
Under consideration for publication in Math. Struct. in Comp. Science

An Extensible Approach to Session Polymorphism†

Matthew Goto1, Radha Jagadeesan1, Alan Jeffrey2, Corin Pitcher1, and James Riely1

1School of Computing, DePaul University and 2Alcatel-Lucent Bell Labs

Received December 2011

Session types describe and constrain the input/output behavior of systems. Existing session typ-
ing systems have limited support for polymorphism. For example, existing systems cannot provide
the most general type for a generic proxy process that forwards messages between two channels.
We provide a polymorphic session typing system for the π calculus, and demonstrate the utility
of session-type-level functions in combination with polymorphic session typing. The type system
guarantees subject reduction and safety properties, but not deadlock freedom. We describe a for-
malization of the type system in Coq. The proofs of subject reduction and safety properties, as well
as typing of example processes, have been mechanically verified.

Contents

1 Introduction 2
1.1 Session Polymorphism 2
1.2 Session Transducers 4
1.3 Deduction 5
1.4 Formalization 5
1.5 Organization 6

2 Operational Model 6
2.1 Process Language 6
2.2 Reduction Semantics 7
2.3 Label Selection and Branching 9

3 Polymorphic Session Typing 11
3.1 Session Types 11
3.2 Formalization 14
3.3 Binding in Session Polymorphism 16
3.4 Extensiblity 18
3.5 Type Assignment 20

4 Examples 25
4.1 Recursive Procedures 25
4.2 Forwarding Processes 27
4.3 The Alternating Bit Protocol 30

† This material is based upon work supported by the National Science Foundation under Grant No. 0916741.



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 2

5 Type Soundness Results 32
5.1 Auxiliary Results 32
5.2 Subject Reduction 33
5.3 Runtime Safety 35
5.4 Conformance 36

6 Related Work 38
7 Conclusion 41
References 42

1. Introduction

Session types for communication-centered programming (Takeuchi et al., 1994; Honda et al.,
1998) specify the interaction between the sender and receiver on a communication channel
within the channel’s type. For example, in the syntax of (Gay and Hole, 2005) the session type
?[int].?[int].![int].end describes a channel endpoint upon which two integers are received and an
integer is subsequently transmitted. Modeling more complex protocols makes use of branching
and recursion in session types. Session type systems were originally developed for process cal-
culi, but have been adapted to functional (Vasconcelos et al., 2006) and object-oriented (Coppo
et al., 2007; Gay et al., 2010) programming languages. There are implementations of session
typing—providing static typechecking of I/O—for languages such as Haskell (Neubauer and
Thiemann, 2004a; Sackman and Eisenbach, 2008; Pucella and Tov, 2008; Kiselyov et al., 2010)
and Java (Hu et al., 2008).

However, current approaches to session types provide inadequate support for session poly-
morphism and extensibility via user-defined session-type functions. Consequently, a software
component with generic I/O behavior may have to be typechecked once for each communication
protocol with which it is used. In this paper, we define a type system that supports polymorphism
over session types. This is the first session type system that can assign a useful polymorphic
session type to a generic buffer process that forwards messages from one channel to another.
Building on ideas from dependent type theory, we integrate functions over session types into the
type system. Our type system guarantees that the type of a message occurring in an output is per-
mitted by the typing of the process. The type system, examples, and proofs of subject reduction
and safety properties have been formalized in Coq. The Coq definitions and proofs are available
online (Goto et al., 2011).

In the remainder of this section, we provide an overview of the current support for polymor-
phism in session typing systems, its limitations, and outline our solution.

1.1. Session Polymorphism

Consider a recursively-defined sink process that repeatedly reads and discards messages from a
channel parameter lft:

proc sink(lft)= lft?x.sink(lft)

We model session types as labelled transition systems, where states are session types and la-
belled transitions represent input and output events, following the semantic subtyping approach



An Extensible Approach to Session Polymorphism 3

(Castagna et al., 2009). Then, intuitively, the lft parameter in the sink process above should have
a session type sink that permits a self transition upon input of a value of the top type Top, written
as:

sink ?Top−−−→sink

A channel with session type sink may be read to yield a value of type Top, and the channel
will have type sink in the continuation. (In the syntax of (Gay and Hole, 2005), sink would be
recursively defined as sink = µX .?[Top].X .)

Session subtyping (Gay and Hole, 2005; Castagna et al., 2009) allows sink to accept channels
with session types that are subtypes of sink. However, session subtyping can yield types that are
too weak. For example, in the following echo process, each message received on a channel lft is
echoed back on the same channel.

proc echo(lft)= lft?x.lft!x.echo(lft)

Since x is given the type Top, the echo process should permit subtypes of the session type echoTop

satisfying:

echoTop
?Top!Top−−−−−−→echoTop

where we write s0
m0m1...mn−−−−−−→sn+1 for a sequence of transitions s0

m0−−→s1
m1−−→ . . . mn−−→sn+1 when the

intermediate session types are uninteresting.
Unfortunately, the session type echoint satisfying

echoint
?int!int−−−−→echoint

(upon which a process is expected to read an integer and then send an integer) is not a subtype
of echoTop. The closest approximation

echointTop
?int!Top−−−−−→echointTop

is weaker because responses are only constrained to be a subtype of Top instead of int.
In seeking expressiveness beyond that provided by session subtyping, (Dezani-Ciancaglini

et al., 2007b; Gay, 2008) investigate bounded polymorphism in the context of session types.
Bounded polymorphism allows the echo process to be used with subtypes of a session type
echo∀ satisfying:

∀a <: Top,(echo∀
?a!a−−−→echo∀)

That is, a process reads from a channel with session type echo∀ yielding a value of some type
parameter a, a subtype of Top, and then sends a value of type a back on the same channel.

However, common generic processes cannot be typed adequately with bounded polymor-
phism. Consider the unidirectional forwarder process that copies messages from channel lft to
channel rht:

proc fwd(lft,rht)= lft?x.rht!x.fwd(lft,rht)

For any session type s, it should be possible to use the fwd process with channel lft assigned
session type s and rht assigned session type (dual s), where the dual operation replaces inputs
with outputs and vice versa. The forwarder process will not produce incorrect output on rht, as
long as it receives correct input on lft. We refer to this different form of polymorphism as session
polymorphism.



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 4

To enable session polymorphism we allow processes to read on channels with abstract session
types and incorporate deductive reasoning principles about session types into the type system. In
contrast, bounded polymorphism (Dezani-Ciancaglini et al., 2007b; Gay, 2008) prevents reads
on channels with abstract session types, precluding the typing of fwd.

A call to the fwd process generates a single use channel upon which to pass the parameters lft
and rht. This single use channel is given the polymorphic session type fwd satisfying:

∀ s, (fwd ?Ch(s) ?Ch(dual s)−−−−−−−−−−→end)

This specification of the session type fwd states that a channel with session type fwd may be used
to read two channels with session types s and (dual s) respectively. For example, if a channel n
has type Ch(fwd), then we expect that lft and rht have dual session types at the point where they
are read in a one-step forwarding process:

n?lft.n?rht.lft?x.rht!x

Then the key to our type system is that the fwd process may read upon the channel lft with
session type s, and we deduce that s permits reading a value of some type a. Moreover, we can
deduce that (dual s) permits writing a value of type a, thus justifying typing of the fwd process.

1.2. Session Transducers

Polymorphism allows code to place requirements on some of the structure of a session type
and be parametric in the remainder. For example, consider the translation process below that
forwards tokens from lft to rht, but substitutes a COLOR token for each COLOUR token. We seek
a polymorphic session typing for the translate process where the session type for rht is described
in terms of the session type for lft.

proc translate(lft,rht)=
lft?x.( [x=COLOUR]rht!COLOR.translate(lft,rht)

+[x 6=COLOUR]rht!x.translate(lft,rht))

We take inspiration from dependent type theory and recent implementations of type-level func-
tions (Kiselyov et al., 2010; Jeffrey and Rathke, 2011) by adopting type-level functions that act
upon session types, referred to as session-type functions in the sequel. An open-world assumption
applies to session types, and we allow users to define new session-type functions. Session-type
functions are specified in terms of the input and output transitions of their session type parame-
ters.

To illustrate in the context of the translate process, we define a unary session-type function
translate : session⇒ session acting as a transducer on session types using the following infer-
ence rules:

∀ s s′, (s ?{COLOUR}−−−−−−−→s′) ⇒ (translate(s) ?{COLOR}−−−−−−→ translate(s′))

∀ s k s′, k 6=COLOUR ⇒ (s ?{k}−−−→s′) ⇒ (translate(s) ?{k}−−−→ translate(s′))

The first inference rule states that if the underlying session type s allows an input of singleton type
{COLOUR} — in which case the value received must be the token COLOUR — then translate(s)
allows an input of singleton type {COLOR}. The second inference rule states that any other token



An Extensible Approach to Session Polymorphism 5

that can be input on s can be input on translate(s). It is implicit that these are the only rules
defining the behavior of translate, and we make use of the associated inversion rule to type
processes.

1.3. Deduction

In prior session type systems, the typing rule for an input command lft?x.P requires the chan-
nel lft to be assigned a session type S such that an input transition S ?A−→T follows from the
semantics of S. As suggested in the fwd example above, the key to our solution is a relaxation
of input typing: any session type associated with lft permits input, including session types with
free session-type variables. For example, in typechecking lft?x.P, the continuation process P is
typed in a context extended with an input transition hypothesis S ?a−→ t, for a fresh type variable a
and a fresh session-type variable t. Runtime violations of the protocols specified by session types
are prevented by the standard session-typing discipline for output commands.

Transition hypotheses serve two roles in typing. Firstly, they may be used directly to justify the
typing of an output command. Secondly, they may be used in the deduction of (in)equations and
other transition hypotheses. For example, from translate(S) ?A−→T and the equation A={COLOR},
we deduce that there exists a session type T ′ such that S ?{COLOR}−−−−−−→T ′ and T = translate(T ′). This
deduction arising from input transitions can be seen as type refinement (Freeman and Pfenning,
1991; Gordon and Fournet, 2010) arising from input commands.

1.4. Formalization

We formalize our polymorphic session-type system for the π calculus within Coq. The permis-
sible deductions about transitions are given a shallow embedding in Coq for readability and
convenience in our mechanized proofs. Other logical systems with support for inductive fami-
lies of data types (Coquand and Paulin-Mohring, 1990; Dybjer, 1991; Coquand, 1992) could be
substituted in place of Coq.

Session typing requires a linear type system, and consequently we use a deep embedding of
the process typing judgement within Coq. We represent π calculus processes using first-order ab-
stract syntax. (See (Röckl and Hirschkoff, 2003) for an analysis of deep vs. shallow embeddings
and first-order vs. higher-order abstract syntax in the context of the π calculus.) To facilitate
reasoning with first-order syntax we adopt a locally-nameless representation of π variables and
names, following the well-established use of locally-nameless representation in λ calculi (Ay-
demir et al., 2008; Charguéraud, 2012).

The Coq formalization has been used to establish subject reduction, and, hence, freedom from
runtime errors and communication error, where communication protocols for channels are spec-
ified via their session types. The proofs of these safety results do not include additional axioms.

The type system presented here sacrifices deadlock freedom (or progress) guarantees. Whether
this trade off between deadlock freedom guarantees and session polymorphism is necessary is
left to future work (we discuss this point further in Section 6).

Nevertheless, we argue that safety results are particularly useful in a polymorphic setting via
a series of examples. These examples culminate in Example 13 where we validate the theory
by showing that an implementation of the alternating-bit protocol (ABP) admits a polymorphic



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 6

session typing. The ABP provides error correction over lossy channels, and is thus a surprising
candidate for a non-degenerate session typing. Session-type functions are used to express the
invariants of internal lossy channels in relationship to external channels, including a static indi-
cation of which messages have been successfully delivered. However, the external interface to
the ABP has a straightforward typing that, in essence, indicates that the ABP acts as the identity
on channels carrying tokens. The following Coq statement gives the process typing judgement
|-p for the ABP process abp with external channels lft and rht that are assigned session types
SToks s and SDual (SToks s) respectively:

abp typing : forall s : session,
CTX.add (Nm (Free "lft"), TChannel (SToks s))

(CTX.add (Nm (Free "rht"), TChannel (SDual (SToks s)))
CTX.empty) |-p abp (Nm (Free "lft")) (Nm (Free "rht"))

In this statement, abp typing is the name of a constructive proof of a proposition about
process typing. The proof uses the type system defined in this paper. The process typed is
abp (Nm (Free "lft")) (Nm (Free "rht")), where abp is a Coq function that returns a
representation of the π process for the ABP when given two values (names in this case) to use as
the external channels. The typing occurs in a process context that adds types for the values to the
empty context. The session types in the channel types assigned to the names refer to a universally
quantified session variable s. Thus the proof of abp typing can be instantiated at any session
type.

1.5. Organization

In Sections 2 and 3, we present our process language and polymorphic session type system. We
demonstrate the type system in a series of detailed examples in Section 4. The final example
shows that our typing system is powerful enough to show partial correctness of the alternating
bit protocol, demonstrating the use of polymorphic session typing with lossy channels. Section 5
presents our subject reduction and safety results. Section 6 describes related work. We conclude
in Section 7 with a summary of our contributions and directions for future work.

2. Operational Model

In this section we describe the process language and its operational semantics.

2.1. Process Language

The process language is a synchronous π calculus (Milner et al., 1992) with matching and mis-
matching tests. (Mis)matching tests compare not channels but a distinguished set of values that
we refer to as tokens. Tokens may be compared and transmitted, but cannot be generated by ννν .
We use tokens to represent primitive data, and as labels for an encoding of the standard label
selection and branching for session types (Takeuchi et al., 1994; Honda et al., 1998).

The original π calculus does not distinguish the endpoints of a channel by polarities, and nor
does the session type system described in (Honda et al., 1998). We follow (Gay and Hole, 2005)
in using polarized channel names in conjunction with session typing. That is, we distinguish the



An Extensible Approach to Session Polymorphism 7

u,v ::=n (Channel name value)
|n (Channel coname value)
|k (Token value)
|x (Variable value)

P,Q,R ::=0 (Zero process)
|u!v.P (Output process)
|u?x.P (Input process)
|[u=v]P (Match process)
|[u6=v]P (Mismatch process)
|(νννn)P (New name process)
|P+Q (Choice process)
|P|Q (Parallel process)
|*P (Replication process)

Fig. 1: Values and Processes

name n from the coname n, representing the two sides of a channel. Conames are not themselves
names, but are a derived set. Both names and conames are values, which may be communicated
independently; thus, the ννν operator creates one name, but two values. The distinction between
the name and coname is arbitrary but must be maintained consistently throughout an execution.

Formally, we distinguish three disjoint sets of identifiers: names, n; tokens, k, `; and variables,
x, y. We use the term channel to include both names and conames. Channels, tokens and variables
are values. Values and processes are defined in Figure 1.

