
Causality For Free!
Parametricity Implies Causality for Functional Reactive Programs

Alan Jeffrey
Alcatel-Lucent Bell Labs
ajeffrey@bell-labs.com

Abstract
Functional Reactive Programming (FRP) is a model of reactive sys-
tems in which signals are time-dependent values, and signal func-
tions are functions between signals. Signal functions are required
to be causal, in that output behaviour at time t is only allowed to
depend on input behaviour up to time t. In order to enforce causal-
ity, many FRP libraries are arrowized, in that they provide combi-
nators for building signal functions, rather than allowing users to
write functions directly. In this paper, we provide a definition of
deep causality (which coincides with the usual definition on sig-
nals of base type, but differs on nested signals). We show that FRP
types can be interpreted in System Fω extended with a kind of
time, and show that in this interpretation, a “theorems for free”
argument shows that parametric functions are deep causal. Since
all System Fω functions are parametric, this implies that all imple-
mentable functions are deep causal. This model is the formal basis
of the agda-frp-js FRP library for the dependently typed program-
ming language Agda, which compiles to JavaScript and executes in
the browser. Assuming parametricity of Agda, this allows reactive
programs to be written as regular functions over signals, without
sacrificing causality. All results in this paper have been mechani-
cally verified in Agda.

1. Introduction
Many classes of programs are reactive: they run for a long period of
time during which they interact with their environment. Examples
of reactive programs include control systems, servers, and any
program with a graphical user interface.

Many reactive programs are implemented using an event-driven
model, in which stateful components send and receive events which
update their state, and may cause side-effects such as network traf-
fic or screen updates. A popular example of event-driven program-
ming is the Document Object Model (DOM) [26] event model, with
bindings to ECMAScript [11] and executed in a browser context.
The event-driven model forms the basis of Actors [17], and the
Model View Controller architecture of Smalltalk [7].

The event-driven model has a number of challenging features,
including:

[Copyright notice will appear here once ’preprint’ option is removed.]

• Concurrency: reactive programs often have concurrent features
such as dealing with multiple simultaneous events. This either
leads to multithreaded languages such as Java, with complex
concurrency models [6, Ch. 17], or single-threaded languages
such as ECMAScript [11] which do not naturally support mul-
ticore execution, and rely on cooperative multitasking.
• Imperative programming: components are stateful, and may re-

spond to events by updating their internal state. These hidden
side-effects can result in complex implicit component interde-
pendencies.
• Referential opacity: since components support mutable state,

component identity is important. The semantics for components
is not referentially transparent, since creating a component and
copying it is not equivalent to creating multiple components.
• Callbacks: the idiom for programming in an event-driven model

is registering callbacks rather than blocking function calls. For
example, in ECMAScript an HTTP request is not a blocking
method call, but instead a non-blocking call which registers a
callback to handle the result of the HTTP request. This essen-
tially requires the programmer to convert their program to Con-
tinuation Passing Style (CPS) [32]. Manual CPS transformation
can be error-prone, for example, calling the wrong continua-
tion, or mistakenly calling a continuation twice. In the absence
of call/cc, CPS transformation is a whole-program translation,
so can require a large codebase to be rewritten.

Functional Reactive Programming allows reactive programs to be
written in a pure functional style. Originally developed by Elliot
and Hudak [14] as part of the Fran functional animation system,
there are now a number of implementations, including Flapjax [28],
Frappé [9], Froc [10], FrTime [8], Grapefruit [23], Reactive [12],
Reactive-Banana [2], and Yampa [41],

Comparing FRP with the event-driven model, we have:

• Pure functional model: there are no implicit interactions caused
by shared mutable state, and a simple concurrency model.
• Referentially transparent: signals can be copied without alter-

ing their semantics.
• Direct: FRP programs are given in direct style rather than CPS.

Comparing FRP with synchronous dataflow languages such as Es-
terel [5], some key distinctions are:

• Fine-grained time: FRP often models time as a continuous
domain (such as R) or using a much finer unit of time than the
sample frequency of a synchronous language (such as 1ms).
• Higher-order signals: FRP allows signals of signals, which

model dynamically reconfigurable dataflow networks.

1 2012/11/1



• Embedded DSL: FRP is typically implemented as an embedded
DSL library in a functional host language (often Haskell, but
also Agda [19], ECMAScript [28], Java [9], OCaml [10], or
Scheme [8]).

The semantics of an FRP program are defined in terms of signals,
whose semantics are given as time-indexed values1:

SignalA ≈ Time→A

For example, the current state of the mouse button could be mod-
eled by a mouseButton signal:

mouseButton : Signal (MouseButtonState)

mouseButton ≈ t 7→
{

down if t ∈ [2, 5)
up otherwise

which gives rise to an event signal of mouse clicks:

mouseClick : Signal (Maybe (MouseEvent))

mouseClick ≈ t 7→
{

just clicked if t = 5
nothing otherwise

Functional reactive programs are defined using combinators which
build functions over signals. There are two approaches to defining
this combinator library:

• Classic FRP: in classic FRP, combinators are defined as func-
tions over signals, for example:

map : (A→B)→ SignalA→ SignalB

map f σ ≈ t 7→ f(σ(t))

Examples of classic FRP systems include Fran [14], Grape-
fruit [23], Reactive [12] and Reactive-Banana [2].
• Arrowized FRP: in arrowized FRP, there is no explicit Signal

type; instead there is an SFAB type for signal functions from
A to B, whose semantics is given as functions over signals:

SFAB ⊆ SignalA→ SignalB

The SF type is required to form an arrow [18] with loops [31],
for example the equivalent of map is:

arr : (A→B)→ SFAB

arr f ≈ σ 7→ t 7→ f(σ(t))

The arrow combinators support a point-free style of program-
ming based on the structure of a traced Freyd category [35] (that
is, a premonoidal category [34] with a cartesian centre and a
premonoidal trace [4]). The reference implementation of arrow-
ized FRP is Yampa [41].

Note that classic FRP can be seen as an instance of arrowized FRP,
the difference is whether the equation for SF is an inclusion (up to
isomorphism):

SFAB ⊆ SignalA→ SignalB

or an equivalence (where the inclusion is on-the-nose definitional
identity)

SFAB = SignalA→ SignalB

There are (at least) two reasons for introducing arrowized FRP:

• Semantics: Elliott [13] argues that “one source of discomfort
[with classic FRP] is that this model is mostly junk,” and “this
model allows responding to future input, violating a principle
sometimes called causality, which is that outputs may depend

1 Note the use of ≈ in the semantics of Signal, since we are only defining
the type of signals up to isomorphism. As we shall see later, the definition
of SignalA is more complex, but it is isomorphic to Time→A.

on the past or present but not the future.” Arrowized FRP allows
for a model of SF which only includes causal functions.
• Pragmatics: Nilsson, Courtney and Peterson [30] say “In order

to ensure an efficient implementation (one that is free of time
and space leaks), signals (time-varying values) are not first class
entities in AFRP, unlike the signal functions operating on them.
This is one of the most substantial design differences between
AFRP and earlier versions of FRP, for example Fran.”

