed to (0.01 seconds) for MiniSat. Figure 7
shows the evaluation results for small policies. Although
the reachability time for BDD-based implementation is
comparable to the SAT one, the initialization time dominates
the overall performance of BDD.

C. Results for our algorithm in SAT vs Fireman in BDDs

Reachability in our model can be mapped to two of the
anomalies detected by Fireman: shadowing and redundancy.
For both anomalies, a rule may not be reached since there
is a previous rule covering its space either with the same
or different action. In this section we compare the policy
anomaly detection algorithm performed by Fireman with our
test for rule reachability.

We implemented the Fireman algorithm [2] using BDDs.
Figure 8(a) shows the comparison between SAT implemen-
tation of our model, and the BDD implementation of the
Fireman framework. It is clear that their algorithm outper-
forms ours when processing all rules in the configuration.

This result is surprising, as we expected the BDD model
to be less efficient, but we hypothesize that this is due to the
number of variables. Our model introduces one variable per
packet bit, plus two variables per rule, where Fireman only

uses packet bits. When policies become large, the number of
packet bits is swamped by the number of rule bits, resulting
in higher performance for Fireman.

Furthermore, we note that the Fireman algorithm uses
a linear pass through the firewall configuration: testing
reachability of rule n requires testing reachability of rules
1, . . . , n − 1. As a result, Fireman is significantly more
efficient than our algorithm when testing reachability of
all rules, but not for testing reachability of just one rule.
Reachability for single rule is more useful when analyzing
network configuration with multiple firewalls. In Figure 8(b)
we show comparative timings for checking reachability of a
single randomly chosen rule, as the size of rulesets grows.

D. Results for Fireman in BDDs vs in SAT

To test our hypothesis that the performance advantage for
Fireman is due to the translation of policies into SAT rather
than due to BDDs, we reimplemented Fireman using a SAT-
solver rather than a BDD package. In doing so, we note that
Fireman makes no use of BDD features which are outside
of SAT (there are no uses of quantifiers, and no equality
comparisons between predicates in their algorithm).

The reimplementation of Fireman using a SAT-solver
proceeds through the firewall rules in order, maintaining a
SAT instance S. At rule n, the SAT instance matches the set
of packets which have not been handled by rules 1, . . . , n−1.
To check reachability of rule n we solve the SAT instance
S ∧ Cn where Cn is the condition predicate for rule n. We
then update S := (S ∧ ¬Cn). In the case of a condition
Cn which is a conjunction of literals (that is, one using
bitmasks, with no uses of negation or ranges) we note that
S is in CNF with no uses of auxiliary variables, and so the
Fireman algorithm is a good match to an incremental CNF
SAT-solver such as MiniSAT.

As seen in Figure 9, the performance of both implemen-
tations is comparable for small policies (< 1500 rules). As
policy size increases (which is the case for large domains),
the SAT-based implementation outperforms the BDD. The
BDD expression built while solving anomalies using Fire-
man becomes very complicated with large number of rules.
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Figure 7. Performance of our algorithm using
SAT versus BDD implementations
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Figure 8. Performance of our algorithm (SAT)
versus Fireman (BDD)
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Figure 9. Evaluation of the SAT-based imple-
mentation of the Fireman algorithm

For each incoming rule, more minterms are added, and the
BDD building time causes performance degradation. SAT-
solvers are very efficient when dealing with large instances.

V. RELATED WORK

Previous work of interest related to model checking fire-
wall configuration can be grouped into two categories; con-
figuration analysis tools, and model checking frameworks.

A. Configuration Analysis Tools

Several firewall analysis tools have been developed, such
as the work of Al-Shaer and Hamed [1] and Yuan at al. [2].
These tools aim to discover configuration inconsistencies,
which result in undesired behavior for the firewall. Specific
categories of conflicts as discussed in both [1] and [2] are
shadowing, generalization, and correlation.

While we focus here on reachability (the inverse of shad-
owing) and cyclicity, we expect that SAT-based techniques
would apply to generalization and correlation as well.

In the recent work by Matoušek et al. [3], a dynamic
network analysis is performed to verify security properties
in networks with changing topologies. First order logic was
used to represent packet filtering elements in the network and
generalize the regular rule set representation. The proposed
model provides general property analysis, although the time
complexity and experimental results were not included.

Tools focused on firewall design, architecture and per-
formance include Gouda and Liu [14], Mayer, Wool and
Ziskind [15] and Wool [16] (which includes automated

conflict detection). Other firewall analysis tools, such as [17]
and [18], focus on the performance of firewalls in terms of
implementation and filtering delays.

For general network configuration analysis, the most
related work to our approach is the work by Xie et al. [19].
This work addressed the reachability of hosts in a network
including routers, firewalls and NAT devices. The complex-
ity of this algorithm is linear in the number of network
nodes, assuming a fixed packet model.

B. Model Checking Frameworks

The closest work related to model checking policies are
the work of Hamed et al. [20] and Yuan et al. [2]. Both of
the frameworks perform analysis over multiple paths for the
packet. Paths are calculated before applying model checking,
and BDDs are used to solve for anomalies over each path.

This approach can be characterized by the non-symbolic
representation of paths, compared to the symbolic represen-
tation of packets. This requires any algorithm performing
search over paths to perform exhaustive search, compared to
search over packets, which is performed by the BDD rep-
resentation. In comparison, our approach represents packets
and paths symbolically, so (for example) the search for a
cyclic path can be carried out by the SAT-solver rather than
by an explicit search through all possible paths.

Hamed et al. [20] also utilized BDD in model checking
firewalls, VPN and IPSec policies. They used a similar
approach to Fireman where model checking is performed
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at the lower level of the operations after calculating paths
and expanding the search tree.

In [3] a formal model for security analysis was introduced.
The model was implemented using interval decision dia-
grams (IDD, rather than BDDs). The approach is similar to
the Fireman model, since it also expands all possible packet
paths and then property checking is performed.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper we presented a model for firewall configu-
ration. We investigated the use of SAT solvers in the model
analysis. Two properties of interest in policy definition
were analyzed; reachability and cyclicity. The problem of
analyzing a firewall configuration with respect to those
properties was proved to be an NP-complete problem, hence
the use of a SAT solver is justified. A model for network
configuration is also presented based on single firewall
model. Experimental evaluation was conducted to compare
our model with recent BDD-based configuration analysis
approaches. Using SAT solvers in firewall policy analysis
was shown to be efficient over BDD analysis especially
when the problem size increases.

As future directions the following will be investigated:

• Extending our model to cover more general properties
using W3C XPath notation. Experimental validation
will be performed on the general model.

• Possible applications for the model and its implemen-
tation will be investigated. Generating packets as test
cases for firewall behavior is one of them.

• As shown in the results, one of the most performance
degradation points in the BDD is the building and
initialization time. This limits the applicability of BDD-
based analysis in dynamic environments where config-
uration modifications and policy edits are performed
frequently. Analysis on the efficiency of SAT versus
BDD in changing domains will be investigated.
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