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Abstract

This paper presents a functional programming language, based on Moggi’s monadic met-
alanguage. In the first part of this paper, we show how the language can be regarded as a
monad on a category of signatures, and that the resulting category of algebras is equivalent
to the category of computationally cartesian closed categories. In the second part, we ex-
tend the language to include a nondeterministic operational semantics, and show that the
lower powerdomain semantics is fully abstract for may-testing.

1 Introduction

Moggi has proposed strong monads as an appropriate way to model computation.
In [9], he shows that any model of computation satisfying certain equations forms
a strong monad. His work concentrates on the denotational properties of programs,
whereas we shall show how his work can be applied to an operational semantics.

In the first section of this paper, we present a slight variant on his functional mon-
adic metalanguage and show that its algebras are equivalent to strong monads with
T-exponentials. This language differs from Moggi’s in the way that pairing is han-
dled, in particular our language has the properties:

— any closed term of unit type is (up to syntactic identity) the distinguished element
*’

— any closed term of pairing type is (up to syntactic identity) a pair (e, ),

— any closed term of function type is (up to syntactic identity) a A-term Ax . e.
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Moggi’s language has these properties, but only up to provable equality, and not
syntactic identity. Having these properties true up to syntactic identity is very useful
in the second section, where we present an operational semantics for a monadic
language with nondeterminism, and show that the fully abstract semantics for this
language is given by a powerdomain semantics.

The operational semantics for the monadic language is much simpler than the call-
by-value language, since the type structure allows fine control over the syntactic
form of terms. For example, the only operational rule required for function ap-
plication is -reduction. We do not need any operational rules for which contexts
reduction is allowed in, since this is taken care of by the type discipline.

The monadic type system also makes it easier to show full abstraction for the non-

deterministic language, since it gives contexts more power over how expressions
are evaluated.

2 Algebras

In this section, we present three languages for data and computation, and show that
their algebras correspond to well-known categorical structures.

2.1 Algebraic datatypes

A (many-sorted) signature (ranged over by X) is a set of sorts (ranged over by
A, B and C) and a set of constructors (ranged over by c) together with a sorting
c:Ag,...,Ay— A A signature morphism is a mapping between sorts and con-
structors with respects sorting. Let Sig be the category of signatures with signature
morphisms.

Given a signature %, we can define the language ST Z of syntax trees over  as:

er=x/|c(eq,...,en)|(e,8) |V  vi=X|VL]|VR

where x ranges over a set of variables. We shall call expressions v lvalues. We can
give ST X a static type system, with types:

Ti=1][Al|T®T



and type judgements of the form I" e : T given by rules:

Ne:o THT:T

FEx:l TH(ef)io®T
IFc(eq,...,en) : [A]

NFv:(o®t) TFv:(0®T)

N-vL:o NFVR:T
Ney:t

MNx:oFx:0 [I,x:okFy:t

[C:A1,...,An—A]

X #Y]

where I" ranges over contexts of the form xq : Tq,..., Xy : Tp.

Note that we are only allowing projections vL and v.R on Ivalues, and not on arbi-
trary terms, since this would not allow us to have the following useful properties:

— any term of type | is either an Ivalue or x,
— any term of type [A] is either an lvalue or of the form c(ey,...,en), and
— any term of type o ® T is either an lvalue or of the form (e, f).

However, whenever I -e: 0® T, we can define M = Te:gand I - 1Te : T as syntactic
sugar, e is either an lvalue or a pair:

w=vL Tv=vrR T(f,g)=f T(f,g)=g

ST X is itself a signature, with types as sorts and judgements (Xy : Oq,...,Xn : Op
e : T) as constructors 0 — T, viewed up to the congruence given by (wheny is fresh):

(FE=x:l)
(M= (VL,VR): O®T)
(Fx:o,MFe:T)

(FE=:1)
FFv:o®T)
(F,y:o, " Fely/x]:1)

Note that these equations only involve open terms, so closed terms are viewed up
to syntactic identity.

Any signature morphism f : £ — 3’ can be homomorphically extended to a signa-
ture morphism ST f : STZ — STZ'. It is routine to verify that ST : Sig— Sigiis a
functor.