There is, however, a cost associated with arrowized FRP which is
that signal functions are no longer expressed as host-language func-
tions, and instead must be programmed using the point-free combi-
nators. Programming directly in the point-free style can be cumber-
some due to explicit wiring combinators; to mitigate this, Haskell
provides a DSL for dataflow programming which compiles down
to the arrow combinators. Even with this DSL, the programmer is
faced with the complexity of a two-layer language whose semantics
is a traced Freyd category.

In this paper we address the semantic challenge of giving a junk-
free treatment of classic FRP. (For a discussion of the pragmatics
of avoiding time leaks in classic FRP, see [23].) We show that given
an appropriate definition of Signal, all implementable functions are
causal. To sketch our approach, we first consider the definition of
causality from [30]:

The output of a signal function at time t is uniquely deter-
mined by the input signal on the interval [0, t].

Rephrasing this slightly, we get:

The output of a non-interfering function at security level `
is uniquely determined by the input on the interval [⊥, `].

This is the standard definition of non-interference as an informa-
tion flow security property [16]. Seen in this light, we can think of
causality as a security policy: the future is confidential. This sug-
gests that techniques which have been used to enforce information
flow may also work to enforce causality. In this paper, we are in-
spired by the work of Pierce and Sumii [39], who use relational
parametricity to establish non-interference properties.

Relational parametricity was introduced by Reynolds [36], to
support reasoning about parametric polymorphism. Wadler [40]
showed that parametricity gives “theorems for free”, for example,
map distributes through concatenation, just from its type. In this pa-
per, we show how relational parametricity can be used to establish
causality.

Investigating the relationship between parametricity and causal-
ity highlights some features of its definition which are not com-
pletely obvious. First, consider the canonical “predict the future”
function:

φ : SignalA→ SignalA

φσ ≈ t 7→ σ(t+ 1)

This function is non-causal, since its output at time t depends on it
input at time t + 1. Making this more precise, define σ =u τ on
signals to mean “equal up to time u”:

σ =u τ whenever σ(t) = τ(t) for any t ≤ u

from which we define f to be causal whenever:

f(σ) =u f(τ) for any σ =u τ

It is clear that φ violates causality, since (if we take Time to be N,
and write signals using list notation):

[0, 1, 2, . . .] =0 [0, 0, 0, . . .]

φ [0, 1, 2, . . .] = [1, 2, 3, . . .] 6=0 [0, 0, 0, . . .] = φ [0, 0, 0, . . .]

2 2012/11/1



Things become less clear when we consider higher-order signals,
for example:

η : A→ SignalA

η x ≈ t 7→ x

The signal η(x) is just a constant signal with value x, and looks
like it should be unproblematic. Unfortunately, if we take A to be a
signal type, then we have:

[0, 1, 2, . . .] =0 [0, 0, 0, . . .]

η [0, 1, 2, . . .] 6=0 η [0, 0, 0, . . .]

where the inequality follows from:

η [0, 1, 2, . . .] 0 = [0, 1, 2, . . .] 6= [0, 0, 0, . . .] = η [0, 0, 0, . . .] 0

That is, according to this definition, η is not causal. This is an
example of a function which is surprisingly non-causal, but there
are also functions that are surprisingly causal. Consider:

ψ : Signal (SignalA)→ SignalA

ψ σ ≈ t 7→ σ(t)(t+ 1)

This is just a variant of the “predicting the future example”, but is
in fact causal. If we try to replay the argument which showed φ to
be non-causal, we have:

[[0, 1, 2, . . .], . . .] 0

= [0, 1, 2, . . .]

6= [0, 0, 0, . . .]

= [[0, 0, 0, . . .], . . .] 0

and so:
[[0, 1, 2, . . .], . . .] 6=0 [[0, 0, 0, . . .], . . .]

which means there is no violation of causality from:

ψ[[0, 1, 2, . . .], . . .] = [1, . . .] 6=0 [0, . . .] = ψ[[0, 0, 0, . . .], . . .]

These examples demonstrate both unexpected non-causality (η)
and unexpected causality (ψ). In both cases, the root cause is the
same. In the definition of =u:

σ =u τ whenever σ(t) = τ(t) for any t ≤ u
we used = as the equivalence at time t, that is this definition is a
shallow definition of causality. An alternative definition would be
to ask for deep causality, where (at signal type):

σ =u τ whenever σ(t) =u τ(t) for any t ≤ u
Note that φ is still non-causal using this definition, but that η is
deep causal, and ψ is deep non-causal. Deep causality requires =u

to be defined for non-signal types, for example on base types:

a =u b whenever a = b

and function types:

f =u g whenever f(a) =u g(b) for any a =u b

Readers familiar with logical relations will note that this is pre-
cisely the definition of a (non-step-indexed) logical relation. This
is the heart of our result: every parametric function is deep causal.

The distinction between shallow and deep causality impacts an
implementation as well as its semantics. A system which mod-
els shallow causality is one in which signal boundaries introduce
changes of clocks. For example, a shallow causal function of type
Signal (SignalA)→ SignalA is allowed to read a signal from its
input, and run that signal in a simulated time domain to predict its
future behaviour. In contrast, a system which models deep causality
is one in which the same clock is shared by all signals. This paper
describes the formal model of agda-frp-js [19], which uses ECMA-
Script’s time model throughout, and so implements deep causality.

Another approach to ensuring causality is advocated by Krish-
naswami and Benton [25]. Their approach gives semantics in ultra-
metric spaces, in particular the function spaceA→B is the space of
nonexpansive maps, which are causal by definition. Our approach
is different: A→ B is interpreted as plain old set-theoretic func-
tions, and we rely on an appropriate coding of signals to achieve
causality by way of parametricity.

The remainder of the paper supplies the technical details for this
result. The paper is structured as follows:

• Section 2 gives a recap of our prior work [21] showing that
FRP programs can be regarded as proof objects in a constructive
variant of LTL [33].
• Section 3 gives a recap of Girard’s System Fω , including its

parametricity theorem.
• Section 4 begins the new material with a presentation of Sys-

tem FRPω , which extends System Fω with a kind of time, a
type for the order on time, and proof objects capturing that time
forms a total order. We show that many of the combinators of
FRP can be coded in System FRPω . System FRPω also satis-
fies parametricity.
• Section 5 provides the definitions of signals for System FRPω .
• Section 6 contains the formal statement of deep causality, to-

gether with the result that all parametric functions are causal.
Since all System FRPω functions are parametric, this implies
that any FRP program implemented in System FRPω is causal.
• Section 7 has a discussion of the implementation of this work

in Agda, which includes a compiler to ECMAScript, and mech-
anized proofs of the results in this paper.