In examples, we sometimes drop final occurrences of 0. The variable x is bound by input
(u?x.P) with scope P. The name n and coname n are bound by restriction in ((νννn)P) with
scope P. There are no binders for tokens. We identify syntax up to renaming of bound variables
and names and write P{u/x} for the capture-free substitution of u for x in P. Let fv(P) denote the
set of free variables in a process, fn(P) the set of free names, and fval(P) the set of values. For
example, fval((νννn′)n?x.n!n′.0) = {n, n, x}.

Processes are identified up to the structural equivalence, written P≡Q, as defined in Figure 2.

2.2. Reduction Semantics

The standard reduction semantics (Milner, 1991) for π describes the effects of interaction but not
the interaction itself. Following (Gay and Hole, 2005), we annotate the reduction relation with
observations about values communicated on channels that are not hidden, in order to reason about
interactions and session types. These observations are referenced in the statement of subject
reduction (Theorem 5) and conformance (Theorem 7).

The sets of observable values and observations are defined in Figure 3. The observable values
represent communicated values. An observable value is either a token k, or ? which represents
any channel name or coname. Thus, the observations can be used to distinguish processes that
communicate different tokens, but cannot be used to observe the identity of communicated chan-
nels. This is natural in the context of session typing, because session types describe the I/O
capabilities of channels rather than their identity.



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 8

P≡ P
P≡ Q
Q≡ P

P≡ Q Q≡ R
P≡ R *P≡ P|*P

P+0≡ P P+Q≡ Q+P P+(Q+R)≡ (P+Q)+R
n /∈ fn(Q)

((νννn)P)+Q≡ (νννn)(P+Q)

P|0≡ P P|Q≡ Q|P P|(Q|R)≡ (P|Q)|R
n /∈ fn(Q)

((νννn)P)|Q≡ (νννn)(P|Q)

(νννn)0≡ 0
n /∈ fn(P)
(νννn)P≡ P (νννn)(νννn′)P≡ (νννn′)(νννn)P

P≡ P′

P+Q≡ P′+Q
P≡ P′

P|Q≡ P′|Q
P≡ P′

(νννn)P≡ (νννn)P′

Fig. 2: Structural Equivalence for Processes

γ ::=k (Token observable value)
|? (Hidden channel observable value)

α ::=n?γ (Input observation)
|n!γ (Output observation)
|τ (Silent observation)

Fig. 3: Observable Values and Observations

In the definition of the reduction relation below, the identity of channels is hidden using the
function obsv, which maps a non-variable value to an observable value. It is defined by obsv(k) M

=

k for any token, and otherwise obsv(u) M
= ?.

Observations represent: (1) an input of observable value γ on channel n, written n?γ; (2) an
output of observable value γ on visible channel n, written n!γ; or (3) a hidden operation, such as
interaction on a hidden channel, written τ . The operation (α \ n) hides the (channel) name n in
observation α .

α \n =

{
τ if α = n?γ or α = n!γ

α otherwise

Finally, the annotated reduction relation P α−→ P′ captures reduction from a process P to P′,
yielding observation α . It is defined in Figure 4.

The annotated reduction rules for structural equivalence and parallel composition are straight-
forward. Matching and mismatching tests compare tokens, but not variables or (co)names. Later,
runtime safety ensures that only tokens are compared in well-typed processes with no free vari-
ables.

Communication between name n and coname n results in an observable annotation for n. For
example, consider the annotated reduction sequence:

(n!k.n?y.0)|(n?x.n!n′.0) n!k−−→ (n?y.0)|(n!n′.0) n??−−→ 0



An Extensible Approach to Session Polymorphism 9

((n!u.P1)+P2)|((n?x.Q1)+Q2)
n!obsv(u)−−−−−−→ P1|Q1{u/x}

((n!u.P1)+P2)|((n?x.Q1)+Q2)
n?obsv(u)−−−−−−→ P1|Q1{u/x}

P≡ Q Q α−→ Q′ Q′ ≡ P′

P α−→ P′
P α−→ P′

P|Q α−→ P′|Q

P α−→ P′

(νννn)P α\n−−→ (νννn)P′

[k=k]P τ−→ P

k 6= `

[k 6=`]P τ−→ P

Fig. 4: Reduction Relation

The session type system in Section 3 requires that n be assigned a session type permitting an
output of token k, followed by an input of a channel.

Annotated reduction is notationally similar to reduction in a labelled transition system (LTS),
but it is semantically unrelated. Our non-τ annotations indicate completed interactions, rather
than potential ones as in an LTS. Our τ annotations indicate hidden interactions, rather than
completed ones as in an LTS.

2.3. Label Selection and Branching

Our choice of process language differs from earlier work by the omission of branching and
choice based on labels. This omission is motivated by additional expressive power arising from
the introduction of (in)equational constraints in the type system; and the desire for a minimal
core language. Our process language is sufficiently expressive to encode branching and choice
constructs via ordinary communication and matching/mismatching tests.

Recall the selection u� l.P and branching u� {l1 : P1 8 l2 : P2 8 . . . 8 ln : Pn} constructs from
(Honda et al., 1998). The expected reductions for selection and branching with polarized chan-
nels are given by (we omit the reduction when n and n are swapped):

(n� li.P)|(n�{l1 : P1 8 l2 : P2 8 . . .8 ln : Pn})→ P|Pi

We now define an encoding of selection and branching constructs in our process language. In
Section 3 we provide derived typing rules for these encodings. We restrict attention to binary
selection and branching for brevity. First, assume that the set of labels used for selection and
branching is a subset of the set of tokens. We let l range over tokens used as labels. The selection
construct u� l.P is encoded as an output:

u� l.P M
= u!l.P

The encoding for branching u� {l1 : P1 8 l2 : P2} inputs a label (token) on u, and then uses
choice to ensure that at most one of the branches P1, P2 is executed—this is necessary to sup-
port the expected derived typing rules for branching. Intuitively, we would like the following



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 10

encoding.

u�{l1 : P1 8 l2 : P2}= u?x.([x=l1]P1 + [x=l2]P2)

However, our semantics only reduces interactions that sit immediately inside a choice. We could
modify the semantics so that (mis)matching is treated using structural equivalence rather than
reduction. Here, instead, we leave reduction alone and present a slightly more complex encoding
for branching.

The encoding signals the components of the choice process from matching processes that
examine the label. We assume a token ? for such signaling. Then we encode branching as follows
(where the variable y and names n1, n2 for signaling channels are fresh for P1 and P2):

u�{l1 : P1 8 l2 : P2})
M
= u?x.(νννn1)(νννn2)( [x=l1]n1!?

| [x=l2]n2!?
| [x 6=l1][x 6=l2]error!?
| ((n1?y.[x=l1]P1)+(n2?y.[x=l2]P2)))

The name error is used to indicate when the input label matches neither l1 nor l2. We discuss this
further below. The presence of operationally-redundant tests [x=li] under choice is for typing
purposes; they would be eliminated with a more sophisticated construct that performed matching
and mismatching in conjunction with choice.

Define the relation P1
α−→τ Pn to hold iff P1

α−→ P2
τ−→ . . . τ−→ Pn−1

τ−→ Pn.The encodings of
selection and branching have the following reductions (again, we omit the reductions when n
and n are swapped):

(n� l1.P)|(n�{l1 : P1 8 l2 : P2}) n!l1−−→τ P|P1|(νννn1)(νννn2)([l1=l2]n2!?|[l1 6=l1][l1 6=l2]error!?)

(n� l2.P)|(n�{l1 : P1 8 l2 : P2}) n!l2−−→τ P|P2|(νννn1)(νννn2)([l2=l1]n1!?|[l2 6=l2]error!?)

The remaining matching and mismatching subprocesses are not garbage collected, but are stuck
and so do not affect subsequent computation.

If l1 = l2, both of the reductions above are possible, but only one of the subprocesses P1, P2

will be chosen as discussed above. However, it is necessary to assume l1 6= l2 to derive the usual
typing rule for (our encoding of) branching.

We now return to the case when a token k 6∈ {l1, l2} is sent on n. In order to observe the
synchronous transmission on error via the annotated reduction relation, we place processes in
parallel with the process error?z that receives a message on error—such parallel composition
does not enable additional reductions when either l1 or l2 is sent on n, because transmission on
error occurs after stuck mismatching tests.

error?z|(n� k.P)|(n�{l1 : P1 8 l2 : P2}) n!k−−→τ
error!?−−−−→

P|(νννn1)(νννn2)(([k=l1]n1!?|[k=l2]n2!?)|(n1?y.[k=l1]P1+n2?y.[k=l2]P2))

This sequence of annotated reductions captures both the erroneous transmission of k 6∈ {l1, l2}
and the subsequent use of a channel error that is intended to have no interaction. Both transmis-
sions are prevented in well-typed processes by conformance Theorem 7 (see Example 14).

The reader familiar with session types may wonder about the typing of error!? when error
has a session type that permits no interaction. We address this point in Section 3.



An Extensible Approach to Session Polymorphism 11

A,B ::= {k} (Singleton type)
|Ch(S) (Channel type)

M ::=!A (Output message)
|?A (Input message)

S,T ::=end (Terminal session)
|M.S (Message prefix session)
|S+T (Union session)
|dual S (Dual session)
| · · ·

Fig. 5: Types, Messages, and Sessions

3. Polymorphic Session Typing

In this section we describe our polymorphic session type system for the π calculus.
Section 3.1 provides an overview of LTS semantics for session types. Section 3.2 formalizes

the semantics using logical deduction. Section 3.3 shows the treatment of binding in session
polymorphism. Section 3.4 describes our approach to extensibility of session types. Section 3.5
defines type assignment for processes in terms of the LTS semantics and discusses derived rules
for label selection and branching.

3.1. Session Types

Our session types control the messages transmitted on channels. Messages indicate the direction
of communication and the type of communicated data. Figure 5 defines syntactic categories for
types, messages, and sessions. We use session and session type interchangeably.

Types and messages are straightforward. A type may be a singleton type {k}, for a token k, or
a channel type Ch(S), for a session S. The only inhabitant of the singleton type {k} is the token
k. A channel with channel type Ch(S) must obey the protocol described by S. A message may be
an output !A or an input ?A, for a type A.

A session may be end which indicates that no communication is possible, M.S representing
prefixing of session S by message M, or the union S+T of sessions S and T .

Additionally, (dual S) represents the dual of another session S. The dual session (dual S) re-
verses the direction of messages within the session S — we make this precise below. In the
sequel, the two endpoints n and n of a channel are assigned channel types where one session is
the dual of the other.

The type system is designed so that the grammar of sessions is extensible, indicated by the
ellipsis in the definition. One example of a new session type constructor is translate from Sec-
tion 1.2. Further examples are described in this section and Section 4. This raises the question of
how meaning is assigned to new session type constructors, and, more generally, for all session
types.

The meaning of a session type is conventionally circumscribed by its use in type assignment
rules. As discussed in Section 1, our type system decouples the meaning of a session type from
its use in type assignment rules by introducing an LTS to describe the I/O operations permitted in



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 12

(!k1.!k3.end)+(!k2.!k4.end)

!k3.end

!k4.end

end

end

!{k1}

!{k2}

!{k3}

!{k4}

Fig. 6: Labelled Transition System with Output Branching

the current state of a channel. This decoupling allows reasoning about transitions independently
of the syntax of a session type, and consequently supports session polymorphism. Moreover, the
use of an LTS semantics permits a modular description of session type constructors.

A labelled transition S M−→T indicates that interaction with a message M on a channel in state
S results in a channel in state T . The message M may be an input or an output. The labelled
transitions for the sessions referenced above can be stated directly. The session end has no tran-
sitions. The prefix session has a single transition M.S M−→S. The union session has a transition
S+T M−→S′ whenever S M−→S′, and a transition S+T M−→T ′whenever T M−→T ′. The dual session
has a transition (dual S) ?A−→(dual S′) whenever S !A−→S′, and a transition (dual S) !A−→(dual S′)
whenever S ?A−→S′. Labelled transitions can also be defined for new session types with recursive
behavior. The formal LTS semantics for these and other session types is given in Section 3.2.

We next consider a series of examples to illustrate how session types and their LTSs control
the behavior of processes. In these examples, we informally state that processes obey session
types assigned to channels rather than discussing type assignment. Formal type assignment for
processes is deferred to Section 3.5.

Example 1 and Example 2 demonstrate branching for output and input messages respectively.
Here, we refer to branching in the LTS, rather than the dual concepts of label selection and label
branching found in session types.

Example 1 (Output branching). Consider the session type S = (!k1.!k3.end)+(!k2.!k4.end).
The corresponding LTS for S is shown in Figure 6. Suppose that a channel endpoint n is assigned
type Ch(S). Then a process is allowed to send either k1 followed by k3, or k2 followed by k4.
Thus the processes n!k1.n!k3 and n!k2.n!k4 obey the session type S.

Unlike (Honda et al., 1998), we allow the terminal process 0 when channels are not in a termi-
nal state. For example, the processes n!k1 and 0 also obey the session type S. This demonstrates
that the output on channel n can be a prefix of the tokens output on a path from S in processes
that have neither deadlock nor divergence.

The order of messages in an LTS is significant. This means that n!k3 does not obey the session
type if k3 6∈ {k1,k2}. Similarly, n!k2.n!k3 does not obey the session type S if k1 6= k2 and k3 6=
k4. 2

Session type LTSs are intended to control the output operations on a channel rather than the
input operations and subsequent matching and mismatching operations. Nevertheless, transitions
labelled with input messages control the evolution of session types. Example 2 illustrates this
asymmetry between input and output.

Example 2 (Input branching). Consider the session type S = (?k1.!k3.end) + (?k2.!k4.end).



An Extensible Approach to Session Polymorphism 13

(?k1.!k3.end)+(?k2.!k4.end)

!k3.end

!k4.end

end

end

?{k1}

?{k2}

!{k3}

!{k4}

Fig. 7: Labelled Transition System with Input Branching

The corresponding LTS for S is shown in Figure 7. Suppose that a channel endpoint n is assigned
type Ch(S). If input is received on n, then it may be either k1 or k2. If k1 is received, then an
output of k3 is allowed. Similarly, k4 can be output if k2 was received.

There are no requirements for processes to read an input, to use a received value, or to send
output after an input. For example, the processes 0 and n?x both obey the session type S.

Suppose k1 6= k2 or k3 = k4. Since the output of k3 is conditional upon first receiving k1, in
general the process n?x.n!k3 does not obey the session type S. However, if the input is found
to be k1, then the output k3 is enabled. In particular, the process n?x.[x=k1]n!k3 does obey the
session type S.

To see why k1 6= k2 or k3 = k4 is necessary suppose that k1 = k2 and k3 6= k4. Then the process
n?x.[x=k1]n!k3 does not obey the session type S, because the output process n!k3 obeys the
first branch’s session type !k3.end, but does not obey the second branch’s session type !k4.end.
This highlights the universal nature of analysis for input processes: every possible labelled tran-
sition must be considered after an input occurs. In contrast, analysis for output processes is
existential: some labelled transition must exist for an output to be permitted.