Whenever [',X: G+ e:tand [+ f: & we can define the substitution I e[ /X] : T
by its action on lvalues (when x # y):

vi[f/x) = mvif/x)  vrIF/X = m(vIF/x)
yIF /% = yif/x x(F /%] = f
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We can define ny : £ — ST Z as the injection:

A— [A] (C:AL...,An—=A) — (X1 1 [A1],. ., Xn  [An] FC(X1,...,Xn) 1 [A])

and py : ST?S — ST as the substitution map given homomorphically by:

-,

f—1 (X:6Fe:1)(f)—euf/x

It is routine to verify that ST is a monad. Since we have defined ) by injection and
U by substitution, it is reasonable to view the denotational models for ST as being
ST-algebras, that is a signature > with a morphism [[_] : ST Z— Z such that:

n[J=id  w[]=ST[][]

The first equation says that the denotation of each constructor in Z should be itself,
and the second that the semantics respects substition, and so is denotational. Let
ST-Alg be the category of all ST-algebras, together with morphisms which respect

)

Let CCat be the category of small categories with distinguished finite products,
and functors which respect the product structure.

Proposition 2.1 ST-Alg s equivalent to CCat.
2.2 Monadic metalanguage

We shall now add a notion of computation to our language of data, using Moggi’s [9]
typed monadic language.

To do this, we extend ST Z to the monadic metalanguage, MML X by adding two
new expression constructions:

er=---|[e]|letx«<eine

These are:

— [e] is a computation which immediately terminates with result e. This is similar
to “‘exit’ in LOTOS [1], and ‘return’ in Concurrent ML [13,14].

— letx<ein f is a computation which evaluates e until it returns a value, which
is then bound to x in f. For example, letx <= [zero] in [succX] is the same as
[succzero].

We also extend the type system by adding a new type constructor for computations:

Ti=---|Ct



and statically typing MML X as:

MN-e:t N-e:Co Mx:oFf:Ct
Mle]:Ct Fletx<einf:Ct

Then MML forms a monad in the same way as ST does, with the addition of
Moggi’s [9] axioms (when x is not free in g):

(M'+lety<=fing: Ct)

(It letx<[e]inf : C1)

(I Fletx<=ein[x] : C1)

(It lety < (letx<=ein f)ing: C1)

(I letx< fing[x/y] : C1)
('t fle/x]:C1)
(
(

MN-e:C1)
IFletx<ein(lety< fing): Cr)

Let SMon be the category of small categories with strong monads, together with
functors which respect the monadic structure. The next proposition shows that the
MML-algebras are precisely strong monads (hence the name ‘monadic metalan-
guage’). This result is due largely to Moggi [9].

Proposition 2.2 MML-Alg is equivalent to SMon.

2.3 Partial functions

We extend MML Z to the functional monadic metalanguage, MMLA Z by adding
A-binding and function application:

er=---|Ax.e|ee

We also extend the type system by adding a new type constructor for functions:

T:=--|1=Ct

and statically typing MMLA Z as:

Nx:oFe:Ct N-e:o—Crt,f:o
MN=Ax.e:o0—Ct MN-ef:Ct

Note that we are only allowing functions to return computations, for example there
isno type I — 1, only I — C1. This corresponds to our intuition that the only terms
which involve computation are terms of type Ct, and this would not be true if we
allowed functions to return arbitrary type. This restriction also allows us to show
that:

— any term of type o — Crt is either an Ivalue or of the form Ax.e.
5



Note that we have no similar result about terms of type Crt.

Then MMLA forms a monad in the same way as MML does, with the addition of
the standard a, 3 and | axioms for functions (wheny is not free in e):

(T=Ax.e:0—=Ct)=( FAy.ely/x] :0—Cr1)
(TE(Ax.e)f : Ct)= (I Fe[f/x]: C1)
(FEAy.(ey):o—Ct)=(TtFe:0—C1)

A category C is computationally cartesian closed iff it has a strong monad T :
C — C, and for each objects X and Y there is an object TY* such that there is a
natural isomorphism:

curry: C[X xY,TZ] = C[X,TZ"]

Let CCCC be the category of small computationally cartesian closed categories
together with functors which respect the monadic and T -exponential structure.