This is the first result showing that a programming language can
support FRP programs with signals as first-class citizens, with-
out sacrificing causality, while still interpreting functions set-
theoretically.

2. Recap of LTL as a type system for FRP
In previous work [21] we showed that FRP programs in a depen-
dently typed programming language can be given types in a con-
structive variant of Linear-time Temporal Logic (LTL) [33], such
that any well-typed FRP program is a proof of an LTL tautology.
The correspondence between FRP programs and LTL proofs was
discovered independently by Jeltsch [24]. The use of LTL to model
properties of FRP programs was also investigated by Sculthorpe
and Nilsson [38].

The motivation for considering a constructive LTL as a type
system for FRP is that the type SignalA models signals whose
value can change over time, but whose type cannot (the value must
always have typeA). For example, there is no way to model a signal
whose value is a timestamp at some point in the past: an attempt to
do so would be Signal (Past), but Past is not a type, it is a time-
indexed type:

Past (t) = { s | s ≤ t }

Since types can be thought of as propositions, time-indexed types
can be thought of as propositions parametrized over time, that is
temporal propositions. This leads us to consider reactive sets:

RSet = Time→ Set

for example:
Past : RSet

Jeltsch [23] proposed using signals indexed by era parameters, to
avoid time leaks. The type SSignalA (s) is the type of signals with
start time s, inhabited by signals σ where σ(t) has type A for any

3 2012/11/1



time t ≥ s. In terms of reactive sets:
SSignal : Set→ RSet

SSignalA (s) =
∏
t≥s

A

If there is a minimal time 0, then signals with era parameters
generalize signals, since:

SignalA = SSignalA (0)

Given a set A, we can consider the constant reactive set 〈A〉. In
temporal logic terms, 〈A〉 lifts a non-temporal proposition A to a
temporal proposition:

〈·〉 : Set→ RSet

〈A〉 (t) = A

In the other direction, given a reactive setA, we can consider the set
[A], which is inhabited by signals σ such that σ(t) has type A(t).
In temporal logic terms, a proof of [A] represents a proof that A is
a tautology, that is A(t) is provable at all times t.

[·] : RSet→ Set

[A] =
∏
t

A(t)

Given reactive sets A and B, we can form the pointwise function
space A ⇒ B. In temporal logic terms, a proof of A ⇒ B at time
t is a proof that A at time t implies B at time t, which is the usual
treatment of implication in LTL:

(· ⇒ ·) : RSet→ RSet→ RSet

(A⇒B) (t) = A(t)→B(t)

Given reactive set A, we can form the modal type �A, which is
inhabited at time t by signals σ such that σ(u) has type A(u) for
any u ≥ t. In temporal logic terms, �A is the “globally true”
modality for the future:

� : RSet→ RSet

�A (t) =
∏
u≥t

A(u)

This modality generalizes the signal type, since:

SSignalA = �〈A〉
In [21], we investigated a semantics for arrowized FRP, based on
the constrains modality of LTL [27, 29]. This modality A D B is
inhabited at time t by functions f such that f(σ) has type B(u)
whenever σ is a signal for A in the interval [t, u]. In temporal
logic terms, this is a dual of “until” (since classically A D B is
¬(A U ¬B)) and is used to model rely/guarantee properties:

(·D ·) : RSet→ RSet→ RSet

(ADB) (t) =
∏
u≥t

A[t, u]→B(u)

where:
·[·, ·] : RSet→ Time→ Time→ Set

A[s, u] =
∏

s≤t≤u

A(t)

The reactive set A D B can be thought of as a type for history-
dependent functions which, with start time t, can produce an output
of type B(u) at time u ≥ t, given an input history of type A[t, u]:

A

B
⇓

Note that functions of this type are causal by definition. In [21], we
constructed a model for arrowized FRP based on functions of type
ADB. In this paper, we show how to construct a model of classic
FRP without sacrificing causality.

3. Recap of System Fω
In this section, we introduce a kernel polymorphic functional pro-
gramming language. We expect that the results would hold in a
dependent setting (such as Agda) but we do not need the full power
of dependent types, so we will start from Girard’s System Fω [15],
a polymorphic language with higher-order kinds.

We recall the definition of System Fω , including its syntax, type
system, and denotational semantics. We also recall the definition
of logical relations for System Fω , and restate parametricity for
System Fω . In Section 4 we will extend System Fω with a notion
of time, which is a kernel of Haskell suitable for defining FRP. All
results in this section have been formalized in Agda [20].

The syntax of System Fω is presented in Figure 1, where:

• t and u range over type variables,
• x, y and z range over variables,
• K and L range over kinds, such as (set→ set)→ set,
• Σ ranges over signatures of the form t1 : K1, . . . , tm : Km,
• C ranges over constant types, such as (∀set) (which has kind

(set→ set)→ set),
• T and U range over types, such as the type for the identity

function (∀set)(λ(t : set) . ((· → ·) t t), which we write as
∀(t : set)(t→ t),
• Γ ranges over contexts of the form x1 : T1, . . . , xn : Tn, and
• M and N range over terms, such as the polymorphic identity

function Λ(t : set).λ(x : t).x, which has type ∀(t : set)(t→t).

We define some shorthands:
T → U = (· → ·)T U

∀(t : K) . T = (∀K)(λ(t : K) . T )

We will often elide the kind or type annotations from bound vari-
ables, for example writing ∀t . T rather than ∀(t : K) . T .
The notions of free variable (fv), free type variable (ftv), do-
main (dom), capture-avoiding substitution (T [U/t]) and η-β-
convertibility (=ηβ) are standard. The type rules for System Fω
are given in Figure 2, with judgements:

• Σ ` � “signature Σ is well-formed”,
• Σ; Γ ` � “with respect to Σ, context Γ is well-formed”, and
• Σ ` T : K “with respect to Σ, type T has kind K”,
• Σ; Γ `M : T “with respect to Σ and Γ, term M has type T ”.

For example. the identity function typechecks as:

` ∀(t : set)(t→ t) : set

` Λ(t : set) . λ(x : t) . x : ∀(t : set)(t→ t)

In Figure 3 and 4, we define the denotational semantics of Sys-
tem Fω

2 where:

• JKK ∈ Set,
• JΣ ` �K ∈ Set,

• JΣ; Γ ` �K( ~A) ∈ Set where ~A ∈ JΣ ` �K,

2 In this presentation, for simplicity we allow Set ∈ Set. To make this
presentation completely formal, it should be stratified into universes, and
set should be parametrized on a universe. This is made formal in the Agda
proofs of correctness [20].