Finally, suppose that k3 = k4. In this case, the process n?x.n!k3 also obeys the session type S
without performing any matching to determine whether x = k1 or x = k2. The match is unneces-
sary because the output can occur in either branch of the original session type. 2

Perhaps surprisingly, we do not prohibit input operations in processes. That is, an input opera-
tion is allowed at any session type, even if the session type has no input. This is for two reasons.
Firstly, we believe that a framework for session polymorphism must, at least, accommodate the
unidirectional forwarding process (see Section 1.1 and Example 11). It is unclear how to control
the input operation in this process in a way that works for all session types. Secondly, control over
output operations is sufficient because it ensures that channels only carry values permitted by a
session type, yielding subject reduction, runtime safety, and conformance results (see Section 5
for further discussion).

The free use of input operations in processes is demonstrated in the next example.

Example 3 (Terminal). The session end has no transitions. Suppose that n is assigned type
Ch(end). The process n!k does not obey the session type end, because output is controlled and
end has no output transitions.

In contrast, the process n?x does obey the session type end, despite the lack of input transitions
from end, because input is not controlled.

However, the continuation of an input process is checked under the assumption that an input
occurs. To see the consequences, consider a separate channel error that also has type Ch(end). In



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 14

(?k1.!k3.end)+(!k2.!k4.end)

!k3.end

!k4.end

end

end

?{k1}

!{k2}

!{k3}

!{k4}

dual ((?k1.!k3.end)+(!k2.!k4.end))

dual (!k3.end)

dual (!k4.end)

dual end

dual end

!{k1}

?{k2}

?{k3}

?{k4}

Fig. 8: Labelled Transition System with Input and Output Branching

this case, the process n?x.error!k obeys the session types for n and error because no input can
occur on n (since it has type Ch(end)), and so the output on error cannot occur. In other words,
error!k is identified as unreachable code. Technically, the assumption of an input transition from
end, in conjunction with the inversion principle that there are no input transitions from end, yields
a contradiction that allows typing of error!k. This is verified by the type system in Section 3.5.2

Unlike the session types of (Honda et al., 1998), our session types may have labelled transitions
for both input and output from the same state. Example 4 illustrates the effect on processes.

Example 4 (Input and output branching). Consider S = (?k1.!k3.end) + (!k2.!k4.end). The
corresponding LTSs for S and (dual S) are shown in Figure 8. Suppose that the channels n and
n are assigned types Ch(S) and Ch(dual S) respectively. There are two possible interactions that
can occur on n. Either the token k1 is received on n or the token k2 is sent on n. Synchronous
interaction ensures that k2 cannot be sent on n whilst k1 is sent on n. The processes n?x.n!k3 and
n!k2.n!k4 both obey the session type S. Hence, the composite process (n?x.n!k3)+(n!k2.n!k4)

also obeys the session type S. 2

3.2. Formalization

We now turn to the formalization of the labelled transition relation for session types in Coq.
The sets of types, messages, and session types seen previously are defined in a straightforward

way by mutual induction in Coq (Bertot and Castéran, 2004), following the grammar of Figure 5.
Variables for session types are encoded as Coq variables of type session. Similarly for type and
message variables. We use the following naming convention when we bind types, messages,
and sessions explicitly: a for types, m for messages, and s for sessions. In the typing rules of
Section 3.5, this serves to highlight the binding that occurs in the treatment of input. However,
this is merely a convention, since both s and S denote Coq variables of type session.



An Extensible Approach to Session Polymorphism 15

Inductive transition : session⇒ message⇒ session⇒ Prop :=

(* Part 1 *)

| TRPrefix : ∀ s m, (m.s m−→s)

| TRUnion1 : ∀ s1 s2 t1 m, (s1
m−→ t1)⇒ (s1 + s2

m−→ t1)

| TRUnion2 : ∀ s1 s2 t2 m, (s2
m−→ t2)⇒ (s1 + s2

m−→ t2)

| TRDual1 : ∀ s t a, (s !a−→ t)⇒ (dual s ?a−→dual t)

| TRDual2 : ∀ s t a, (s ?a−→ t)⇒ (dual s !a−→dual t)

(* Part 2 *)

| TRFwd : ∀ s, (fwd ?Ch(s) ?Ch(dual s)−−−−−−−−−−−→end)

| TRSink : ∀ s, (sink ?Ch(s)−−−−→sink)

| TRFun : ∀ a, (fun a ?a−→ fun a)

(* Part 3 *)

| TRFwdPrefix : ∀ s, k, (fwdprefix k ?Ch(s)?Ch(!{k}.(dual s))−−−−−−−−−−−−−−−→end)

| TRTranslate1 : ∀ s s′, s ?{COLOUR}−−−−−−−→s′ ⇒ translate(s) ?{COLOR}−−−−−−→translate(s′)

| TRTranslate2 : ∀ s k s′, k 6=COLOUR ⇒ s ?{k}−−−→s′ ⇒ translate(s) ?{k}−−−→ translate(s′)

| TRTranslate3 : ∀ s s′, s !{COLOUR}−−−−−−−→s′ ⇒ translate(s) !{COLOR}−−−−−−→translate(s′)

| TRTranslate4 : ∀ s k s′, k 6=COLOR ⇒ s !{k}−−−→s′ ⇒ translate(s) !{k}−−−→ translate(s′)
. . .

where“s m−→ t” := (transition s m t).

Fig. 9: Coq Encoding of the Labelled Transition Relation

Lemma stop inv : ∀ m t,(end m−→ t)⇒ False.

Lemma prefix inv : ∀ m s m′ s′ (Φ : Prop),
((m = m′ ∧ s = s′)⇒Φ)⇒ ((m.s m′−→s′)⇒Φ).

Lemma union inv : ∀ s1 s2 m t (Φ : Prop),
((s1

m−→ t)⇒Φ)⇒ ((s2
m−→ t)⇒Φ)⇒ ((s1 + s2

m−→ t)⇒Φ).

Lemma dual inv : ∀ s m t (Φ : Prop),
(∀ a t′, (m = ?a ∧ t = dual t′ ∧ (s !a−→ t′))⇒Φ)

⇒ (∀ a t′, (m = !a ∧ t = dual t′ ∧ (s ?a−→ t′))⇒Φ)

⇒ ((dual s m−→ t)⇒Φ).

Fig. 10: Inversion Principles for Labelled Transitions



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 16

The inductive definition of the labelled transition relation is shown in Figure 9. We use “⇒”
for the Coq function space (implication) to avoid confusion with other notations. The labelled
transition relation is encoded as the transition function, which maps into the space of propositions
Prop.

The declared functions, such as TRPrefix, may be used to construct proofs that a labelled tran-
sition exists. For example, applying TRPrefix to the session end and the message !{k} establishes
the existence of the labelled transition !{k}.end !{k}−−−→end. There are no functions declared for
the terminal session end because it has no transitions.

The TRUnion1 and TRUnion2 function declarations describe the transitions from a session
S+T in terms of transitions from S and T respectively. Similarly, the two cases for transitions
from a session (dual S) reverse the direction of messages, transforming outputs to inputs and vice
versa. The dual (dual (dual S)) of a dual session type is a distinct session type from S, but they
have the same labelled transitions (see the discussion of subtyping and similarity in Section 6).

We defer the discussion of transitions in parts 2 and 3 of Figure 9 to Section 3.3 and Sec-
tion 3.4.

The definition in Figure 9 yields an induction principle for the labelled transition relation.
From this induction principle, we derive an inversion principle for each session type constructor.
The inversion principle for a session-type constructor θ permits case analysis upon labelled tran-
sitions of the form θ(~S) M−→T . The Coq statements of the derived inversion principles are shown
in Figure 10.

The lemma stop inv states that the false proposition False can be derived from the existence
of a labelled transition from end. The lemma prefix inv states that a proposition Φ can be deduced
from the existence of a labelled transition m.s m′−→s′, if Φ can be proven when m = m′ and s = s′.
Next, union inv allows deduction of Φ from a transition s1 + s2

m−→ t if Φ holds both when the
transition comes from s1 and when it comes from s2. Similarly, dual inv allows case analysis
upon a transition of the form dual s m−→ t by reasoning about the transitions of s after replacing
input with output and vice versa.

The polymorphic component of our type system relies upon deducing output-labelled transi-
tions from input-labelled transitions. Example 5 illustrates how deductions can be made from an
input-labelled transition.

Example 5. Consider sessions s1, t and a type B. Suppose dual s1
?B−→ t. Using the inversion

lemma dual inv, we establish the proposition Φ defined as (∃t′, t = dual t′ ∧ s1
!B−→ t′). The hy-

potheses for dual inv require Φ to be proven when ?B = ?a and ?B = !a. In the former case, we
find that B = a, and Φ follows trivially. In the latter case, Φ holds because ?B = !a cannot be
unified.

Other deductions may be made from Φ. For example, we could further deduce that (∃t′,∀s2, t=
dual t′ ∧ s1 + s2

!B−→ t′) using TRUnion1 and Φ. This deduction could be used to justify the cor-
rectness of a process that reads a message of type B on a channel of type Ch(dual s1) and then
writes the same message to a channel of type Ch(s1 + s2). 2

3.3. Binding in Session Polymorphism

The session type constructors defined in part 1 of Figure 9 are not exhaustive. Additional ses-
sion types are necessary to describe the relationship between the types of distinct objects. Our



An Extensible Approach to Session Polymorphism 17

approach to session polymorphism depends upon the use of quantification in the definition of
the labelled transition relation. We now illustrate this using the transitions defined in part 2 of
Figure 9. We omit the straightforward inversion principles for these session types.

The first additional session type fwd demonstrates the use of binding in session types to cap-
ture relationships between the types of different values. The transition TRFwd in Figure 9 is
labelled with two input messages. This abbreviates multiple labelled transitions shown below.
The intermediate session type constructor fwd′ has a session type parameter s that is identical
to the session type in the message of the first labelled transition. The second labelled transition
constrains the session type of the second message to be the dual (dual s) of the session type of
the first message s.

| TRFwd : ∀ s : session, (fwd ?Ch(s)−−−−→ fwd′(s))

| TRFwd’ : ∀ s : session, (fwd′(s) ?Ch(dual s)−−−−−−→end)

The session type fwd is polymorphic in the sense that a channel of type Ch(fwd) can be used
to receive two channels with dual session types. Example 6 demonstrates the use of the polymor-
phism of fwd in a generic process that safely forwards a message from one channel to another.

Example 6 (Polymorphic single-step forwarding process). Consider channels n1 and n2 that
are assigned types Ch(T) and Ch(dual T) respectively, for any session T . If a third channel n3 is
assigned the type Ch((dual fwd)), then the sequence of outputs in the process P defined by:

P M
= n3!n1.n3!n2

follows the sequence of output-labelled transitions dual fwd !Ch(T)!Ch(dual T)−−−−−−−−−−−→dual end, where s
has been instantiated with T .

If the channel endpoint n3 is assigned type Ch(fwd), then it is expected that, for some un-
known session type s, channels with dual session types s and (dual s) can be read from n3. Now,
whenever there is an input-labelled transition s ?A−→s′, then TRDual2 ensures that there is a cor-
responding output-labelled transition dual s !A−→dual s′. Then the generic single-step forwarding
process Q, defined as follows, obeys the session type (dual s) for channel y.

Q M
= n3?x.n3?y.x?z.y!z

This is because any input x?z is associated with some input-labelled transition s ?A−→s′, where
z has type A, and so the corresponding output-labelled transition dual s !A−→dual s′ justifies the
output y!z.

The single-step forwarding process Q can then be used to forward from n1 to n2 by using
process P to provide the channels n1 and n2. In this case, the s session parameter in the transitions
of fwd is instantiated with T . To illustrate, suppose there exists a token k such that T ?{k}−−−→T ′, so
token k may be received on n1, and k may be sent on n1. The reduction sequence below shows
the initialization of Q via P, the reception of k on n1 by Q, and the transmission of k on n2 by Q.
Moreover, the annotations can be used to verify that the process obeyed the session types for n1



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 18

and n2.

P|Q|n1!k|n2?x
n3!?−−−→ n3!n2|(n3?y.n1?z.y!z)|n1!k|n2?x
n3!?−−−→ (n1?z.n2!z)|n1!k|n2?x
n1!k−−−→ n2!k|n2?x
n2!k−−−→ 0

It is natural to ask whether the single-step forwarding process Q can be coerced into sending
messages that are not permitted by the session type for the channel y. For example, suppose
T = end. Then there are no transitions from T or (dual T). In the reduction sequence above, the
output n2!k is not permitted by the session type (dual end) for n2. However, the blame lies with
the earlier output n1!k that is also not permitted by the session type (dual end) for n1. Thus the
single-step forwarding process Q may send messages not permitted by session types when other
subprocesses send messages not permitted by session types. Nevertheless, in typing Q we shall
see that the output y!z obeys session types using the argument from Example 3. The results of
Section 5 show that this suffices for well-typed processes.

Although the session types of channels may be related, they evolve independently. For ex-
ample, the type of n2 is unaffected by changes to the type of n1. As another example, any type
assigned to Q in our system can also be assigned to the following Q′, which inverts the order of
the second and third inputs.

Q M
= n3?x.x?z.n3?y.y!z

Finally, the channel variables x and y in Q have dual session types s′ and (dual s′), for some
session type s′, whenever Q terminates. Thus x and y are candidates for sending on another
channel of type fwd. This forms the core of a multi-step forwarding process in Example 11. 2

The other session types from part 2 of Figure 9 are sink and (fun (A)), for a type A. A channel
with type Ch(sink) can be used to repeatedly read messages of type Ch(s), for some session type
s. A channel with type Ch(fun (A)) can be used to repeatedly read messages of type A. We say that
the session types sink and (fun (A)) — and their dual sessions (dual sink) and (dual (fun (A))) —
are stateless, because every transition is a self loop. Channels with stateless types can be freely
copied without causing confusion about their current state.

The (fun (A)) session type is used for communication that plays the same role as session
initiation in (Honda et al., 1998), e.g., in Example 11, a channel of type Ch(fun (Ch(fwd))) is
used to repeatedly receive single-use channels of type Ch(fwd).

The distinction between sink and fun lies in the fact that (fun (A)) represents a collection of
session types indexed by A, whereas sink is a single session type. Consequently, a channel of type
sink can be used to read a sequence of channels, but there need not be any relationship between
the session types of those channels.

3.4. Extensiblity

Similar polymorphic session types can be defined for communication of channels with more
complex relationships between their session types. Example 7 gives a polymorphic session type
for a generic “prefixing” process.