Proposition 2.3 MMLA-AIg is equivalent to CCCC.

3 Nondeter minism

In this section, we extend the monadic metalanguage with the structure of a non-
deterministic programming language. We present an operational semantics for this
language, and show that a powerdomain semantics is fully abstract for may-testing
for this language.

3.1 Syntax

A signature has booleans iff it has a sort bool with constructors true, false : — bool.
A signature has deconstructors iff it has a set of deconstructors ranged over by d
with sorting d : A— A. Let SigBD be the category of signatures with booleans and
deconstructors, together with morphisms which respect the booleans, constructors,
deconstructors, and sorting.

Given a signature Z with deconstructors and booleans, the nondeterministic mon-
adic metalanguage NMML X extends MMLA X with expressions:

e:=---|ifetheneelsee |d€|d|eTe | fix(x =€)
6



and type judgements:

M-e:fbool] THf:Ct THg:Ct
Iifethen felseg:Ct
=d(eq,...,en) : C[A]
Ne:Cirf:Ct IMx:Ctke:Ct
N=o:Crt M-eof:Crt M-fix(x=e):Ct

[d:Ag,...,An—A]

Note that deconstructors and if-statements are of computation type.

3.2 Operational semantics

In order to give an operational semantics for NMML %, we need an operational
semantics for the deconstructors of Z. This is given as a higher-order unlabeled
value production system, that is:

— aninternal transition relation e — €/, and
— atermination relation e —s ¢/

such that:

ife —»e'thene:Ctand e’ : Ct forsomer,
ife s ¢’ thent-e:Ctand e : 1 for someT,
yis deterministic, and

if e s then e 1.

Given an operational semantics for terms of the form d€, we can extend it to an
operational semantics for closed terms of NMML Z with:

e 1se eYsg
[e] Ye letx<einf letx<einf letx<=einf - f[g/x]

iftruethen f elseg — f  iffalsethen f elseg —> @

(Ax.e)f —e[f/x] fix(x=¢e) - e[fix(x =€) /X]
e e f s f/ e Yye! f
eOf L eof eof-enf eof-L[e] edf-[f]
7




A (higher order, weak) simulation on NMML X is a type-indexed family of relations
R:C {(e,f) | Fe, f:t} such that:

— ife Ry f thene =f.

— if (e,€') Rogr (T, ') thene 5 f and €’ ®; f/,

— if (AXx.€) Rg_,ct (Ay. f) then forall - g : 0 we have e[g/x] Rct T[9/Y],
— ife®c, fande — ¢/ then f - f/ and &’ R, f/, and

— ifeRee fande % ¢ then f —5*— f/ and e &y f'.

A bisimulation is a weak simulation whose inverse is a weak simulation. Write
[=e = f:1iff there is a bisimulation ® suchthate ®; f. WriteX: G =e = f : Tiff
for every - @ : 6 we have =e[g/X] = f[g/X] : T.

Howe [6] has shown a technique for proving that simulation for a class of lazy func-
tional languages is substitutive. In an unpublished paper [5], Howe has also shown
that bisimulation is a congruence (this result was communicated to the author by
Andy Pitts). This technique can be used to show that bisimulation is a congruence
for NMML Z.

Proposition 3.1 Bisimulation is a congruence for NMML .

We can show that NMML Z forms a signature in the same way as MMLAZ, ex-
cept that we view terms up to bisimulation. It is routine to verify that NMML is a
monad on SigBD. Any NMML-algebra is an MMLA-algebra since we can exhibit
bisimulations for (when y is not free in g):

MeEx==x*:I
M= (VWL,VR)=Vv:0®T
[ = letx<=[e]inf=f[e/x]: Ct
[ =letx<ein[x]=e:Ct
[ =lety < (letx<einf)ing=letx<«ein(lety<fing) : Ct
= (Ax.e)f =e[f/x]:Ct
F=Ay.(gy)=9:0—Ct

Forany I I-e, f : T, define the may-testing preorder as =e Cp f : TiffCle] = &
implies C[f] =L for any closing context C of type CI.