4 2012/11/1



Kinds K,L ::= set | K→ L

Signatures Σ ::= ε | (Σ, t : K)

Constant Types C ::= (· → ·) | (∀K)

Types T,U ::= C | λ(t : K) . T | T U | t

Contexts Γ ::= ε | (Γ, x : T )

Terms M,N ::= λ(x : T ) . M |M N | x | Λ(t : K) . M |M T

Figure 1. System Fω syntax

ε ` �
Σ ` � t 6∈ dom(Σ)

Σ, t : K ` �

(· → ·) : set→ set→ set

(∀K) : (K→ set)→ set

Σ ` � C : K
Σ ` C : K

Σ, t : K ` T : L
Σ ` λ(t : K) . T : (K→ L)

Σ ` T : K→ L Σ ` U : K
Σ ` T U : L

Σ ` � (t : K) ∈ Σ
Σ ` t : K

Σ ` �
Σ; ε ` �

Σ; Γ ` � Σ ` T : set x 6∈ dom(Γ)
Σ; Γ, x : T ` �

Σ; Γ, x : T `M : U
Σ; Γ ` λ(x : T ) . M : T → U

Σ; Γ `M : T → U Σ; Γ ` N : T
Σ; Γ `M N : U

Σ; Γ ` � (x : T ) ∈ Γ
Σ; Γ ` x : T

Σ, t : K; Γ `M : U t 6∈ ftv(Γ)
Σ; Γ ` Λ(t : K) . M : ∀(t : K) . U

Σ; Γ `M : ∀(t : K) . T Σ ` U : K
Σ; Γ `M U : T [U/t]

Σ; Γ `M : T Σ ` T =ηβ U : set
Σ; Γ `M : U

Figure 2. System Fω judgements

• JΣ ` T : KK( ~A) ∈ JKK where ~A ∈ JΣ ` �K, and

• JΣ; Γ `M : T K( ~A,~a) ∈ JΣ ` T : setK( ~A)

where ~A ∈ JΣ ` �K and ~a ∈ JΣ; Γ ` �K( ~A).

For example. the identity function has semantics:

J` ∀(t : set)(t→ t) : setK()
=
∏
A∈SetA→A

J` Λ(t : set) . λ(x : t) . x : ∀(t : set)(t→ t)K()
= A 7→ a 7→ a

We have to provide some sanity checks, to ensure that this defini-
tion is well-formed. In the semantics of Σ; Γ ` Λt . M : ∀t . T ,
there is a use of weakening, which is justified because:

JΣ; Γ ` �K( ~A) = JΣ, t : K; Γ ` �K( ~A,A) when t 6∈ ftv(Γ)

In the semantics of Σ; Γ ` M T : U [T/t] there is a use of
substitutivity, which is justified because:

JΣ, t : K ` U : LK( ~A, JΣ ` T : KK( ~A)) = JΣ ` U [T/t] : LK( ~A)

In the semantics of Σ; Γ ` M : T =ηβ U there is a use of η-β-
equivalence, which is justified because:

JΣ ` T : KK( ~A) = JΣ ` U : KK( ~A) when Σ ` T =ηβ U : K

In Figure 5 we extend the semantics of System Fω types from sets
to relations (writing A↔B for P(A×B)) where:

• JKK2(A,B) ∈ Set where A,B ∈ JKK,
• JΣ ` �K2( ~A, ~B) ∈ Set where ~A, ~B ∈ JΣ ` �K,
• JΣ; Γ ` �K2( ~R) ∈ JΣ; Γ ` �K( ~A)↔ JΣ; Γ ` �K( ~B)

where ~R ∈ JΣ ` �K2( ~A, ~B), and

• JΣ ` T : KK2( ~R) ∈ JKK2(A,B)

where A = JΣ ` T : KK( ~A) and B = JΣ ` T : KK( ~B)

and ~R ∈ JΣ ` �K2( ~A, ~B).

This specializes to the usual presentation of logical relations for
System F , in particular at function type:

(f, g) ∈ JΣ ` T → U : setK2( ~R) whenever

(a, b) ∈ JΣ ` T : setK2( ~R) implies

(f(a), g(b)) ∈ JΣ ` U : setK2( ~R)

and at polymorphic type:

(f, g) ∈ JΣ ` ∀t . T K2( ~R) whenever

(f(A), g(B)) ∈ JΣ, t : set ` T : setK2( ~R,R)

for every A,B andR : A↔B

5 2012/11/1



JKK ∈ Set

JsetK = Set

JK→ LK = JKK→ JLK

JΣ ` �K ∈ Set

JΣ ` �K = JK1K× · · · × JKnK

JCK ∈ JKK where C : K

J(· → ·)K = A 7→ B 7→ A→B

J(∀K)K = F 7→
∏
A∈JKK F (A)

JΣ ` T : KK( ~A) ∈ JKK where ~A ∈ JΣ ` �K
JΣ ` C : KK( ~A) = JCK

JΣ ` λt . T : K→ LK( ~A) = A 7→ JΣ, t : K ` T : LK( ~A,A)

JΣ ` T U : LK( ~A) = JΣ ` T : K→ LK( ~A)(JΣ ` U : LK( ~A))

JΣ ` ti : KiK( ~A) = Ai

JΣ; Γ ` �K( ~A) ∈ Set where ~A ∈ JΣ ` �K
JΣ; Γ ` �K( ~A) = JΣ ` T1 : setK( ~A)× · · · × JΣ ` Tn : setK( ~A)

Figure 3. System Fω type semantics, where Σ = (t1 : K1, . . . , tm : Km) and Γ = (x1 : T1, . . . , xn : Tn)

JΣ; Γ `M : T K( ~A,~a) ∈ JΣ ` T : setK( ~A) where ~A ∈ JΣ ` �K and ~a ∈ JΣ; Γ ` �K( ~A)

JΣ; Γ ` λx . M : T → UK( ~A,~a) = a 7→ JΣ; Γ, x : T `M : UK( ~A,~a, a)

JΣ; Γ `M N : UK( ~A,~a) = JΣ; Γ `M : T → UK( ~A,~a)(JΣ; Γ ` N : UK( ~A,~a))

JΣ; Γ ` xi : TiK( ~A,~a) = ai

JΣ; Γ ` Λt . M : ∀t . UK( ~A,~a) = A 7→ JΣ, t : K; Γ `M : UK( ~A,A,~a)

JΣ; Γ `M T : U [T/t]K( ~A,~a) = JΣ; Γ `M : ∀(t : T ) . UK( ~A,~a)(JΣ ` T : KK( ~A))

Figure 4. System Fω expression semantics

JKK2(A,B) ∈ Set where A,B ∈ JKK
JsetK2(A,B) = (A↔B)

JK→ LK2(F,G) =
∏
R∈JKK2(A,B)JLK

2(F (A), G(B))

JΣ ` �K2( ~A, ~B) ∈ Set where ~A, ~B ∈ JΣ ` �K
JΣ ` �K2( ~A, ~B) = JK1K2(A1, B1)× · · · × JKnK2(An, Bn)