An Extensible Approach to Session Polymorphism 19

Example 7 (Polymorphic prefixing). The following process receives two channels as x and y,
waits for an input z on x, and then sends both k and x on y. It differs from the single-step for-
warding process of Example 6 by including an additional output y!k, for some fixed token k.

n?x.n?y.x?z.y!k.y!z

In order to define the type of the channel n, we can introduce a new session type (fwdprefix k)
with the sequence of labelled transitions defined in part 3 of Figure 9. In this session type, the
first value received is a channel with session type s, and the second value received is a channel
that permits an initial output of k, followed by (dual s). 2

This prompts the question, which session types must be defined? We adopt an open-world
approach, and allow new session types to be introduced as needed. New session types are in-
troduced with their labelled transitions. In order to avoid changing the meaning of other session
types, a new session type constructor θ may only add transitions of the form θ(~S) M−→T to the
inductively-defined transition relation, i.e., the source of the transition must be a session type with
θ as the outermost constructor. We prohibit reasoning via induction over the inductively-defined
set of session types or the inductively-defined transition relation, because such arguments must
be modified when new session types are subsequently added. There is one exception: we permit
induction over the transition relation for the derivation of inversion principles for each session
type constructor. Unlike the induction principle for the transition relation, the inversion principles
for existing session type constructors remain unchanged when new session types are defined. The
result is a modular framework for the definition of session types and their transitions.

As a second example, recall the translate process from Section 1.2 that replaces a COLOUR

token with a COLOR token. A new session type translate(s) is introduced to describe the effects
of translation. To specify the translation, we use equational and inequational constraints in the
definition of the labelled transition relation. With such constraints, session-type transducers can
be constructed to add, remove, or replace tokens from a session.

Example 8 (Translation). Part 3 of Figure 9 gives labelled transitions for session types of the
form translate(s), for some session type s. The behavior of translate(s) has been extended to
permit replacement of COLOUR with COLOR for both input and output, i.e., the session type
describes bidirectional translation.

Consider channels engb and enus with types Ch(s) and Ch(dual (translate(s))), for some ses-
sion type variable s, with the intention that tokens read from engb are translated and then sent
on enus, and that tokens read from enus are translated and then sent on engb. Examining the tran-
sitions of (dual (translate(s))), we find that any token k read from engb is either COLOUR, in
which case COLOR can be written to enus, or k 6=COLOUR and k can be written to enus. Similarly,
any token k read from enus is either COLOR, in which case COLOUR can be written to engb, or
k 6=COLOR and k can be written to engb.

To see the effect of translate, consider session ?{COLOUR}.((!{RED}.end)+(!{BLUE}.end)),
for engb, perhaps representing an incoming request followed by an outgoing RED or BLUE re-
sponse. When s is instantiated with this session, the corresponding session (dual (translate(s)))
for enus is easily seen to have the same LTS as !{COLOR}.((?{RED}.end)+(?{BLUE}.end)).

The difference in the inequations in TRTranslate2 and TRTranslate4 reveals a subtlety in the
specification of polymorphic translations. The channels engb and enus are able to carry pre-



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 20

translated tokens, i.e., engb may carry a pre-translated COLOR, which can be copied to enus;
and a pre-translated COLOUR may be received from enus, then copied to engb. An alternative is
to prevent engb and enus from using the other’s language, i.e., engb is restricted to receiving and
sending COLOUR, and similarly for enus and COLOR. It is not sufficient to add the conjunction
of k 6=COLOUR and k 6=COLOR to the hypotheses of TRTranslate2 and TRTranslate4, because it
affects the session type of enus but not the session type s of engb. Instead, we can assign engb the
type Ch(translate′(s)), where translate′ is a new session type constructor that prevents transmis-
sion of COLOR. We omit the definition of translate′. 2

3.5. Type Assignment

We now turn to type assignment for processes. Our type system shares many ideas with other
session type systems: checking that outputs are permitted by the session type for the output
channel, assigning dual session types to new channel endpoints created by restriction, and linear
usage of process contexts containing values of channel type.

The most significant differences arise from the use of binding and constraints: an input process
adds an input-labelled transition constraint to the context when typing the continuation process, a
matching (resp. mismatching) process adds an equality (resp. inequality) constraint to the context
when typing the continuation process, and an output process deduces that an output-labelled
transition follows from the constraints in the context.

We represent binding and constraints via a context ∆. A context is a finite list of δ , where δ

ranges over variables, (in)equations, and transitions:

δ ::= a | m | s | A=A′ | M=M′ | S=S′ | A 6=A′ | M 6=M′ | S 6=S′ | S M−→T

We translate judgements using contexts into Coq propositions by first encoding the judgement
form as an inductive type in the standard way (Bertot and Castéran, 2004), then adding each
(in)equation and transition as a hypothesis and each variable as a universal quantifier. For exam-
ple, use of the context (m,s,S m−→s,S=s) with a judgement J is represented as:

∀m : message,∀s : session,((S m−→s)⇒ ((S=s)⇒J ))

This encoding of contexts is not closely tied to Coq, and could be supported in other logics with
inductive families of data types.

We write ∆ ` δ to indicate that a constraint δ can be deduced in Coq from the context ∆.
For example, typing of output process relies upon deduction of a labelled transition ∆ ` S !A−→T .
We write ∆ `⊥ to indicate that the set of constraints ∆ is inconsistent, i.e., they allow the false
proposition to be deduced. We allow reordering of contexts without comment when variables are
not used before their binding occurrence.

In addition to the constraints in ∆, the process typing judgement ∆ ; G ` P requires a process
context. A process context, G = {u1 :A1, . . . , un :An}, is a partial map from values to types. If
G1 and G2 have disjoint domains, then G1,G2 denotes their disjoint union, and G,u :A denotes
G,{u :A}. Suppose G = {u1 :A1, . . . , un :An}. In this case, define dom(G)

M
= {u1, . . . , un} and

ran(G)
M
= {A1, . . . , An}. We only consider contexts where there are no tokens in dom(G).

Session type systems place linearity restrictions on the usage of channels. However, values
whose types do not change can be copied freely without confusion about their types (in the



An Extensible Approach to Session Polymorphism 21

literature, such types are known as shared or unrestricted (Vasconcelos, 2009)). We require that
this property of a type is provable in the logic. That is, we say that a type is stateless for ∆, written
(∆ ` A stateless), if it is:

— a singleton type {k} for some token k; or
— a channel type Ch(S) such that, for all messages m and session types s, if ∆ ` S m−→s, then

∆ ` S=s.

We say that a process context G is a partition of G1 and G2, written (∆ ; G ` G1�G2), if

— G = G1∪G2;
— G is a partial map; and
— (∆ ` A stateless), for every A ∈ ran(G1∩G2).

In particular, if (∆ ; G ` G1�G2), then values in dom(G1)∩dom(G2) have stateless types.
The rules for value type assignment ∆ ; G ` u :A and process type assignment ∆ ; G ` P are

given in Figure 11. We have elided a certain amount of bookkeeping from the following process
typing rules, we also require: (1) that the free type, message, and session metavariables in ran(G)

are contained in ∆; (2) that fval(P)⊆ dom(G) in the rules for matching, mismatching, and incon-
sistent contexts; and (3) that fval(P) ⊆ dom(G)∪{u,x} in the rule for input. (2) and (3) cannot
be omitted without loss of the property that free names and variables are contained in the process
context of a well-typed process.

The rules for stateless P-OUT-STATELESS and stateful output P-OUT-STATEFUL differ in whether
the transmitted value v is stateless or not, and whether it may be subsequently used by the sender.
Both output rules allow type A and session T expressions that need not be variables.

In contrast, the input rule P-INP introduces fresh type a and session type t variables for the
unknown type of the communicated value and the session type of channel u after input. Both
variables are added to the context. In addition, a labelled-transition constraint S ?a−→ t is added.
Different uses of such transition hypotheses are given in examples in the remainder of the paper.
Input typing requires that P be typable for any input transition of S — in the extreme case, the
judgment /0 ; n :Ch(end) ` n?x.P holds for any P (subject to restrictions on the free values of P)
since end has no transitions. This freedom in input typing, in conjunction with deduction, is key
to our polymorphic session typing.

The matching P-MATCH and mismatching P-MISMATCH rules require that P be typed under
an additional (in)equation constraint.

The P-NEW rule creates the two endpoints of a channel, with dual sessions.
In the P-PAR rule, only values with stateless types may occur on both sides of parallel compo-

sition, other values may appear on at most one side. Similarly, only values with stateless types
are permitted under replication by P-REP.

The rules P-NIL and P-REP admit weakening of the process context. We discuss the effect of
weakening in Section 6.

The rules in Figure 11 do not describe the deductions that can occur from ∆, because these
deductions use Coq’s logic. For example, we do not include rules to instantiate variables in the
context ∆. Instead, variable instantiation relies upon Coq’s application rule for the dependent
function space (representing universal quantification). The only rule that we include explicitly,
for illustrative purposes, is P-INC. This rule allows any process to be typed (subject to the con-
ditions on free values described above) when the context ∆ is inconsistent. Through the shallow



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 22

∆ ; G ` k :{k}
[V-TOKEN]

∆ ; G,u :A ` u :A
[V-LOOKUP]

∆ ; G ` 0
[P-NIL]

∆ `⊥
∆ ; G ` P

[P-INC]

∆ ` A stateless ∆ ; G,u :Ch(S) ` v :A ∆ ` S !A−−→T ∆ ; G,u :Ch(T) ` P
∆ ; G,u :Ch(S) ` u!v.P

[P-OUT-STATELESS]

∆ ` S !A−−→T ∆ ; G,u :Ch(T) ` P
∆ ; G,u :Ch(S),v :A ` u!v.P

[P-OUT-STATEFUL]

∆,a, t,S ?a−→ t ; G,u :Ch(t),x :a ` P
∆ ; G,u :Ch(S) ` u?x.P

[ P-INP]

∆ ; G ` u :{k}, v :{`} ∆,k=` ; G ` P
∆ ; G ` [u=v]P

[P-MATCH]

∆ ; G ` u :{k}, v :{`} ∆,k 6=` ; G ` P
∆ ; G ` [u6=v]P

[P-MISMATCH]

∆ ; G,n :Ch(S),n :Ch(dual S) ` P
∆ ; G ` (νννn)P

[P-NEW]

∆ ; G ` P ∆ ; G ` Q
∆ ; G ` P+Q

[P-PLUS]

∆ ; G ` G1�G2 ∆ ; G1 ` P ∆ ; G2 ` Q
∆ ; G ` P|Q

[P-PAR]

∆ ; G1 ` P ∀u ∈ dom(G1). ∆ ` G1(u) stateless
∆ ; G1,G2 ` *P

[P-REP]

Fig. 11: Value and Process Type Assignment



An Extensible Approach to Session Polymorphism 23

tt=tt ` Sff
!{ff}−−−→end

TRPrefix
tt=tt ; n :Ch(end),x :{tt} ` 0

P-NIL

tt=tt ; n :Ch(Sff),x :{tt} ` n!ff.0
P-OUT-STATELESS

/0 ; n :Ch(Sff),x :{tt} ` P
P-MATCH

a, t,(?{tt}.Sff
?a−→ t) ; n :Ch(t),x :a ` P

prefix inv

tt=ff ; n :Ch(Stt),x :{ff} ` n!ff.0
P-INC

/0 ; n :Ch(Stt),x :{ff} ` P
P-MATCH

a, t,(?{ff}.Stt
?a−→ t) ; n :Ch(t),x :a ` P

prefix inv

a, t,((?{tt}.Sff)+(?{ff}.Stt)
?a−→ t) ; n :Ch(t),x :a ` P

union inv

/0 ; n :Ch((?{tt}.Sff)+(?{ff}.Stt)) ` n?x.P
P-INP

Fig. 12: Type Assignment Derivation for (n?x.[x=tt]n!ff.0)

encoding of constraints in Coq, this rule corresponds to the Coq elimination rule for falsity. We
see the use of P-INC to detect dead code in Example 9 below.

As an example of the use of deduction, we observe that the inversion principles from Fig-
ure 10 can be used when the proposition Φ contains a process typing judgement. This permits
case analysis upon session types when typing processes. For example, consider a process of the
form u?x.P. If the value u has channel type of the form Ch(S1 +S2), then the typing of the sub-
process P occurs in a context where an input-labelled transition from S1 + S2 is assumed. The
typing derivation for P may then branch to a typing derivation of P under the assumption that
the transition is from S1, and to a second typing derivation of P under the assumption that the
transition is from S2. This branching arises from the inversion principle for the union session
type union inv. We expand on this idea in the next example.

Example 9 (Negation Process). The behavior of a channel that implements negation can be de-
scribed by the following session type, where we assume distinct tokens tt and ff representing
boolean values.

(?{tt}.!{ff}.end)+(?{ff}.!{tt}.end)

For simplicity, we consider a partial implementation of the negation process that responds to re-
ceipt of token tt on channel n by sending the token ff. The partial implementation, in composition
with a process to send tt, is:

(n?x.[x=tt]n!ff.0) | n!tt.0

Typing this process with the negation session type given above demonstrates the importance of
matching to justify the output of ff after receiving tt. We use the following abbreviations for
session types Sff and Stt, and a process P.

Sff
M
= !{ff}.end

Stt
M
= !{tt}.end

P M
= [x=tt]n!ff.0

Figure 12 contains a typing derivation for the left-hand subprocess (n?x.[x=tt]n!ff.0). The
labels union inv and prefix inv represent case analysis via inversion principles for the union and
prefix session type constructors: the two branches arise from hypotheses of union inv. We do not
display the equational simplification that is performed when using these inversion principles. The
label TRPrefix indicates use of the definition of labelled transitions for the prefix session type.



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 24

/0 ` dual ((?{tt}.Sff)+(?{ff}.Stt))
!{tt}−−−→dual Sff

DEDN3
/0 ; n :Ch(dual Sff) ` 0

P-NIL

/0 ; n :Ch(dual ((?{tt}.Sff)+(?{ff}.Stt))) ` n!tt.0
P-OUT-STATEFUL

Fig. 13: Type Assignment Derivation for (n!tt.0)

P-INC demonstrates the use of an inconsistent constraint tt=ff to typecheck an output n!ff.0
that is not permitted by the session typing n :Ch(Stt), i.e., the output process is disregarded when
ff is read. The type derivation for n!tt.0 is shown in Figure 13.

The derivations in Figure 12 and Figure 13 can be combined using P-PAR to type the parallel
composition as follows:

/0 ; n :Ch((?{tt}.Sff)+(?{ff}.Stt)), n :Ch(dual ((?{tt}.Sff)+(?{ff}.Stt))) `
(n?x.[x=tt]n!ff.0)|n!tt.0

Finally, since the session types of n and n are dual, they can be hidden, with the resulting typing:

/0 ; ` (νννn)((n?x.[x=tt]n!ff.0)|n!tt.0) 2

The type assignment for union and prefixing in Example 9 can be extended to the encodings of
label selection and branching from Section 2.3. For tokens l1, l2 and session types S1, S2, define
the binary label branching &{l1:S1, l2:S2} and label selection �{l1:S1, l2:S2} session types using
a tagged union encoding:

&{l1:S1, l2:S2}
M
= (?{l1}.S1)+(?{l2}.S2)

�{l1:S1, l2:S2}
M
= dual (&{l1:S1, l2:S2})

The label selection session type �{l1:S1, l2:S2} has the same labelled transitions as the session
type (!{l1}.S1)+(!{l2}.S2). However, they are distinct session types, and not interchangeable.
We discuss subtyping in Section 6.