3.3 Denotational semantics

Let Alg be the category of algebraic dcpo’s, together with continuous morphisms
(we are not requiring dcpo’s to have least elements). Let Alg |, be the category of
algebraic dcpo’s with all finite joins, together with continuous morphisms which
respect the joins. Let ®» : Alg— Alg be the lower powerdomain functor given
by the adjunction Alg £, Alg, Y, Alg. This forms a strong monad with ¢-
exponentials, where Ny = {_} : X = 2X and ux = |J : 22X — X. (Note that these
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exponentials exist even though Alg is not cartesian closed, since we are only con-
sidering functions whose target is an object in Alg ,,.)

Alg is a signature with booleans and deconstructors, since it has objects as sorts,
morphisms f : Xy x - - - x Xp — X as constructors, morphisms f : Xy x - - - X Xp = PX
as deconstructors, and a sort 1 + 1 with constructors K, k' : 1—1+1. Since 2 is a
strong monad on Algwith #-exponentials, we therefore have a denotational seman-
tics [[_] : MMLA Alg— Alg given by Proposition 2.3.The semantics for NMML Alg
extends this with:

[FTE&:Ct=1L
[FTFeof:Ct=[FFe:CtJV[lrFf:CT]
[l F fix(x =€) : C1]] =the least fixed pt of f — (id, f);[[,x: Cte: CT]
[l ifethen felseg: Ct] = (id, [l Fe: [booll]);dist; [[I - f : Ct],[I +gC1]]

where dist : X x (1+1) — X + X is the distributivity morphism.

For any %, if there is a morphism [[_] : ¥ — Alg then we can extend this to NMML X
as:

NMML S NMMLLL nmMLAlg LB Alg

A semantics [.] : Z— Algis adequate iff:

[ de: C[A]] = \/{[[k [f] : CIA]] | de =4 f}
A semantics [_] : Z— Alg is expressive iff for any compact a € [A] we can find
terms is; and test, such that:

[Fisa:[A]] =a [ testa: [A] = Cl] = (a=nl)

A semantics [-] : NMMLX— Algis correct iff:

[FFe:t <[F+f:t]impliesl =eCpof:1

The semantics for NMML Z is fully abstract iff:

[FTFe:t <[FEf:t]iffl =eCof:T

The rest of this section shows that if a semantics for X is adequate then its extension
to NMML X is correct, and that if a semantics for Z is adequate and expressive, then
its extension to NMML X is fully abstract.
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3.4 Program logic

In order to show the relationship between the operational and denotational seman-
tics of NMML Z, we shall use a program logic similar to that used by Abramsky [2]
and Ong [11] in modelling the untyped A-calculus, based on Abramsky’s [3] do-
main theory in logical form.

This logic is similar to Ong’s [10] logic for an untyped nondeterministic A-calculus.
Since we are looking at may-testing rather than simulation, we only have conjunc-
tion in the logic, and not disjunction, and only one modality rather than two.

The program logic for NMML X has propositions:

ei=x[(qW)|lal|w[eAd][@ o=

These can be statically typed, so the propositions for type T are those where @: LT:

@P: L0 Y:LT
x: Ll (@y):L(0®T)

al LA [a € [A],a is compact]

¢@:(Ct) Y:.(Cr) QLT

w: £(Cr) oAY: L(CT) [ : £(C7)
@:L(0—Ct) Y:(o—Ct) @:2o Y:(Ct)
w: L(o—Cr) oAy : L(0—CT1) o=y :L(c—C1)

The operational characterization of the logic has judgements = e : @given by:

Fe:o Ef:@w a<[re:[A]

Frix =) (oy) ~e:lal
Feip ey
Fe:w Ee:oAY

e-Le e eLf =f:@ V=f:oef:y
~e:@ =1l Fero=y

This can be generalized to open terms as:

X:o=e:Piffve= T =e[f/x]: 0

Let A range over propositional contexts of the form X1 : @,...,Xn : @, and write
10



Aol for:

(X2 @y Xn i @n) i L(X2 1Tq, .oy Xn i Tn) IFF QL LT, .., LT

We can also define a denotational semantics for propositions, so that if ¢: £1 then

(@] < [I:

[x] = L [(ey)] = (o], [w]) [lall =a
[l =L [ory]=[o] VW] I[l@]=nle] [e=v]=[¢]=[V]

Whenever A: T, we can define [A] € [ as: [X1: @1, -, Xn @] = ([@1],---, [@n])

Proposition 3.2 a € [[t] is compact iff 3@: £1.a = [q].