JCK2 ∈ JKK2(JCK, JCK) where C : K

J(· → ·)K2 = R 7→ S 7→ {(f, g) | ∀(a, b) ∈ R . (f(a), g(b)) ∈ S}
J(∀K)K2 = R 7→ {(f, g) | ∀S ∈ JKK2(A,B) . (f(A), g(B)) ∈ R(S)}

JΣ ` T : KK2( ~R) ∈ JKK2(JΣ ` T : KK( ~A), JΣ ` T : KK( ~B)) where ~R ∈ JΣ ` �K2( ~A, ~B)

JΣ ` C : KK2( ~R) = JCK2

JΣ ` λt . T : K→ LK2( ~R) = R 7→ JΣ, t : K ` T : LK2( ~R,R)

JΣ ` T U : LK2( ~R) = JΣ ` T : K→ LK2( ~R)(JΣ ` U : KK2( ~R))

JΣ ` ti : KiK2( ~R) = Ri

JΣ; Γ ` �K2( ~R) ∈ JΣ; Γ ` �K( ~A)↔ JΣ; Γ ` �K( ~B) where ~R ∈ JΣ ` �K2( ~A, ~B)

JΣ; Γ ` �K2( ~R) = JΣ ` T1 : setK2( ~R)× · · · × JΣ ` Tn : setK2( ~R)

Figure 5. System Fω logical relations, where Σ = (t1 : K1, . . . , tm : Km) and Γ = (x1 : T1, . . . , xn : Tn)

6 2012/11/1



For example, the relational semantics of the type of the identity
function is:

J` ∀(t : set)(t→ t) : setK2()

= { (f, g) | ∀R ∈ A↔B . ∀(a, b) ∈ R .

(f(A)(a), g(B)(b)) ∈ R}
∈ (
∏
A∈SetA→A)↔

(
∏
A∈SetA→A)

= J` ∀(t : set)(t→ t) : setK()↔
J` ∀(t : set)(t→ t) : setK()

We can verify that if i is the semantics of the polymorphic identity
function:

i = A 7→ a 7→ a

then i is related to itself in the logical relation for its type:

(i, i) ∈ J` ∀(t : set)(t→ t) : setK2()

In fact, this property is true for any System Fω term, which is the
parametricity property.

THEOREM 1 (Parametricity of System Fω).

~R ∈ JΣ ` �K2( ~A, ~B) and (~a,~b) ∈ JΣ; Γ ` �K2( ~R) implies

(a, b) ∈ JΣ ` T : setK2( ~R) where

a = JΣ; Γ `M : T K( ~A,~a) and

b = JΣ; Γ `M : T K( ~B,~b).

This theorem has been mechanically verified [20].

4. System FRPω
In this section, we define System FRPω , which extends Sys-
tem Fω with a kind time and appropriate types and expressions to
express the order of time. We encode many of the FRP combinators
from Section 2 in System FRPω , and state relational parametricity.
In Section 6, parametricity is used to establish causality.

The syntax, type judgements, and semantics of System FRPω
are given as an extension of System Fω in Figures 6–9. We intro-
duce a kind time of times (similar to Jelsch’s [23] phantom types
for eras), together with a type t ≤ u for the order on time, and con-
stants refl, trans, antisym and case which internalize the properties
required of a total order. The semantics of System FRPω are given
with respect to a chosen total order (Time,≤). We can then define
the kind of reactive types as:

rset = time→ set

and define many of the combinators for reactive types in Sys-
tem FRPω (although we defer [T ] and �T to Section 5):

〈·〉 : set→ rset

〈·〉 = λa . λt . a

(· ⇒ ·) : rset→ rset→ rset

(· ⇒ ·) = λa . λb . λt . a t→ b t

·[·, ·] : rset→ time→ time→ set

·[·, ·] = λa . λs . λu . ∀t . (s ≤ t)→ (t ≤ u)→ a t

(·D ·) : rset→ rset→ rset

(·D ·) = λa . λb . λt . ∀u . a[t, u]→ b u

These System FRPω combinators have the same semantics as
defined in Section 2 (in some cases up to isomorphism, written≈):

JΣ ` 〈T 〉 : rsetK( ~A)

= 〈JΣ ` T : setK( ~A)〉
JΣ ` T ⇒ U : rsetK( ~A)

= JΣ ` T : rsetK( ~A)⇒ JΣ ` U : rsetK( ~A)

JΣ ` T [t, u] : setK( ~A)

≈ JΣ ` T : rsetK( ~A)[JΣ ` t : timeK( ~A), JΣ ` u : timeK( ~A)]

JΣ ` T D U : rsetK( ~A)

≈ JΣ ` T : rsetK( ~A)D JΣ ` U : rsetK( ~A)

There is a canonical singleton interval:

sing : ∀a . ∀s . a s→ a[s, s]

sing = Λa . Λs . λx . Λt . λs≤t . λt≤s .
antisym a s t s≤t t≤s x

and intervals can be concatenated:
concat : ∀a . ∀s . ∀t . ∀u . a[s, t]→ a[t, u]→ a[s, u]

concat = Λa . Λs . Λt . Λu . λσ . λτ . Λv . λs≤v . λv≤u .
case(a v) v t

(λv≤t . σ v s≤v v≤t)
(λt≤v . τ v t≤v v≤u)

Let T be the trivial reactive set:

T(t) = {∗}

Since T is trivial, we have that T[s, u] is also trivial:

T[s, u] ≈ {∗}

We have that logical relations over T identify subsets of Time:

JrsetK2(T,T) =
∏
R∈JtimeK2(s,t)JsetK2(T(s),T(t))

=
∏
s=t T(s)↔ T(t)

=
∏
t T(t)↔ T(t)

=
∏
t{∗}↔ {∗}

≈ P(Time)

In the same way as for System Fω , we can show that the seman-
tics of System FRPω respects weakening, substitutivity and η-β-
equivalence, and that System FRPω satisfies parametricity.

THEOREM 2 (Parametricity of System FRPω).

~R ∈ JΣ ` �K2( ~A, ~B) and (~a,~b) ∈ JΣ; Γ ` �K2( ~R) implies

(a, b) ∈ JΣ ` T : setK2( ~R) where

a = JΣ; Γ `M : T K( ~A,~a) and

b = JΣ; Γ `M : T K( ~B,~b).

This theorem has been mechanically verified [20].

5. Signals
In this section, we show how System FRPω can be used to define
signals, in such a way that all implementable functions are causal.

The key observation is that we consider System FRPω types
with a chosen free type variable κ : rset. This type variable is al-
ways instantiated as the trivial reactive set T, but parametricity en-
sures that programs cannot instantiate κ(t) directly. Thus, variables
of type κ(t) can be used as tokens, which allow access to signals
at time t. If causality is thought of as an information flow property,
then κ(t) can be thought of as the type of capabilities for t.