Typing rules can be derived for the encodings of label selection and label branching processes
given in Section 2.3:

∆ ; G, u :Ch(Si) ` P
∆ ; G, u :Ch(�{l1:S1, l2:S2}) ` u� li.P

[P-SELECTi] (i ∈ {1,2})

∆ ; G, u :Ch(Si) ` Pi (i ∈ {1,2}) l1 6= l2 G(error) =Ch(end)

∆ ; G, u :Ch(&{l1:S1, l2:S2}) ` u�{l1 : P1 8 l2 : P2}
[P-BRANCH]

These derived typing rules closely resemble the label selection and branching rules in (Honda
et al., 1998), modulo notational differences.

Derivation of the label selection rules is straightforward, following the type derivation of Fig-
ure 13. We can then rewrite the conclusion of Figure 13 as:

/0 ; n :Ch(�{tt:Sff ,ff:Stt}) ` n� tt.0

The derived typing rule for label branching uses ingredients found in the type derivation of
Figure 12, but there are several subtleties that highlight the deduction used in typing processes.



An Extensible Approach to Session Polymorphism 25

First, l1 6= l2 is required. To see why, suppose l1 = l2, so that the session type &{l1:S1, l2:S2}
has input transitions labelled with l1 to S1 and S2. In this situation, matching against l1 or l2
provides no information. As a consequence, the extra hypotheses ∆ ; G, u :Ch(S2) ` P1 and ∆ ; G,

u :Ch(S1) ` P2 would have to be added to P-BRANCH.
Second, the type system’s focus on controlling output rather than input does not affect the

derived rule P-BRANCH. However, as demonstrated in Example 9, a well-typed process need not
have cases for every branch of a session type &{l1:S1, l2:S2}. Moreover, a well-typed process may
have unused additional cases, assuming a generalization from binary labeling to n-ary labeling.
The reason that P-BRANCH closely resembles the label branching rule of (Honda et al., 1998) is
that the initial input has to be known in order to determine which of the continuation session types
S1 or S2 is used, in turn because those session types may permit output (which is controlled).

Finally, the introduction of the channel error in the encoding of the label branching process
requires error to be in the domain of G. The session type associated with error is not forced, but
we choose G(error) =Ch(end). The session type end is stateless, and so can be freely duplicated
across different occurrences of label branching. In addition, the session type end does not permit
any output. Thus, if an incorrect token k 6∈ {l1, l2} can be read on u, the output on error seen
in the reduction sequence in Section 2.3 is immediately seen to be erroneous. In particular, it is
not necessary to know whether the session type of u allows receipt of k to know that an output
on error is erroneous. To rule out the possibility of output on error, recall that the encoding
of (u�{l1 : P1 8 l2 : P2}) uses the mismatching tests ([x 6=l1][x 6=l2]error!?). Thus the process
error!? is typechecked in an environment where x is known not to be l1 or l2, but must also be one
of those tokens because of the possible input transitions of &{tt:Sff ,ff:Stt}. This contradiction
allows the typing of error!?.

With the derived typing rule P-BRANCH, a full implementation of the negation process is then
defined and typed as:

/0 ; n :Ch(&{tt:Sff ,ff:Stt}) ` n�{tt : n!ff.08ff : n!tt.0}

4. Examples

We present a series of examples to illustrate session polymorphism. The typechecking examples
in this section have been verified in Coq and their proofs are available online (Goto et al., 2011).

4.1. Recursive Procedures

We define a process with a polymorphic session type that discards data on a channel, and provide
syntactic sugar for recursive procedure definitions.

Example 10 (Polymorphic sink process). We return to the sink example from Section 1.1. Re-
call that the sink process repeatedly reads input from a channel, say u. The simplest process with
the required functionality is the replicated input (*u?x), but non-linear use of u cannot be typed,
except when u has a stateless type. Thus, we define the sink process to be:

(νννrep)((*rep?lft.lft?x.rep!lft) | rep!u)

This process uses a stateless channel rep to pass the (not necessarily stateless) channel u lin-



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 26

t ` dual (sink) !Ch(t)−−−−→dual (sink)
DEDN2

t ; rep :Ch(sink), rep :Ch(dual (sink)), lft :Ch(t) ` rep!lft
P-OUT-STATEFUL

s, a, t, s ?a−→ t ; rep :Ch(sink), rep :Ch(dual (sink)), lft :Ch(t), x :a ` rep!lft
WEAKEN

s ; rep :Ch(sink), rep :Ch(dual (sink)), lft :Ch(s) ` lft?x.rep!lft
P-INP

a, t, sink ?a−→ t ; rep :Ch(t), rep :Ch(dual (sink)), lft :a ` lft?x.rep!lft
DEDN1

/0 ; rep :Ch(sink), rep :Ch(dual (sink)) ` rep?lft.lft?x.rep!lft
P-INP

Fig. 14: Type Assignment Derivation for Polymorphic Sink Process

early between occurrences of the replicated subprocesses. Each replicated subprocess reads one
message from u and then forwards it on rep again.

To construct the type derivation we use the session type sink from Figure 9. The name rep
is assigned type Ch(sink), and can thus appear under the replication operator because sink is
stateless. Similarly for rep and Ch(dual sink).

It follows from P-OUT-STATEFUL and P-NIL that the right-hand subprocess may be typed as:

s ; u :Ch(s), rep :Ch(dual (sink)) ` rep!u

The left-hand subprocess is typed as shown in Figure 14 (we omit the subderivation for the 0
process). DEDN1 indicates application of inversion principles derived from the transition defini-
tions for fun and sink respectively (and substitution). For example, the first input yields hypoth-
esis sink ?a−→ t, from which we deduce t = sink and a =Ch(s), for some session type s. Note that
session polymorphism in the sink session type is used at the output transition DEDN2, to justify
that rep can be sent a channel of type Ch(t), which was originally received on rep at type Ch(s).
WEAKEN is a derived property of the type system that we discuss in Section 5. Using P-PAR and
P-REP, the entire process is typed as:

s ; u :Ch(s) ` (νννrep)((*rep?lft.lft?x.rep!lft) | rep!u)

The corresponding Coq typing statement for this sink process is:

forall s:session, (CTX.add (Nm (Free "u"), TChannel s) CTX.empty) |-p sink

The subprocess (rep!u) that initiates the recursive reading of u is a simple use of the service.
We can instantiate the session type parameter s with a session, e.g., the session S1 defined by:

S1 = ?{k1}.((?{k2}.end)+(!{k3}.end))

In our Coq formalization, session type instantiation is simply instantiation of universal quantified
parameters, hence we have:

; u :Ch(S1) ` (νννrep)((*rep?lft.lft?x.rep!lft) | rep!u)

Since rep has a stateless type, it may be duplicated freely, and there can be multiple transmissions
on rep that do not arise from the replicated subprocess. For example, define the session S2 by:

S2 = ?{k4}.?{k5}.end

Then we can similarly establish typing of the process that consumes all of the messages that can



An Extensible Approach to Session Polymorphism 27

be read upon the channels u1 and u2 with distinct session types S1 and S2 respectively:

; u1 :Ch(S1), u2 :Ch(S2) ` (νννrep)((*rep?lft.lft?x.rep!lft) | rep!u1 | rep!u2)

Note that a single subprocess is responsible for consuming messages on u1 and u2, and this reuse
relies upon the polymorphism in the session type (dual sink) of rep (see the discussion of sink in
Section 3.2). 2

The direct use of replication is tedious when passing multiple channels with related session
types, so we introduce syntactic sugar for recursive procedure definitions, following (Milner,
1991). For example, the recursive definition of a process functionally equivalent to the process
of Example 10 is:

s ; u :Ch(s) ` proc rep(lft)= lft?x.rep(lft) in rep(u)

We extend the syntax of processes with syntactic sugar for parameterized procedure invocations
and declarations with multiple parameters.

P,Q ::= · · · | f (u1, . . . ,un) | proc f (x1, . . . ,xn)=P in Q

These abbreviations can be expanded as follows.

f (u1, . . . ,un)
M
= (νννc)

(
f!c. c!u1 . . . c!un)

proc f (x1, . . . ,xn)=P in Q M
= (ννν f)

(
(*f?c. c?x1 . . . c?xn. P)|Q

)
In these definitions, a fresh channel c is created for each procedure call. The channel c is passed
to the replicated procedure body using the channel f . The channel c is then used to send the
arguments u1, . . . ,un to the replicated procedure body, which reads them using c. The channel
endpoints c and c are discarded after carrying the parameters for one procedure call. The session
type fwd, discussed in Section 3.2, is a typical session type for the channel c. In contrast, the
channel f must always be assigned a stateless session type because it appears in a replicated
subprocess.

4.2. Forwarding Processes

We now consider a sequence of simple examples with polymorphic session types in which data
is generically forwarded.

The first example builds on Example 6 to type a process that continually forwards messsages
in one direction. The unidirectional nature of the forwarding process is captured in its interface
by a session type that functions as a one-way check valve.

Example 11 (Polymorphic unidirectional forwarding process). Recall that the transitions of
sessions (fun a) and fwd are defined in Figure 9 as follows.

| TRFun : ∀ a : type, (fun a ?a−→ fun a)

| TRFwd : ∀ s : session, (fwd ?Ch(s) ?Ch(dual s)−−−−−−−−−−→end)

The process that forwards messages unidirectionally from channel u to v can be defined as:

s ; u :Ch(s),v :Ch(dual s) ` proc fwd(lft,rht)= lft?x.rht!x.fwd(lft,rht) in fwd(u,v)



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 28

In typing, we assign fwd :Ch(fun (Ch(fwd))). The session type (fun Ch(fwd)) allows a sequence
of inputs that all have the fixed type Ch(fwd). Thus, fwd can repeatedly transmit single-use
channels of type Ch(fwd). In the encoding given above, a fresh channel c with session type fwd

is allocated for each call, including the recursive calls in the body of the process definition. The
session type fwd is used for single-use channels that convey the parameters lft and rht, and then
stop. As in Example 6, the key to successful typing lies in the fact that the two channels are
constrained by the fwd transition to have dual session types s and (dual s) for some session type
s. An input on lft creates an input transition hypothesis for s, from this input transition we deduce
an output transition for (dual s), and the output on rht is justified by the output transition for
(dual s).

The forwarder may be instantiated multiple times at different types without duplicating the
code. For example, the following process can be typed in our system, where ki are distinct.

proc fwd(lft,rht)= lft?x.rht!x.fwd(lft,rht) in (νννn1,n2)(fwd(n1,n2)|n1!k1.n1!k2.0| · · ·)
|(νννn3,n4)(fwd(n3,n4)|n3!k3.n3!k4.0| · · ·)

Note that the two uses of the forwarder have disjoint session types. As with function defini-
tions and activations, there is only one definition, but as evaluation proceeds there will be two
activations of fwd, each specialized to a particular session type.

The typing for fwd demonstrates that unidirectional forwarding can be applied to any session
type. However, it is possible to develop a more informative typing that also exhibits session
polymorphism. First, define a new session type (checkvalve s) that has all of the input transitions
of s but none of the output transitions. Its labelled transitions are:

| TRCheckValve : ∀ s a s′, (s ?a−→s′) ⇒ (checkvalve s ?a−→checkvalve s′)

The unidirectional forwarder can then be typed with (checkvalve s) as the session type for u. In
this typing, the session type for fwd must be modified to reflect the different session type of u.

s ; u :Ch(checkvalve s),v :Ch(dual s) ` proc fwd(lft,rht)= lft?x.rht!x.fwd(lft,rht) in fwd(u,v)

This is a useful typing because the checkvalve session type makes it easy to see that the process
does not write to channel u.

One might wonder whether checkvalve can be used in the session type of v. Consider how
checkvalve could be used with dual . Unsurprisingly, using v :Ch(checkvalve (dual s)) does not
allow the unidirectional forwarder to be typed, because checkvalve blocks any output transitions
for (dual s), so all writes to v are illegal (unless in an inconsistent context). The other possibility
v :Ch(dual (checkvalve s)) uses the dual of the checkvalve session type, and so blocks all input
transitions, but not output transitions. Since the unidirectional forwarder does not perform input
on v, the process can be typed when v :Ch(dual s) is replaced with v :Ch(dual (checkvalve s)).2

We briefly comment on some variations of the unidirectional forwarder. First we note that
there are several ways to define sessions for any given protocol. Consider a lossy forwarder that
drops every other message.

proc alternate(lft,rht)= lft?x.lft?y.rht!x.alternate(lft,rht) in . . .

We can assign type alternate :Ch(fun (Ch(alternateSub))), using the session constructor altSub



An Extensible Approach to Session Polymorphism 29

that elides inputs. Here lft is assigned type Ch(s) and rht is assigned type Ch(dual (altSub s)).

| TRAlternateSub : ∀ s : session, (alternateSub ?Ch(s) ?Ch(dual (altSub s))−−−−−−−−−−−−−−−→end)

| TRAltSub : ∀ s a t b u, (s ?a−→ t)⇒ (t ?b−→u)⇒ (altSub s ?a−→altSub u)

We can also assign type alternate :Ch(fun (Ch(alternateAdd))), using the session constructor
altAdd that introduces inputs. Here lft is assigned type Ch((altAdd s)) and rht is assigned type
Ch(dual s).

| TRAlternateAdd : ∀ s : session, (alternateAdd ?Ch(altAdd s) ?Ch(dual s)−−−−−−−−−−−−−−→end)

| TRAltAdd : ∀ s a b t, (s ?a−→ t)⇒ (altAdd s ?a ?b−−−→altAdd t)

In general, forwarders may multiplex inputs. The following is the simplest such process.

proc multiplex(lft1, lft2,rht)= lft1?x.lft2?y.rht!x.rht!y.multiplex(lft1, lft2,rht) in . . .

We can assign type multiplex :Ch(fun (Ch(zip))), using the session constructor plex. Here lft1 is
assigned type Ch(s), lft2 is assigned type Ch(t) and rht is assigned type Ch(dual (plex s t)).

| TRMultiplex : ∀ s t : session, (zip ?Ch(s) ?Ch(t) ?Ch(dual (plex s t))−−−−−−−−−−−−−−−−−−−→end)

| TRPlex : ∀ s a s′ t b t′, (s ?a−→s′)⇒ (t ?b−→ t′)⇒ (plex s t ?a ?b−−−→plex s′ t′)

The next example shows how bidirectional forwarding of messages affects session typing.