3.5 Proof system

In order to relate the denotational and operational characterizations of the program
logic, we shall use an intermediate proof system. This is a sequent calculus with
judgements of the form A+e:@wherelN-e:1,A: I and @: LT.

Let < be the preorder on propositions given by:

— wis the top element, and (_A _) is meet.
- (5,-), [] and (@=-_) are monotone.

— (@=_) preserves wand A.

- || and (-=- ) are anti-monotone.

Proposition 3.3 @ <y iff [@] > [w].
11



We can then define the proof system for NMML X as:

[o] <[rce:[AIA] [ <[+ de: CAJ[A]

A-CE: @ A-dE: @
A-e:y AEX:@
APe:cpNJS(p] AX:QFX:@ A,y:lpkx:cp[x#y]

Ate:@ ATy
AR x % AF (e, f): (@)

A-e:p Ake:y
A-e:w A-e: oAy
AFe:@ Ale:[g Ax:e-f:y
A [e]: g AFletx<einf:y
Ax:PFe:x AFe:y=x AFf:Y AFe:yp AFTF:X
AFAX.e:P=X Atef:x AFeOf :PAX
AFe:jt|] A-f:@ AFe:|f| AFQ:@
At-ifethenfelseg: @ Alifethenfelseg: @
AFfix(x=e):p Ax:Ppre:x
AFfix(x=e):x

Note that all of the structural rules for the proof system, such as weakening and
contraction, have been absorbed into the definition of @ < (.

Proposition 3.4 At e: @iff [¢] <[l Fe:t][A].

3.6 Full abstraction

We can now show that the semantics for NMML Z is fully abstract. We begin by
showing that if X is expressive, then so is NMML Z. Let term¢ ¢ be defined:

term| x =%
termger (@, ) = (termg @, term)
termia [a] =isa
termcy W=290
termc (@A Y) =termc @O terme Y

termc [ = [term; @
termg_,ct W=AX.0

termg_,ct(PAY) =AX. (termg_,cr @)X (termg_,cr Y)X
term_ct(x=X) =AX.termcX
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termpgosct((W, @) = X) =Ax. lety <= (termp_ci (= [*]))(XL)

in(termg_,c1(@= X)) (XR)
termy_c(|a] = X) = AX. lety <= (testaX) in termc X
termg_,cr(W=-X) =AX.termc X

termg_ct(@AW=>X) =AX. lety <termg_,c(@=[*])X

intermg_,ct(W=-X)X
termcg_ct([@ = X) =AX.lety <Xintermg_,cY
term(p—>Ccr)—>Cr(((p:> P) = X) =AX. (termcg_cr (W= X)) (X(termp @))
We can then verify that: [@] = [ termr@: T] This expressivity result is used in

showing that the semantics for NMML X is fully abstract. The relationship between
expressivity and full abstraction has been long known [8,12].

In Section 3.5 we showed that the denotational characterization and proof system
for the program logic were equivalent:

Ae:@iff [@] <[IFe:T][4]

We can extend this to show (as long as the semantics for Z is adequate and expres-
sive) that:

Ae:@impliesA=e: @implies [@] <[ Fe:T][4]

and so the operational characterization of the program logic is equivalent to the
denotational characterization and to the proof system. From this we prove full ab-
straction.

Theorem 3.5 [full abstraction]

(1) If asemantics for Z is adequate, then its extension to NMML X is correct.
(i) If a semantics for X is expressive and adequate then its extension to NMML X
is fully abstract.

4 Further work

The results given here are part of a larger paper [7], which builds on the results
presented here to give an operational and fully abstract denotational semantics for
a typed higher-order concurrent language based on Concurrent ML.

The techniques presented here can be applied to concurrent systems, and in par-
ticular the program logic for the concurrent language is a modal logic similar to
Hennessy’s program logic for untyped higher-order concurrency [4].
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The author is currently working on applying these techniques to the ISO communi-
cations protocol specification language LOTOS [1], as part of the development of
an extended LOTOS standard.
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