7 2012/11/1



Kinds K,L ::= · · · | time

Constant Types C ::= · · · | (· ≤ ·)

Constant Terms c ::= refl | trans | antisym | case

Terms M,N ::= · · · | c

Figure 6. System FRPω syntactic extensions of System Fω

Σ; Γ ` � c : T
Σ; Γ ` c : T

(· ≤ ·) : time→ time→ set

refl : ∀t . (t ≤ t)
trans : ∀s . ∀t . ∀u . (s ≤ t)→ (t ≤ u)→ (s ≤ u)

antisym : ∀a . ∀t . ∀u . (t ≤ u)→ (u ≤ t)→ a t→ a u

case : ∀a . ∀t . ∀u . ((t ≤ u)→ a)→ ((u ≤ t)→ a)→ a

Figure 7. System FRPω judgements

JtimeK = Time

J(· ≤ ·)K = t 7→ u 7→
{ {∗} if t ≤ u
∅ otherwise

Figure 8. System FRPω type semantics

JtimeK2(t, u) =

{ {∗} if t = u

∅ otherwise
JΣ ` (· ≤ ·)K2( ~R) = ∗ 7→ ∗ 7→ {(∗, ∗)}

Figure 9. System FRPω logical relations

JΣ; Γ ` c : T K( ~A,~a) = JcK

JcK ∈ J` T : setK where c : T

JreflK = t 7→ ∗
JtransK = s 7→ t 7→ u 7→ ∗ 7→ ∗ 7→ ∗

JantisymK = A 7→ t 7→ u 7→ ∗ 7→ ∗ 7→ a 7→ a

JcaseK = A 7→ t 7→ u 7→ g 7→ h 7→
{
g(∗) if t ≤ u
h(∗) otherwise

Figure 10. System FRPω expression semantics

Define Σ `κ T : K to mean that T has kind K in type context
Σ together with κ : rset, and similarly for the other judgements:

(Σ `κ T : K) = (κ : rset,Σ ` T : K)

(Σ; Γ `κ �) = (κ : rset,Σ; Γ ` �)
(Σ; Γ `κ M : T ) = (κ : rset,Σ; Γ `M : T )

Define JΣ `κ T : KKκ to be the semantics of T , where κ is
instantiated as the trivial reactive set T, and similarly for the other
judgements:

JΣ `κ T : KKκ( ~A) = Jκ : rset,Σ ` T : KK(T, ~A)

JΣ; Γ `κ �Kκ( ~A) = Jκ : rset,Σ; Γ ` �K(T, ~A)

JΣ; Γ `κ M : T Kκ( ~A,~a) = Jκ : rset,Σ; Γ `M : T K(T, ~A,~a)

Note that we do not provide a similar definition of logical relations
JΣ `κ T : KK2κ, which would instantiate κ by the trivial logical
relation. Instead, we allow κ to be instantiated by any logical
relationR ∈ JrsetK2(T,T). As we have seen, such logical relations
identify subsets of Time, which we can think of as the times a
program is allowed access to. In Section 6, we use this to show
that parametricity implies causality.

The presence of κ allows us to define the reactive type �T to
be κD T . A witness of �T (s) is a witness for T (t) for any s ≤ t,
assuming a capability for [s, t]. Similarly, a witness for [T ] is given
by a witness for T t, assuming a capability for t:

[·] : rset→ set

[·] = λa . ∀t . κ t→ a t

� : rset→ rset

� = λa . κD a

In particular, since κ is instantiated by T, we have the promised
isomorphism between�T and the temporal global future modality:

JΣ `κ �T : rsetKκ( ~A)(s)

= JΣ `κ κD T : rsetKκ( ~A)(s)

≈ (JΣ `κ κ : rsetKκ( ~A)D JΣ `κ T : rsetKκ( ~A))(s)

= (TD JΣ `κ T : rsetKκ( ~A))(s)

=
∏
t≥s T[s, t]→ JΣ `κ T : rsetKκ( ~A)(t)

≈
∏
t≥sJΣ `κ T : rsetKκ( ~A)(t)

= �(JΣ `κ T : rsetKκ( ~A))(s)

There is a similar proof of the isomorphism between [T ] and tem-
poral tautologies. Note, however, that these isomorphisms are not
parametric in κ, and so cannot be implemented in System FRPω .
We can give � functorial structure by defining:

map : ∀a . ∀b . [a⇒ b]→ [�a⇒�b]
map = Λa . Λb . λf . Λs . λj . λσ . Λt . λs≤t . λk .

f t (σ t s≤t k)

and give � comonadic structure by defining:

δ : ∀a . [�a⇒��a]

δ = Λa . Λs . λj . λσ . Λt . λs≤t . λk . Λu . λt≤u . λ` .
σ u (trans s t u s≤t t≤u)(concatκ s t u k `)

ξ : ∀a . [�a⇒ a]

ξ = Λa . Λs . λk . λσ .
σ s (refl s)(sing κ s k)

Note that the definition of δ shows that System FRPω can imple-
ment functions which are deep causal, but not shallow causal. We
cannot, however, define the “predicting the future” function in Sys-

8 2012/11/1



tem FRPω . An attempt is (assuming a (·+ 1) function on time):

φ : ∀a . [�〈a〉 ⇒�〈a〉]
φ = Λa . Λs . λj . λσ . Λt . λs≤t . λk . σ(t+ 1)(· · ·)(?)

but there is no way to fill in the hole of type κ[s, t+ 1]; we can use
k : κ[s, t], but there is no way to fill the gap of type κ(t, t+ 1].

6. Causality
We can now formally define causality, and show that parametric-
ity implies causality. For simplicity, we will consider causality for
monomorphic types, although we expect the results could be ex-
tended to polymorphic types.

When `κ T : set and a, b ∈ J`κ T : setKκ and u ∈ Time,
define the (deep) causal equivalence T � a =u b as:

(s ≤ t) � ∗ =u ∗
always

T → U � f =u g

whenever U � f(a) =u g(b) for any T � a =u b

�T (s) � σ =u τ

whenever T (t) � σ(t) =u τ(t) for any s ≤ t ≤ u

[T ] � σ =u τ

whenever T (s) � σ(s) =u τ(s) for any s

We then define f ∈ J`κ T → U : setKκ to be (deep) causal
whenever:

U � f(a) =u f(b) for all T � a =u b

or equivalently:
T → U � f =u f

Causal equivalence is an instance of parametricity, as can be shown
by constructing a logical relation T2

u as:

T2
u : JrsetK2(T,T)

=
∏
R∈JtimeK2(s,t)JsetK2(T(s),T(t))

=
∏
s=t({∗}↔ {∗})

T2
u = (s = t) 7→

{
{(∗, ∗)} if t ≤ u
∅ otherwise

We can then show that the logical relation generated by T2
u is

exactly =u.