Example 12 (Polymorphic bidirectional forwarding process). The bidirectional forwarding pro-
cess can be typed with the context used for the unidirectional forwarding process (without
checkvalve).

s ; u :Ch(s),v :Ch(dual s) `
proc bi(lft,rht)=(lft?x.rht!x.bi(lft,rht))+(rht?x.lft!x.bi(lft,rht)) in bi(u,v)

As with the unidirectional forwarder, this uses the polymorphic session type Ch(fun (Ch(fwd)))

for the channel bi.
Unlike the unidirectional forwarding processes, the bidirectional forwarding process cannot

be typed when u :Ch(checkvalve s), because output on u is blocked by (checkvalve s). That is:

s ; u :Ch(checkvalve s),v :Ch(dual s) 6 `
proc bi(lft,rht)=(lft?x.rht!x.bi(lft,rht))+(rht?x.lft!x.bi(lft,rht)) in bi(u,v)

However, there is an exception. When u :Ch(checkvalve s),v :Ch(dual (checkvalve s)), it is pos-
sible to deduce that there are no input transitions from the session type for v, so the output
subprocess u!x.bi(u,v) is typed trivially. Thus, the bidirectional forwarder can be typed as fol-
lows:

s ; u :Ch(checkvalve s),v :Ch(dual (checkvalve s)) `
proc bi(lft,rht)=(lft?x.rht!x.bi(lft,rht))+(rht?x.lft!x.bi(lft,rht)) in bi(u,v)

This typing overlaps with the original typing with u :Ch(s),v :Ch(dual s). 2



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 30

abp

send0 lossy recv0
lft l r rht

Fig. 15: The Alternating Bit Protocol

4.3. The Alternating Bit Protocol

We next define a polymorphic session typing for interaction via the alternating bit protocol (ABP)
(Bartlett et al., 1969).

The ABP provides reliable transmission over an unreliable channel by tagging messages with
an alternating bit, and resending messages until an acknowledgement with the correct tag is re-
ceived. The existence of a polymorphic session typing allows the ABP to be used at different
session types. Moreover, the polymorphic session typing captures the following correctness cri-
terion for the ABP: if message 1 and message 2 are sent via the ABP in that order, then the ABP
will not send message 2 out before message 1. This session typing holds despite internal loss and
resending of messages — each of those actions could easily lead to session types that guarantee
very little about message ordering. In other words, the ABP outputs a prefix of its input, and acts
as the identity on channels carrying tokens, if the unreliable channel passes enough messages.
This example demonstrates the expressiveness of our session typing system (by capturing the
ABP’s invariant) and its modularity (as a type system).

Example 13 (The alternating bit protocol). The ABP is illustrated in Figure 15, and the ABP
process is defined in Figure 16. Following (Roscoe, 1997), the unreliable channel is modelled by
a lossy bidirectional forwarding process that discards some messages. Sender and receiver pro-
cesses transmit messages from lft to rht, but can only interact with one another using channels
l and r. Unreliable forwarding from l and r is provided by the lossy process. The abp(lft,rht)
process represents ABP transmission as the composition of sender, lossy, and receiver processes.
The lossy process treats consecutive transmission of a bit and a message as an atomic transmis-
sion, so that if one component of the pair is lost, then so is the other. The sender and the re-
ceiver processes are parameterized by an alternating bit i ∈ {0,1}, where 0 and 1 are tokens. We
have used abbreviations for multiple output, u!(v1, . . . ,vn).P M

= u!v1. . . .u!vn.P, multiple input,
u?(x1, . . . ,xn).P M

= u?x1. . . .u?xn.P, and token-matching input, u?(i,~x).P M
= u?y.u?~x.[y=i]P,

for y /∈ fv(P).
The full ABP also allows duplication of messages on the unreliable channel. We omit duplica-

tion for the sake of simplicity, but the session types defined below do accommodate duplication
of messages by the unreliable channel—essentially because they are already insensitive to re-
transmissions by the sender and receiver processes.

Unlike the previous examples, the ABP protocol may resend messages internally to compen-
sate for discarded messages. Such non-linear usage is not safe in general for channel names;
we thus restrict attention to session types that send only tokens, using the session type toks s,
indexed by a session s, that is defined by:

| TRToks : ∀ s k s′, (s ?{k}−−−→s′) ⇒ (toks s ?{k}−−−→ toks s′)



An Extensible Approach to Session Polymorphism 31

proc sendi(x, lft, l)=
l!(i,x).sendi(x, lft, l) Send message x (possibly a duplicate)

+l?(1– i).sendi(x, lft, l) Ignore duplicate acknowledgement 1– i
+l?(i).lft?y.send1– i(y, lft, l) in New acknowledgement i, send next message y from lft

proc lossy(l,r)=
l?(z,x).(lossy(l,r)+r!(z,x).lossy(l,r)) Discard or forward tagged message (z,x)

+r?z.(lossy(l,r)+l!z.lossy(l,r)) in Discard or forward acknowledgement z

proc recvi(r,rht)=
r!1– i.recvi(r,rht) Send acknowledgement 1– i (possibly a duplicate)

+r?(1– i,y).recvi(r,rht) Ignore duplicate message y
+r?(i,x).rht!x.recv1– i(r,rht) in New message x, forward x on rht and acknowledge

proc abp(lft,rht)=(ννν l,r)((lft?x.send0(x, lft, l))|lossy(l,r)|recv0(r,rht)) in abp(lft,rht)

Fig. 16: Implementation of the Alternating Bit Protocol

Hiding the process definitions and the channels used to implement them yields a simple exter-
nal interface to the ABP process. The typing for the ABP with this hiding is:

s ; lft :Ch(toks s), rht :Ch(dual (toks s)) ` abp(lft,rht)

The interesting part of the ABP typing lies in the session types for the internal channels l and
r. The key is for the session type to: (1) record whether a message has been acknowledged or
not; and (2) allow for duplicate messages until an acknowledgement occurs. The (nacki s k s′)
and (acki s) session types provide unacknowledged and acknowledged states with respect to the
value of the alternating bit i. These session types have transitions defined by:

| TRNack1 : ∀ i s k s′, s ?{k}−−−→s′ ⇒ nacki s k s′ !{i} !{k}−−−−−→nacki s k s′

| TRNack2 : ∀ i s k s′, nacki s k s′ ?{1– i}−−−−→nacki s k s′

| TRNack3 : ∀ i s k s′, nacki s k s′ ?{i}−−→acki s′

| TRAck1 : ∀ i s k, acki s !{i} !{k}−−−−−→acki s
| TRAck2 : ∀ i s, acki s ?{i}−−→acki s
| TRAck3 : ∀ i s k s′, s ?{k}−−−→s′ ⇒ acki s !{1– i} !{k}−−−−−−−→nack1– i s k s′

The first two cases for nacki allow for resending of duplicate messages or receiving old acknowl-
edgements without changing the session type. However, if a new acknowledgement (with the
current bit i) is received, then there is a transition to an acknowledged state. In the acknowl-
edged state acki, further duplicate messages can be sent, duplicate acknowledgements can be
received, and new messages with the alternate bit 1– i can be sent, resulting in a transition to an
unacknowledged state again.

In typing the lossy process, the session types for l and r need not be identical, but must remain
consistent. In particular, r may be in an acknowledged state when l is in an unacknowledged
state. We formalize this consistency in the session types for single-use channels transmitting l
(the first channel received) and r (the second channel):

| TRLossy1 : ∀ i s, lossy ?Ch(dual (acki s)) ?Ch(acki s)−−−−−−−−−−−−−−−−−→end



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 32

| TRLossy2 : ∀ i s k s′, lossy ?Ch(dual (nacki s k s′)) ?Ch(nacki s k s′)−−−−−−−−−−−−−−−−−−−−−−→end

| TRLossy3 : ∀ i s k s′, lossy ?Ch(dual (nack1– i s k s′)) ?Ch(acki s)−−−−−−−−−−−−−−−−−−−−−→end

| TRLossy4 : ∀ i s k s′, lossy ?Ch(dual (nacki s k s′)) ?Ch(acki s′)−−−−−−−−−−−−−−−−−−−−→end

Similar conditions must be defined for the single-use channels used to transmit the parameters to
the sending and receiving processes. These conditions provide the necessary constraints between
the state of the external lft,rht and the internal l,r.

| TRSend1 : ∀ i s k s′, s ?{k}−−−→s′ ⇒ sendi
?{k} ?Ch(toks s′) ?Ch(nacki s k s′)−−−−−−−−−−−−−−−−−−−→end

| TRSend2 : ∀ i s k s′, s ?{k}−−−→s′ ⇒ sendi
?{k} ?Ch(toks s′) ?Ch(ack1– i s)−−−−−−−−−−−−−−−−−→end

| TRRecv1 : ∀ i s k s′, recvi
?Ch(dual (nack1– i s k s′)) ?Ch(dual (toks s′))−−−−−−−−−−−−−−−−−−−−−−−−−→end

| TRRecv2 : ∀ i s, recvi
?Ch(dual (ack1– i s)) ?Ch(dual (toks s))−−−−−−−−−−−−−−−−−−−−−−→end

The ABP process, without hiding of internal channels, is then typed with a process context that
includes: sendi :Ch(fun Ch(sendi)), lossy :Ch(fun Ch(lossy)), recvi :Ch(fun Ch(recvi)).

In this typing for the ABP, the lossy process is not implemented as the parallel composition of
a process forwarding from l to r, and another forwarding from r to l. This appears to be necessary
to ensure that the lossy forwarder is typed with sufficient knowledge about the acknowledgement
state of a channel.

Finally, the results of Section 5 ensure that if lft has session type (toks S) then output on rht
always conforms to the session type (dual (toks S)), so internal loss or duplication of messages
inside the ABP does not compromise external communication.

The Coq statement of typing for the ABP is given on page 6. 2

5. Type Soundness Results

In this section we state subject reduction and two safety results for the calculus. The first safety
result is a runtime safety property ensuring the absence of errors. The second safety result ensures
that the traces of interaction on a channel conform to the original session type for the channel.
We show several applications of the conformance theorem.

The results have been verified in Coq. The Coq statements are displayed in Figure 17, and
their proofs are available online (Goto et al., 2011).

5.1. Auxiliary Results

The type system admits weakening for process typing judgements /0 ; G1 `P. Weakening requires
a second context G2 that can be merged with the original context G1, so that values in both
contexts are assigned stateless types. Values with channel type in G2 need not be assigned the
terminal session type end, because our typing rules do not require a channel to be fully used. In
contrast, the weakening lemmas of, e.g., (Gay and Hole, 2005; Gay, 2008; Vasconcelos et al.,
2010), do require linear channels to have a terminal session type. We discuss this difference
further in Section 6.

Lemma 1 (Weakening). If /0 ; G1 ` P and /0 ; G ` G1�G2, then /0 ; G ` P. 2

Similarly, and for the same reason, the strengthening result for process typing judgements does
not require channels to have terminal session types.



An Extensible Approach to Session Polymorphism 33

Lemma 2 (Strengthening). If /0 ; G2 ` P, fval(P)⊆ dom(G1), and G1 ⊆ G2, then /0 ; G1 ` P. 2

Lemma 3 (Structural equivalence preserves typing). If P ≡ Q, then, for all G, /0 ; G ` P iff
/0 ; G ` Q. 2

The proofs of Lemmas 1– 3 are routine, using induction over the derivations of typing and
structural equivalence judgements. We state these and subsequent results, using the empty con-
text /0. The context does not appear explicitly in the corresponding Coq statements (Figure 17)
because it represents the Coq hypotheses, in contrast to the process context that does appear
explicitly in the Coq statements.

5.2. Subject Reduction

To ensure that communication on both endpoints of the same channel is well behaved, subject
reduction requires that processes are typed in balanced process contexts (Gay and Hole, 2005;
Yoshida and Vasconcelos, 2007), in which dual names are assigned dual session types.

Formally, we say that a process context is balanced, written bal(G), whenever:

— If G(u) = A, then u is a name or coname and A is a channel type (i.e., not a singleton type).
— If G(n) =Ch(S) and G(n) =Ch(T), then S = dual T or T = dual S.

As in prior work for session types (ibid.), subject reduction states that reduction from a well-
typed process P to Q, yields a process that is well-typed in another process context. As shown
in (Yoshida and Vasconcelos, 2007), subject reduction and subsequent safety results need not
depend on the existence of a relationship between the first and second process contexts. However,
it is useful to know that the process context is evolving in harmony with the interaction that occurs
in processes, and we make use of this property in our conformance result (Theorem 7).

The relationship between the first and second process context specifies changes to session
types that reflect interaction that occurred in the reduction. To formalize this relationship, define
the function obst(A) that maps a type to an observable value by hiding channels as follows (cf. the
function obsv(u), used in the reduction semantics Section 2.2, that maps a value to an observable
value):

obst({k}) M
= k

obst(Ch(S)) M
= ?

Next, we define a function obsm(u,M) that maps a name or coname u, and a message M, to
an observation on a name. If given a name, the direction of the message is retained. If given a
coname, the direction of the message is reversed. The function obsm(u,M) is defined by:

obsm(n,?A) M
= n?obst(A)

obsm(n,!A) M
= n!obst(A)

obsm(n,?A) M
= n!obst(A)

obsm(n,!A) M
= n?obst(A)

Finally, we define the context preservation relation G1
α−→ G2 between process contexts before,

G1, and after, G2, a reduction annotated with observation α . The context preservation relation
requires session types for dual names to evolve according to the labelled transitions for the initial



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 34

weakening
: forall (G G1 G2 : ctx) (P : proc),

(G1 |-p P) ->
(G |-part G1 (+) G2) ->
G |-p P

strengthening
: forall (G1 G2 : ctx) (P : proc),

(G2 |-p P) ->
CTX.Subset G1 G2 ->
free_values_in_context G1 P ->
G1 |-p P

struct_equiv_preserves_typed
: forall (P Q : proc) (G : ctx),

(P == Q) ->
G |-p P <-> G |-p Q

ctx_preservation_preserves_balanced
: forall (G1 G2 : ctx) (alpha : obs),

(G1 |-wf) ->
ctx_preservation G1 G2 alpha ->
balanced G1 ->
balanced G2

subject_reduction
: forall (G1 : ctx) (P Q : proc) (alpha : obs),

reduction P Q alpha ->
(G1 |-p P) ->
balanced G1 ->
exists G2 : ctx,

(G2 |-p Q) /\ ctx_preservation G1 G2 alpha

runtime_safety
: forall (G : ctx) (P : proc),

(G |-p P) ->
balanced G ->
~ error P

conformance
: forall (G : ctx) (P Q : proc) (f : free_id) (s : session) (alphas : list obs),

reductions P Q alphas ->
(G |-p P) ->
balanced G ->
CTX.In (Nm (Free f), TChannel s) G ->
traces f (project f alphas) s

Fig. 17: Type Soundness Results Verified in Coq



An Extensible Approach to Session Polymorphism 35

G τ−→ G

S M−→T u, v are dual names
G,u :Ch(S),v :Ch(dual S) obsm(u,M)−−−−−−−→ G,u :Ch(T),v :Ch(dual T)

Fig. 18: Context Preservation Relation

u is not a channel

 u!v.P

u is not a channel

 u?x.P

u or v is not a token

 [u=v]P

u or v is not a token

 [u6=v]P

 P

 (νννn)P

 P

 P+Q

 Q

 P+Q

 P

 P|Q

 Q

 P|Q

 P

 *P

Fig. 19: Error

session types. The context preservation relation is defined inductively by the rules in Figure 18.
This context preservation relation is close in spirit to the relationship between initial and final
contexts in the subject reduction result of (Gay and Hole, 2005) (Theorem 1, type preservation).
The difference is that our definition captures all interaction, as opposed to capturing only inter-
action via label selection and branching.