PROPOSITION 3. T � a =u b iff (a, b) ∈ J`κ T : setK2(T2
u).

From this, and parametricity of System FRPω , we have that every
function implementable in System FRPω is deep causal.

THEOREM 4. Every J`κ M : T → UKκ is causal.

This theorem has been mechanically verified [20].

7. Implementation in Agda
Figure 11 shows some simple applications running in a browser.
These are implemented in Agda, using a classic FRP library whose
semantics is given in the style of this paper [19]. There is a match-
ing compiler to ECMAScript, and a run-time system implementing
FRP (which uses the idiomatic HTML5 event model, and an ob-
server pattern for event notification). For example, the clock appli-
cation is defined:

main = text(map toUTCString(every(1 sec)))

where:

• every(1 sec) is a signal of Time, which changes value every
second,
• map f(σ) applies a function f : A→B to a signal σ ofA to get

a signal of B, in this case f is toUTCString : Time→ String,
and
• text(σ) converts a signal σ of String to a signal of DOM nodes.

The types of these combinators are (ignoring some technical issues
about the type for DOM nodes):

every : Delay→ [�〈Time〉]
map : [A⇒B]→ [�A⇒�B]

text : [�〈String〉 ⇒�DOM]

which gives the type of main as [�DOM], that is a signal of DOM
nodes, suitable for rendering in a browser.

The library makes use of Agda’s system for inferring optional
arguments. A function λ{x : A} . M has type ∀{x : A} . T when-
ever M has type T . A function M : ∀{x : A} . B can be applied
to an argument N : A to give a result M{N} : B[N/x]. Agda
will infer optional arguments if they are not provided explicitly3.
We use optional arguments in defining [·]:

[·] : rset→ rset

[·] = λa . ∀{t} . ∀{k : κ t} . a t

So, making the optional arguments explicit, main is defined:

main =

λ{t} . λ{k} .
text{t}{k}

(map

(λ{u} . λ{`} . toUTCString)

{t}{k}
(every(1 sec){t}{k}))

which type checks since:

main : [�DOM] = ∀{t} . ∀{k} . (�DOM(t))

main = λ{t} . M1

M1 : �DOM(t)

M1 = M2{t}{k}(M3)

M2 : [�〈String〉 ⇒�DOM]
= ∀{t} . ∀{k} . (�〈String〉(t)→�DOM(t))

M2 = text

M3 : �〈String〉(t)
M3 = M4{t}{k}(M6)

M4 : [�〈Time〉 ⇒�〈String〉]
= ∀{t} . ∀{k} . (�〈Time〉(t)→�〈String〉(t))

M4 = mapM5

M5 : [〈Time〉 ⇒ 〈String〉]
= ∀{u} . ∀{`} . (Time→ String)

M5 = λ{u} . λ{`} . toUTCString

M6 : �〈Time〉(t)
M6 = M7{t}{k}
M7 : [�〈Time〉] = ∀{t} . ∀{k} .�〈Time〉{t}
M7 = every(1 sec)

3 In this paper, we are eliding the difference between implicit arguments
and instance arguments, since they only differ in the algorithm used to infer
missing arguments.

9 2012/11/1



Figure 11. Example Agda programs running in the browser

Under the hood, the reactive type �A is implemented in ECMA-
Script, with an FFI binding to Agda. The implementation is based
on Acar’s [1] self-adjusting computation. Each signal is imple-
mented as a node in a dataflow graph, which memoizes its current
state. When a node changes state, it sends a notification to each of
its downstream neighbours, which in turn may send further down-
stream notifications.

A simple application of the observer pattern results in glitches,
which are notifications of transitory incorrect values. For example,
in the dataflow graph for the expression x = ¬x, a state change to
x sends a notification to the = node and the ¬ node. If the = node
were to process the notification first, it would read a stale value
from the ¬ node, so send a glitchy notification that its state is true.

To avoid glitches, we adopt a variant of Acar’s technique [1],
which is also used in [8, 10, 28]. Each node is ranked, such that ev-
ery node has smaller rank than its observers. The run time system
ensures that notifications are processed in rank order, which pre-
vents glitches. For example, in the graph for x = ¬x, the = node
would be ranked greater than the ¬ node, so the ¬ node processes
its notification before the = node.

Each node in the dataflow graph maintains a set of pointers to its
downstream observers, which has an impact on garbage collection,
since these pointers may keep nodes alive unnecessarily. Since
ECMAScript does not support weak pointers, we use a reference-
counting scheme to remove any nodes with no observers. To ensure
safety of this scheme, we maintain an invariant for any node of type
�A(s), that after time s, we never add new observers, only remove
them, so it is safe to remove a node which has no observers after
time s. This garbage collection scheme is essentially the same as
Jeltsch [23], but uses Agda’s dependent types to express reactive
types as temporal logic formulae, rather than relying on Haskell
phantom types.

As well as an FRP implementation for GUI programming, the
agda-frp-js library contains mechanizations of the theorems of this
paper [20]. The definitions are essentially as given in this paper: the
main differences are the use of de Bruijn indices for variables, and
universe levels to avoid Set ∈ Set.

The implementation of the FRP library and the compiler from
Agda to ECMAScript is discussed in more detail in [22].

8. Conclusions and further work
In this paper, we have shown that for programs written in Sys-
temFRPω , a kernel language for Haskell extended with time, every
program is parametric. Moreover, we have shown that any paramet-
ric function is deep causal, and so every function implemented in
System FRPω is deep causal. This allows programmers to write
signal functions directly, rather than using an arrowized interface,
without sacrificing causality. It provides the formal basis of the
agda-frp-js [19] FRP library, which allows provably correct appli-
cations to run in a browser. This work leaves open some questions.

In this paper, we have considered System FRPω , which is the
core of FRP programming in Haskell. System FRPωis missing
some important features, notably tagged unions, recursion and re-
cursive types. We expect that tagged unions and recursion would
not be problematic, but recursive types would introduce problems
in the proofs that proceed by induction on type. Also, we have given
a definition of causality for monotypes, and this should be general-
ized to polytypes.

We have not discussed the expressive power of System FRPω ,
and in particular, the existence of loop combinators. Currently
System FRPω has no capabilities for induction over time; for
discrete time models, such an induction combinator could be typed:

∀a . ∀s . (∀t . (s ≤ t)→ a[s, t)→ a t)→ (∀t . (s ≤ t)→ a t)

We expect that such an induction combinator would preserve para-
metricity, and could be used to implement fixed points of type:

∀a . [(�a⇒�a)⇒�a]

where � is the type of decoupled signals:

� : rset→ rset

� = λa . κ . a

where A . B is the strict constrains modality:

(· . ·) : rset→ rset→ rset

(· . ·) = λa . λb . λt . ∀u . a[t, u)→ b u

10 2012/11/1



which is defined in terms of semi-open intervals:

·[·, ·) : rset→ time→ time→ set

·[·, ·) = λa . λs . λu . ∀t . (s ≤ t)→ (t < u)→ a t

This would allow us to statically track coupled and decoupled
signals, giving some of the power of Nilsson and Sculthorpe’s [37]
decoupling matrices.