Since the context preservation relation advances the session types of dual channels in tandem,
it preserves the property that a process context is balanced.

Lemma 4 (Balanced process contexts). If bal(G1) and G1
α−→ G2, then bal(G2). 2

Note that the corresponding Coq statement (in Figure 17) for Lemma 4 requires that the process
context is well-formed, written G1 |-wf. However, in Section 3.5, we already restricted our at-
tention in this paper to well-formed process contexts, and so we do not include it in Lemma 4.
The other Coq statements do not explicitly state that contexts are well-formed because it is im-
plied by process typing.

The subject reduction theorem then states that reduction from a process that is well-typed
in a balanced process context leads to another well-typed process. Moreover, the two process
contexts, and the observation from the reduction, are related by context preservation.
Theorem 5 (Subject reduction). If P α−→ Q and /0 ; G1 ` P, for some context satisfying bal(G1),
then there exists a context G2 such that /0 ; G2 ` Q and G1

α−→ G2. 2

5.3. Runtime Safety

In our language, shape errors arise in programs that confuse tokens and channels. Tokens may be
compared, but may not be used for input or output; channels have complementary capabilities. In
Figure 19, we formally define errors as a predicate on processes (notation  P). The use of session
polymorphism, the subtle behavior of input, and subsequent deduction makes the absence of
shape errors less than obvious. Nevertheless, the runtime safety theorem asserts that well-typed
processes do not give rise to immediate shape errors.



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 36

Theorem 6 (Runtime safety). If /0 ; G ` P for some context satisfying bal(G) then ¬( P). 2

The proof is a straightforward induction. For the base cases, note that balanced environments do
not contain free variables.

In (Honda et al., 1998), a process of the form (n!M.P)|(n!M′.Q) is an error, and, more gen-
erally, the parallel composition of two processes offering communication on a common channel
is an error if the composition is not a redex. To support freedom from the errors of the form
in (Honda et al., 1998), it would be necessary for us to distinguish linear, stateful channels from
stateless channels in processes. This is because stateless channels can be used in ways that would
constitute an error for stateful channels, e.g., it is not an error for two processes in parallel to send
on a common stateless channel. We leave this form of error for future work.

5.4. Conformance

We now prove that the behavior of a well-typed process conforms to the session types of its free
channels. To do so, we first define the traces of a session type. We then show that any trace of
a process, projected to the actions of a single name, is contained in the set of traces allowed by
the name’s session type. This conformance result is similar to the conformance theorem of (Gay
et al., 2010).

In the following definitions, ε represents the empty trace, σ ranges over traces, which is a
finite list of observations, and :: denotes trace prefixing.

For a session S, consider the (prefix-closed) set of finite lists of messages obtained as paths of
labelled transitions from S. The traces of a session S at name n, written tracesn(S), is a set of
traces constructed from this prefix-closed set. We define it inductively as follows.

— ε ∈ tracesn(S).
— (obsm(n,M) :: σ) ∈ tracesn(S) if /0 ` S M−→T and σ ∈ tracesn(T).

For a process P, consider the (prefix-closed) set of finite lists of observations obtained from
sequences of reductions from P. The traces of a process P at name n, written tracesn(P), is the
result of filtering only the observations for n from each list in this set. It is defined inductively as
follows.

— ε ∈ tracesn(P).
— If P α−→ Q and σ ∈ tracesn(Q) then

– (α :: σ) ∈ tracesn(P) if α = n?γ or α = n!γ , and
– σ ∈ tracesn(P) otherwise.

The conformance theorem states that the traces of a process for a free channel are contained in
the set of traces for the session type of that channel.

Theorem 7 (Conformance). If /0 ; G ` P and G(n) =Ch(S), for some context satisfying bal(G),
then tracesn(P)⊆ tracesn(S). 2

Conformance is a powerful tool for reasoning about the behavior of processes, especially in
conjunction with session polymorphism and session-type functions. We briefly consider several
applications.

Example 14 (Correctness of label branching encoding). Recall the use of the error channel in



An Extensible Approach to Session Polymorphism 37

the encoding of label selection and branching in Section 2.3 and Section 3.5. The derived typing
rule for label branching included the requirement that the process context assigns type Ch(end)

to error. Since Ch(end) is a stateless type, uses of error can occur on both sides of parallel
composition.

Now consider a process P that uses the encoding of label branching from Section 2.3, where
output occurs on error when an unexpected label (simply a token) is received at a label branching
process. We assume that error is not bound in P. The coname error can be assigned the stateless
type Ch(dual end), and so can be freely copied if necessary. Thus, if P is well-typed, we can
always form the well-typed process (P|error?x). Note that it is only possible to type the input
process error?x because our type system always allows input, and without the input process, the
output process would be irrelevant.

In this example, applying Theorem 7 to the process (P|error?x) with channel error :Ch(end)

ensures that there is never a communication on error, because end only has the empty trace,
i.e., traceserror(end) = {ε}. We conclude that label branching processes never receive incorrect
labels. 2

Example 15 (Correctness of the alternating bit protocol). Recall the polymorphic session typ-
ing of the ABP in Example 13. We wish to deduce that the alternating bit protocol does not drop,
duplicate, or reorder data that it forwards. Consider any finite sequence of tokens~k = k1, . . . ,km.
Then~k determines a session type consisting of a sequence of inputs:

S~k = ?{k1}. . . .?{km}.end

as well as a process that performs the corresponding outputs on a channel lft:

P~k = lft!k1.. . . lft!km

Now the ABP typing statement is parameterized by a session type. Instantiating that session
type with S~k yields the typing:

; lft :Ch(toks S~k), rht :Ch(dual (toks S~k)) ` abp(lft,rht)

The process P~k can be typed using dual (toks S~k) as the session type for lft. We may then consider
the parallel composition of the sender, the ABP, and the sink process of Section 4.1 (we omit the
procedure bodies of both abp and rep for brevity):

P~k | abp(lft,rht) | rep(rht)

The above process is well-typed, because the sink process has a polymorphic session type that
allows it to consume data from any channel.

Applying Theorem 7 to this process and the channel rht tells us that the traces of the process
for rht are contained in the traces of dual (toks S~k). From the labelled transitions of dual and
toks it can be deduced that the traces of dual (toks S~k) are output observations for sequences
of tokens that are initial prefixes of~k. Thus the output of the ABP is a prefix of the input that it
receives, as required. 2

The alternating bit protocol is a common test for mechanical verification, e.g., (Divito, 1981).
Our proof establishes correctness via the modular route of session typing, and an application of
conformance.



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 38

6. Related Work

(Dezani-Ciancaglini and de’ Liguoro, 2010) give a recent comprehensive survey of the session
types literature. Also, (Vasconcelos, 2009) provides a tutorial reconstruction of session types in
a linear π calculus with linear and unrestricted types, where values of unrestricted types need not
have linear usage, like our stateless types. We differ in using a deductive definition of stateless-
ness that is relative to a context, rather than stating that a replication session type constructor,
e.g., (fun A)), must be used to create stateless types. This allows some additional flexibility, e.g.,
deducing that a channel type Ch(S+T) is stateless if both Ch(S) and Ch(T) are stateless.

Polymorphism. Several forms of polymorphism have been investigated in connection with
session types. The most closely-related form, discussed in the introduction, is bounded polymor-
phism for session types (Dezani-Ciancaglini et al., 2007b; Gay, 2008; Bono and Padovani, 2011).
In that work, the syntax of a session type includes type abstractions with subtyping bounds (we
also use type abstraction with session types, as discussed in Section 3.3). Our session types and
types do not have subtyping bounds, but may have other logical constraints. We discuss subtyping
below.

Our work differs from the prior work on bounded polymorphism in that we always allow read-
ing from a channel, and we permit logical deduction in type derivations. The former ingredient
can be seen as a form of implicit coercion, and the latter resembles a type system based upon log-
ical deduction developed for Scheme (Tobin-Hochstadt and Felleisen, 2010). We expand on the
treatment of input and deduction below. Additionally, within type derivations we use abstraction
over session types across multiple channels in conjunction with functions over session types.

Other research on relating session types and linear type theories (Gay and Vasconcelos, 2010;
Caires and Pfenning, 2010) has led to work that incorporates type abstraction as second-order
quantification in linear logic, e.g., to establish strong deadlock freedom guarantees (Wadler,
2012), and relational parametricity results (Caires et al., 2013).

Dependent session types (Bonelli et al., 2005; Toninho et al., 2011) include abstraction over
values. This form of abstraction is supported in our formalization in Coq.

(Deniélou and Yoshida, 2011) use polymorphism in connection with session types, but the
polymorphism is over roles associated with processes; this kind of role polymorphism is orthog-
onal to the issues of session polymorphism.

Input and Deduction. Existing session type systems only permit an input or label branching
process to be typed when the corresponding session type allows the operation. In monomorphic
session type systems without subtyping, e.g., (Honda et al., 1998), session types are known in
their entirety at their point of use, and so there is no reason to allow input or label branching
processes that can never occur.

In session type systems with subtyping, e.g., (Gay and Hole, 2005; Castagna et al., 2009)
and work on bounded polymorphism, a channel n with a label branch session type may not be
identical to the dual of the session type for its other endpoint n. In this case, some of the label
branches in a process may be redundant. This does not impact runtime safety because a well-
typed process is forced to offer enough choices in a label branching process.

Our type system takes this idea further, by allowing inputs for any session type, and by de-
pending on the sender to send correct data. It is this relaxation of input typing that permits typing



An Extensible Approach to Session Polymorphism 39

of the forwarder examples. In some cases, the code P after an input n?x.P can be identified as
redundant because the input cannot occur, e.g., when n is assigned one of the types: Ch(end),
Ch(!{k}.end), or Ch(dual (checkvalve S)), for a session type S. However, for many generic pro-
cesses with polymorphic session types, such as the forwarder examples, it is not possible to say
whether an input can occur without knowing the session to which the session type variable is
instantiated. (Neubauer and Thiemann, 2004b) investigates the elimination of redundant code in
programs with session types, also using singleton types to promote values to types.

Matching. Label branching is normally an atomic operation, e.g., (Honda et al., 1998). Our en-
coding of label branching via interaction and matching/mismatching is not an atomic operation.
One might wonder why our subject reduction theorem (Theorem 5) does not have a different
structure to subject reduction theorems for calculi with atomic label branching that also relate
process contexts according to labels from the reduction, e.g., (Gay and Hole, 2005; Gay, 2008).
The difference lies in the process syntax and the reduction relation. In particular, our annotations
occur at interaction, and our interaction does not perform the matching tests that are implicit
in label branching. In contrast, the annotations of (ibid.) occur when paired label selection and
branching synchronize. In other words, our annotations do not describe any matching that occurs
after interaction. But they do capture any output that occurs as a result of the matching.

Deadlock Freedom and Progress. Other session type systems, starting from (Honda et al.,
1998), require that channels with linear usage have the terminal session type end when typing
the terminal process 0. Consequently, weakening is restricted to channels with terminal session
type also. This design decision prevents processes from prematurely terminating a conversation.
However, it does not follow that conversations are completed due to the possibility of deadlock.
Partly for this reason, the constraint upon premature termination is not exploited in most prior
work on session types, where the focus is upon subject reduction and runtime safety.

(Kobayashi, 1998; Kobayashi, 2006) provides a type system for the π calculus that ensures
deadlock freedom by describing the dependencies between the order of use of different channels.
(Dezani-Ciancaglini et al., 2006; Coppo et al., 2007) describes a stack discipline for the use of
sessions that ensures deadlock freedom and progress. (Honda et al., 2008) provides a progress
property also in the absence of interleaved sessions, but does so in a calculus with multiparty
sessions. (Dezani-Ciancaglini et al., 2007a) instead relaxes the requirement for a stack discipline
to achieve progress.

In contrast, our work seeks to extend the traditional subject reduction and safety results to
session polymorphism and compositional, logical specifications of session types. We permit pro-
cesses to leave a conversation incomplete, by failing to reach the terminal session end. This does
not impact subject reduction, runtime safety, or conformance, but does allow some (arguably)
useful generic processes with polymorphic session types, such as the sink process of Example 10.

Nevertheless, whether or not conversations may be ended prematurely appears to be orthog-
onal to our approach to session polymorphism. The changes to the type system would involve
the typing of the terminal process end, the matching and mismatching constructs (since they
are terminal if they fail, using an if-then-else equality-testing construct would suffice), and the
replication construct. The sink example would no longer type. On the other hand, the forwarder
processes would type because they do not terminate the conversations in the lft and rht parame-
ters. The single-use channels of type Ch(fwd) are discarded only when they reach type Ch(end),



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 40

as expected. The ABP process would also type because it expects to receive tokens and not
channels in its input, and so the lossy process can freely discard the tokens that it receives.

Towards Subtyping. The theory of subtyping for session types was developed in (Gay and
Hole, 2005). For example, using the syntax defined in this paper, the session type T1

M
= ?{k1}.S1

is a subtype of T2
M
= (?{k1}.S1)+ (?{k2}.S2), because the former has fewer inputs. Our type

system does not yet incorporate subtyping. However, it is possible to use bidirectional forwarding
to gain some of the expressive power of subtyping. Consider a channel n1 with type Ch(T1).
Without subtyping, it is not possible to send n1 on a channel that expects a value of type Ch(T2).
Instead, create new channel endpoints n2, n2 with types Ch(T2) and Ch(dual T2) respectively.
The channel n2 can be sent in place of n1, because its type is identical to the required type. Next,
a bidirectional forwarding process can be used to forward messages from n1 to n2, and vice versa.
The polymorphic session type given in Example 12 for the bidirectional forwarder does not allow
n1 and n2 to be used because their session types T1 and (dual T2) are not dual.

However, a more generous polymorphic session type, based upon subtyping, can be estab-
lished for the bidirectional forwarder. We say that a binary relation R on session types is a
simulation if, for every (S1,T1) ∈R:

— if S1
?a−→S2, then there exists T2, such that T1

?a−→T2 and (S2,T2) ∈R; and
— if T1

!a−→T2, then there exists S2, such that S1
!a−→S2 and (S2,T2) ∈R.

Similarity is then defined to be the greatest simulation.
Similarity provides the exact information needed to typecheck the bidirectional forwarding

process. Suppose the bidirectional forwarder is passed channels lft and rht with session types S
and (dual T), where S and T are related by similarity. Then the first component of simulation
guarantees that an input on lft justifies output on rht, because rht has session type (dual T), and
so reverses the direction of interaction. The second component of simulation guarantees that an
input on rht justifies output on lft.

If session types are related by a finite simulation R = {(Si,Ti) | 1 ≤ i ≤ n}, then the single-
use channel that carries the arguments to the bidirectional forwarding process has session type
fwdsimR defined by:

fwdsimR
M
= (?Ch(S1).?Ch(dual T1).end)

+ (?Ch(S2).?Ch(dual T2).end)

+ · · ·
+ (?Ch(Sn).?Ch(dual Tn).end)

Finally, the bidirectional forwarder can be typed using fwdsimR for carrying related lft and rht
channels, for all finite simulations R. The restriction to finite simulations arises from our strat-
egy for encoding relations. We are investigating alternative encodings for infinite simulations.
We note that the polymorphic session typing for the bidirectional forwarder in Example 12 does
effectively yield the (infinite) identity simulation. Moreover, it may be useful to add the iden-
tity relation to the simulations under consideration by typing the bidirectional forwarder with
session type (fwdsimR + fwd). In this way, our original example, where T1

M
= ?{k1}.S1 and

T2
M
= (?{k1}.S1)+ (?{k2}.S2), need only use the relation R = {(T1,T2)}. This is not a simula-

tion, but the union of R with the identity relation is a simulation.
For ground data (tokens) our definition of similarity corresponds to the behavior of subtyping

at label selection and branch session types in (Gay and Hole, 2005). However, the definition of



An Extensible Approach to Session Polymorphism 41

similarity is invariant in the message types a, and so, for non-ground data (channels), it is weaker
than subtyping in (Gay and Hole, 2005). We leave a more complete definition of subtyping for
future work.

Polarities. Recent work (Dezani-Ciancaglini et al., 2006; Yoshida and Vasconcelos, 2007;
Giunti et al., 2009; Vasconcelos et al., 2010) has shown that polarities are unnecessary for type
safety in a session type system for programmers, but that polarities can be useful within proofs
about models with unpolarized channels. Nevertheless, we have adopted the polarity solution of
(Gay and Hole, 2005) in an attempt to provide a more direct proof of subject reduction, and,
hence, to make mechanical verification tractable.

Formalization and Mechanical Verification. Prior formalizations of the π calculus with theo-
rem provers include the theory of strong late bisimilarity using a Higher-Order Abstract Syntax
(HOAS) representation in Coq (Honsell et al., 2001), subject reduction for a type system of direc-
tionality of names using HOAS in Coq (Despeyroux, 2000), safety of a linear type system using
de Bruijn indices in Isabelle/HOL (Gay, 2001), and specification and verification for processes
of a π calculus extension using a HOAS representation in Coq (Affeldt and Kobayashi, 2008).
(Malecha et al., 2011) describes a Coq library for verification of I/O behavior of programs. Their
I/O specifications are based on traces rather than session types (representing sets of traces).

7. Conclusion

We have shown that:

— Session type polymorphism can be applied to simple generic processes via a novel treatment
of input typing in conjunction with deduction.

— Ideas from dependent type theory for certified functions on lists can be adapted to channels
with bidirectional interaction

— Session-type functions that are transducers are expressive and amenable to straightforward
session typing.

These ideas appear to be robust in the sense that they may be adaptable to session typing for
functional / object-oriented programming languages and may be implemented in different log-
ical frameworks. We have developed one such implementation for the π calculus in Coq and
mechanically verified subject reduction and safety results. This implementation has been used
to validate polymorphic session typing, yielding partial correctness for the alternating bit proto-
col, and demonstrating that the type discipline can be applied to create modular specifications of
nontrivial protocols.

The rich logic of specifications has potential application to protocols where the primary con-
cern lies with the complexity of the language, e.g., encoding XML schema as session types. We
are exploring the application of session types to a modular analysis of generic HTTP-processing
code.

We have not studied conditions under which process typing is decidable, or fully general the-
ories of subtyping / type equivalence. These issues will be explored in future work.

Acknowledgements. We thank the anonymous referees for their detailed comments and sug-
gestions.



M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 42

References

Affeldt, R. and Kobayashi, N. (2008). A Coq library for verification of concurrent programs. Electr. Notes
Theor. Comput. Sci., 199:17–32.

Aydemir, B., Charguéraud, A., Pierce, B. C., Pollack, R., and Weirich, S. (2008). Engineering formal
metatheory. In POPL, pages 3–15.

Bartlett, K. A., Scantlebury, R. A., and Wilkinson, P. T. (1969). A note on reliable full-duplex transmission
over half-duplex links. CACM, 12(5):260–261.

Bertot, Y. and Castéran, P. (2004). Interactive Theorem Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer Verlag.

Bonelli, E., Compagnoni, A. B., and Gunter, E. L. (2005). Correspondence assertions for process synchro-
nization in concurrent communications. J. Funct. Program., 15(2):219–247.

Bono, V. and Padovani, L. (2011). Polymorphic endpoint types for copyless message passing. In Proceed-
ings of the 4th Workshop on Interaction and Concurrency Experience (ICE’11), EPTCS 59.

Caires, L., Pérez, J., Pfenning, F., and Toninho, B. (2013). Behavioral polymorphism and parametricity in
session-based communication. In ESOP.

Caires, L. and Pfenning, F. (2010). Session types as intuitionistic linear propositions. In Gastin, P. and
Laroussinie, F., editors, CONCUR, volume 6269 of LNCS, pages 222–236. Springer.

Castagna, G., Dezani-Ciancaglini, M., Giachino, E., and Padovani, L. (2009). Foundations of Session
Types. In PPDP’09.

Charguéraud, A. (2012). The locally nameless representation. Journal of Automated Reasoning, 49(3):363–
408.

Coppo, M., Dezani-Ciancaglini, M., and Yoshida, N. (2007). Asynchronous session types and progress for
object oriented languages. In FMOODS, LNCS 4468, pages 1–31.

Coquand, T. (1992). Pattern matching with dependent types. In Nordström, B., Petersson, K., and Plotkin,
G., editors, Electronic Proceedings of the Third Annual BRA Workshop on Logical Frameworks.

Coquand, T. and Paulin-Mohring, C. (1990). Inductively defined types. volume 417 of LNCS.
Deniélou, P.-M. and Yoshida, N. (2011). Dynamic multirole session types. In POPL, pages 435–446.
Despeyroux, J. (2000). A higher-order specification of the π-calculus. In IFIP Conference on Theoretical

Computer Science, volume LNCS 1872, pages 425–439.
Dezani-Ciancaglini, M. and de’ Liguoro, U. (2010). Sessions and Session Types: an Overview. In WS-

FM’09, volume 6194 of LNCS, pages 1–28.
Dezani-Ciancaglini, M., de Liguoro, U., and Yoshida, N. (2007a). On progress for structured communica-

tions. In TGC, LNCS. Springer.
Dezani-Ciancaglini, M., Drossopoulou, S., Giachino, E., and Yoshida, N. (2007b). Bounded Session Types

for Object-Oriented Languages. In FMCO’06, LNCS 4709.
Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., and Drossopolou, S. (2006). Session types for object-

oriented languages. In ECOOP’06, volume 4067 of LNCS, pages 328–352. Springer.
Divito, B. L. (1981). A mechanical verification of the alternating bit protocol. Technical report, University

of Texas at Austin.
Dybjer, P. (1991). Inductive sets and families in Martin-Löf’s type theory and their set-theoretic seman-

tics. In Huet, G. and Plotkin, G., editors, Logical frameworks, pages 280–306, New York, NY, USA.
Cambridge University Press.

Freeman, T. and Pfenning, F. (1991). Refinement types for ML. In Proceedings of the SIGPLAN ’91
Symposium on Language Design and Implementation, pages 268–277. ACM Press.

Gay, S. J. (2001). A framework for the formalisation of π calculus type systems in Isabelle/HOL. In Proc.
of 14th TPHOL, pages 217–232.

Gay, S. J. (2008). Bounded polymorphism in session types. Mathematical Structures in Computer Science,
18(5):895–930.



An Extensible Approach to Session Polymorphism 43

Gay, S. J. and Hole, M. (2005). Subtyping for session types in the π calculus. Acta Inf., 42(2-3):191–225.
Gay, S. J. and Vasconcelos, V. T. (2010). Linear type theory for asynchronous session types. J. Funct.

Program., 20(1):19–50.
Gay, S. J., Vasconcelos, V. T., Ravara, A., Gesbert, N., and Caldeira, A. Z. (2010). Modular session types

for distributed object-oriented programming. In POPL.
Giunti, M., Honda, K., Vasconcelos, V. T., and Yoshida, N. (2009). Session-based type discipline for pi

calculus with matching. Presented at PLACES 2009—2nd International Workshop on Programming
Language Approaches to Concurrency and Communication-cEntric Software.

Gordon, A. D. and Fournet, C. (2010). Principles and applications of refinement types. In Esparza, J.,
Spanfelner, B., and Grumberg, O., editors, Logics and Languages for Reliability and Security, volume 25
of NATO Science for Peace and Security Series - D: Information and Communication Security, pages 73–
104. IOS Press.

Goto, M., Jagadeesan, R., Jeffrey, A., Pitcher, C., and Riely, J. (2011). Coq formalization of extensible
polymorphic session types. http://fpl.cs.depaul.edu/projects/xpol/.

Honda, K., Vasconcelos, V. T., and Kubo, M. (1998). Language primitives and type discipline for structured
communication-based programming. In ESOP, volume 1381 of LNCS, pages 122–138.

Honda, K., Yoshida, N., and Carbone, M. (2008). Multiparty asynchronous session types. In POPL, pages
273–284.

Honsell, F., Miculan, M., and Scagnetto, I. (2001). π-calculus in (co)inductive type theory. Theoretical
Computer Science, 253:2001.

Hu, R., Yoshida, N., and Honda, K. (2008). Session-based distributed programming in Java. In ECOOP,
volume 5142.

Jeffrey, A. S. A. and Rathke, J. (2011). The lax braided structure of streaming I/O. In Proc. Conf. Computer
Science Logic.

Kiselyov, O., Peyton Jones, S., and Shan, C.-c. (2010). Fun with type functions (version 3). Presented at
Tony Hoare’s 75th birthday celebration.

Kobayashi, N. (1998). A partially deadlock-free typed process calculus. ACM Trans. Program. Lang. Syst.,
20(2):436–482.

Kobayashi, N. (2006). A new type system for deadlock-free processes. In Baier, C. and Hermanns, H.,
editors, CONCUR, volume 4137 of LNCS, pages 233–247. Springer.

Malecha, G., Morrisett, G., and Wisnesky, R. (2011). Trace-based verification of imperative programs with
I/O. Journal of Symbolic Computation, 46(2):95–118. Automated Specification and Verification of Web
Systems.

Milner, R. (1991). The polyadic π-calculus: a tutorial. Technical Report ECS-LFCS-91-180, Laboratory
for Foundations of Computer Science, Department of Computer Science, University of Edinburgh, UK.
Also in Logic and Algebra of Specification, ed. F. L. Bauer, W. Brauer and H. Schwichtenberg, Springer-
Verlag, 1993.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, I. Information and Compu-
tation, 100(1):1 – 40.

Neubauer, M. and Thiemann, P. (2004a). An implementation of session types. In PADL, LNCS, pages
56–70. Springer.

Neubauer, M. and Thiemann, P. (2004b). Protocol specialization. In Chin, W.-N., editor, APLAS, volume
3302 of LNCS, pages 246–261. Springer.

Pucella, R. and Tov, J. A. (2008). Haskell session types with (almost) no class. In Proceedings of the first
ACM SIGPLAN symposium on Haskell, Haskell ’08, pages 25–36.

Röckl, C. and Hirschkoff, D. (2003). A fully adequate shallow embedding of the π-calculus in Isabelle/HOL
with mechanized syntax analysis. J. Funct. Program., 13:415–451.

Roscoe, A. W. (1997). The Theory and Practice of Concurrency. Prentice Hall.

http://fpl.cs.depaul.edu/projects/xpol/


M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely 44

Sackman, M. and Eisenbach, S. (2008). Session Types in Haskell: Updating Message Passing for the 21st
Century. Technical report, Imperial College, London.

Takeuchi, K., Honda, K., and Kubo, M. (1994). An interaction-based language and its typing system. In
PARLE, volume 817 of LNCS, pages 398–413. Springer.

Tobin-Hochstadt, S. and Felleisen, M. (2010). Logical types for untyped languages. In Hudak, P. and
Weirich, S., editors, ICFP, pages 117–128. ACM.

Toninho, B., Caires, L., and Pfenning, F. (2011). Dependent session types via intuitionistic linear type
theory. In Schneider-Kamp, P. and Hanus, M., editors, PPDP, pages 161–172. ACM.

Vasconcelos, V. T. (2009). Fundamentals of Session Types, volume 5569 of LNCS, pages 158–186. Springer
Verlag.

Vasconcelos, V. T., Gay, S. J., and Ravara, A. (2006). Type checking a multithreaded functional language
with session types. Theor. Comput. Sci., 368(1-2):64–87.

Vasconcelos, V. T., Giunti, M., Yoshida, N., and Honda, K. (2010). Type safety without sub-
ject reduction for session types. http://www.di.fc.ul.pt/~vv/papers/vasconcelos.giunti.etal_
type-safety-session-types.pdf.

Wadler, P. (2012). Propositions as sessions. In Thiemann, P. and Findler, R. B., editors, ICFP, pages
273–286. ACM.

Yoshida, N. and Vasconcelos, V. T. (2007). Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session communication.
In 1st International Workshop on Security and Rewriting Techniques, volume 171(4) of ENTCS, pages
73–93. Elsevier.

http://www.di.fc.ul.pt/~vv/papers/vasconcelos.giunti.etal_type-safety-session-types.pdf
http://www.di.fc.ul.pt/~vv/papers/vasconcelos.giunti.etal_type-safety-session-types.pdf

	Introduction
	Session Polymorphism
	Session Transducers
	Deduction
	Formalization
	Organization

	Operational Model
	Process Language
	Reduction Semantics
	Label Selection and Branching

	Polymorphic Session Typing
	Session Types
	Formalization
	Binding in Session Polymorphism
	Extensiblity
	Type Assignment

	Examples
	Recursive Procedures
	Forwarding Processes
	The Alternating Bit Protocol

	Type Soundness Results
	Auxiliary Results
	Subject Reduction
	Runtime Safety
	Conformance

	Related Work
	Conclusion
	References