The style of causality used here is non-monotone in that at
function type the definition is:

T → U � f =u g

whenever U � f(a) =u g(b) for any T � a =u b

which is not monotone in u. A Kripke-style definition would be:

T → U � f =u g

whenever U � f(a) =t g(b) for any T � a =t b and t ≤ u
which is monotone in u. We never required monotonicity in our
results, but it might be interesting to explore the relationship be-
tween causality and Kripke logical relations. As a special case,
step-indexing [3] may shed light on FRP’s loop combinators.

Acknowledgements. Many thanks to the anonymous referees

References
[1] U. A. Acar. Self-Adjusting Computation. PhD thesis, Carnegie Mellon

Univ., 2005.
[2] H. Apfelmus. Reactive-banana. http://www.haskell.org/

haskellwiki/Reactive-banana.
[3] A. W. Appel and D. McAllester. An indexed model of recursive types

for foundational proof-carrying code. Trans. Programming Languages
and Systems, 23(5):657683, 2001.

[4] N. Benton and M. Hyland. Traced premonoidal categories. J. Theo-
retical Informatics and Applications, 37:273–299, 2003.

[5] G. Berry and G. Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Sci. Computer Program-
ming, 19(2):87–152, 1992.

[6] G. Bracha, J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Sun Microsystems, third edition, 2005.

[7] S. Burbeck. Applications programming in smalltalk-80: How to use
model-view-controller (MVC), 1987.

[8] G. H. Cooper and B. Adsul. Embedding dynamic dataflow in a call-
by-value language. In Proc. European Symp. on Programming, pages
294–308, 2006.

[9] A. Courtney. Frappé: Functional reactive programming in Java. In
Proc. Symp. Pratical Aspects of Declarative Languages, pages 29–44,
2001.

[10] J. Donham. Functional reactive programming in OCaml. https:
//github.com/jaked/froc.

[11] ECMAScript language specification. ECMA Standard 262, 5.1 Edi-
tion, 2011.

[12] C. Elliott. Push-pull functional reactive programming. In Proc.
Haskell Symp., 2009.

[13] C. Elliott. Garbage collecting the semantics of
FRP, 2012. http://conal.net/blog/posts/
garbage-collecting-the-semantics-of-frp.

[14] C. Elliott and P. Hudak. Functional reactive animation. In Proc. Int.
Conf. Functional Programming, pages 263–273, 1997.

[15] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII,
1972.

[16] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proc. IEEE Symp. Security and Privacy, pages 11–20, 1982.

[17] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor
formalism for artificial intelligence. Proc. Int. Joint Conf. Artificial
Intelligence, pages 235–245, 1973.

[18] J. Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, 2000.

[19] A. S. A. Jeffrey. agda-frp-js. https://github.com/agda/
agda-frp-js/, 2011.

[20] A. S. A. Jeffrey. agda-frp-js model. https://github.com/agda/
agda-frp-js/blob/master/src/agda/FRP/JS/Model.agda,
2011.

[21] A. S. A. Jeffrey. LTL types FRP: Linear-time temporal logic propo-
sitions as types, proofs as functional reactive programs. In Proc.
ACM Workshop Programming Languages meets Program Verification,
2012.

[22] A. S. A. Jeffrey. Provably correct web applications: FRP in Agda in
HTML5. Submitted for publication, 2012.

[23] W. Jeltsch. Signals, not generators! In Proc. Symp. Trends in Func-
tional Programming, pages 283–297, 2009.

[24] W. Jeltsch. The Curry-Howard correspondence between temporal
logic and functional reactive programming. http://www.cs.ut.
ee/~varmo/tday-nelijarve/jeltsch-slides.pdf, 2011.

[25] N. Krishnaswami and N. Benton. A semantic model for graphical user
interfaces. In Proc. Int. Conf. Functional Programming, pages 45–57,
2011.

[26] T. Leithead, J. Rossi, W3C D. Schepers, B. Höhrmann, P. Le Hégaret,
and T. Pixley. Document object model (DOM) level 3 events spec-
ification. W3C Working Draft, 2012. http://www.w3.org/TR/
DOM-Level-3-Events/.

[27] K. L. McMillan. Circular compositional reasoning about liveness.
In Proc. IFIP WG 10.5 Correct Hardware Design and Verification
Methods, pages 342–345, 1999.

[28] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: A programming lan-
guage for ajax applications. In Proc, ACM Conf. Object-Oriented Pro-
gramming Systems, Languages and Applications, pages 1–20, 2009.

[29] K. S. Namjoshi and R. J. Trefler. On the competeness of compositional
reasoning. In Proc. Int. Conf. Computer Aided Verification, pages 139–
153, 2000.

[30] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive program-
ming, continued. In Proc. ACM Workshop on Haskell, pages 51–64,
2002.

[31] R. Paterson. A new notation for arrows. In Proc. ACM Int. Conf.
Functional Programming, pages 229–240, 2001.

[32] G. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoret-
ical Computer Science, 1:125–159, 1975.

[33] A. Pnueli. The temporal logic of programs. In Proc. Symp. Founda-
tions of Computer Science, pages 46–57, 1977.

[34] A. J. Power and E. Robinson. Premonoidal categories and notions of
computation. Math. Structures in Comp. Sci., 7:453–468, 1997.

[35] A. J. Power and H. Thielecke. Closed Freyd- and kappa-categories.
In Proc. Int. Colloq. Automata, Languages and Programming, pages
625–634. Springer, 1999.

[36] J. C. Reynolds. Types, abstraction, and parametric polymorphism. In
Information Processing, pages 513–523, 1983.

[37] N. Sculthorpe and H. Nilsson. Safe functional reactive programming
through dependent types. In Proc. ACM Int. Conf. Functional Pro-
gramming, pages 23–34, 2009.

[38] N. Sculthorpe and H. Nilsson. Keeping calm in the face of change:
Towards optimisation of FRP by reasoning about change. J. Higher-
Order and Symbolic Computation, 23(2):227–271, 2010.

[39] E. Sumii and B. C. Pierce. Logical relations for encryption. J.
Computer Security, 11(4):521–554, 2003.

[40] P. Wadler. Theorems for free! In Proc. Int. Conf. Functional Program-
ming and Computer Architecture, pages 349–359, 1989.

[41] Yale Haskell Group. Yampa library for programming hybrid systems.
http://www.haskell.org/haskellwiki/Yampa.

11 2012/11/1


