
Electronic Notes in Computer Science 1 (1995)

A fully abstract semantics for a
nondeterministic functional language with

monadic types

Alan Jeffrey 1

School of Cognitive and Computing Sciences
University of Sussex, Brighton BN1 9QH, UK

alanje@cogs.susx.ac.uk

Abstract

This paper presents a functional programming language, based on Moggi’s monadic met-
alanguage. In the first part of this paper, we show how the language can be regarded as a
monad on a category of signatures, and that the resulting category of algebras is equivalent
to the category of computationally cartesian closed categories. In the second part, we ex-
tend the language to include a nondeterministic operational semantics, and show that the
lower powerdomain semantics is fully abstract for may-testing.

1 Introduction

Moggi has proposed strong monads as an appropriate way to model computation.
In [9], he shows that any model of computation satisfying certain equations forms
a strong monad. His work concentrates on the denotational properties of programs,
whereas we shall show how his work can be applied to an operational semantics.

In the first section of this paper, we present a slight variant on his functional mon-
adic metalanguage and show that its algebras are equivalent to strong monads with
T -exponentials. This language differs from Moggi’s in the way that pairing is han-
dled, in particular our language has the properties:

– any closed term of unit type is (up to syntactic identity) the distinguished element
∗,

– any closed term of pairing type is (up to syntactic identity) a pair (e, f),
– any closed term of function type is (up to syntactic identity) a λ-term λx . e.

1 This work is funded by SERC project GR/H 16537, and is carried out in the context of
Esprit BRA 7166 Concur 2.

c© 1995 Elsevier Publishers B. V. and the author.

Jeffrey

Moggi’s language has these properties, but only up to provable equality, and not
syntactic identity. Having these properties true up to syntactic identity is very useful
in the second section, where we present an operational semantics for a monadic
language with nondeterminism, and show that the fully abstract semantics for this
language is given by a powerdomain semantics.

The operational semantics for the monadic language is much simpler than the call-
by-value language, since the type structure allows fine control over the syntactic
form of terms. For example, the only operational rule required for function ap-
plication is β-reduction. We do not need any operational rules for which contexts
reduction is allowed in, since this is taken care of by the type discipline.

The monadic type system also makes it easier to show full abstraction for the non-
deterministic language, since it gives contexts more power over how expressions
are evaluated.

2 Algebras

In this section, we present three languages for data and computation, and show that
their algebras correspond to well-known categorical structures.

2.1 Algebraic datatypes

A (many-sorted) signature (ranged over by Σ) is a set of sorts (ranged over by
A, B and C) and a set of constructors (ranged over by c) together with a sorting
c : A1, . . .,An→ A. A signature morphism is a mapping between sorts and con-
structors with respects sorting. Let Sig be the category of signatures with signature
morphisms.

Given a signature Σ, we can define the language STΣ of syntax trees over Σ as:

e ::= ∗ | c(e1, . . .,en) | (e,e) | v v ::= x | v.L | v.R

where x ranges over a set of variables. We shall call expressions v lvalues. We can
give STΣ a static type system, with types:

τ ::= I | [A] | τ⊗ τ

2

Jeffrey

and type judgements of the form Γ ` e : τ given by rules:

Γ ` ∗ : I
Γ ` e : σ Γ ` f : τ

Γ ` (e, f) : σ⊗ τ

Γ ` e1 : [A1] · · · Γ ` en : [An]

Γ ` c(e1, . . .,en) : [A]
[c : A1, . . .,An→A]

Γ ` v : (σ⊗ τ)
Γ ` v.L : σ

Γ ` v : (σ⊗ τ)
Γ ` v.R : τ

Γ,x : σ ` x : σ
Γ ` y : τ

Γ,x : σ ` y : τ
[x 6= y]

where Γ ranges over contexts of the form x1 : τ1, . . .,xn : τn.

Note that we are only allowing projections v.L and v.R on lvalues, and not on arbi-
trary terms, since this would not allow us to have the following useful properties:

– any term of type I is either an lvalue or ∗,
– any term of type [A] is either an lvalue or of the form c(e1, . . .,en), and
– any term of type σ⊗ τ is either an lvalue or of the form (e, f).

However, whenever Γ ` e : σ⊗τ, we can define Γ` πe : σ and Γ ` π′e : τ as syntactic
sugar, e is either an lvalue or a pair:

πv= v.L π′v= v.R π(f ,g) = f π′(f ,g) = g

STΣ is itself a signature, with types as sorts and judgements (x1 : σ1, . . .,xn : σn `
e : τ) as constructors~σ→τ, viewed up to the congruence given by (when y is fresh):

(Γ ` x : I)= (Γ ` ∗ : I)
(Γ ` (v.L,v.R) : σ⊗ τ)= (Γ ` v : σ⊗ τ)
(Γ,x : σ,Γ′ ` e : τ) = (Γ,y : σ,Γ′ ` e[y/x] : τ)

Note that these equations only involve open terms, so closed terms are viewed up
to syntactic identity.

Any signature morphism f : Σ→Σ′ can be homomorphically extended to a signa-
ture morphism ST f : STΣ→STΣ′. It is routine to verify that ST : Sig→Sig is a
functor.

Whenever Γ,~x :~σ ` e : τ and Γ ` ~f :~σ we can define the substitution Γ ` e[~f /~x] : τ
by its action on lvalues (when x 6= y):

v.L[~f/~x] = π(v[~f /~x]) v.R[~f/~x] = π′(v[~f /~x])

y[~f , f/~x,x] = y[~f/~x] x[~f , f/~x,x] = f

3

Jeffrey

We can define ηΣ : Σ→STΣ as the injection:

A 7→ [A] (c : A1, . . .,An→A) 7→ (x1 : [A1], . . .,xn : [An] ` c(x1, . . .,xn) : [A])

and µΣ : ST2 Σ→STΣ as the substitution map given homomorphically by:

[τ] 7→ τ (~x :~σ ` e : τ)(~f) 7→ e[µ~f /~x]

It is routine to verify that ST is a monad. Since we have defined η by injection and
µ by substitution, it is reasonable to view the denotational models for ST as being
ST-algebras, that is a signature Σ with a morphism [[]] : STΣ→Σ such that:

η; [[]] = id µ; [[]] = ST[[]]; [[]]

The first equation says that the denotation of each constructor in Σ should be itself,
and the second that the semantics respects substition, and so is denotational. Let
ST-Alg be the category of all ST-algebras, together with morphisms which respect
[[]].

Let CCat be the category of small categories with distinguished finite products,
and functors which respect the product structure.

Proposition 2.1 ST-Alg is equivalent to CCat.

2.2 Monadic metalanguage

We shall now add a notion of computation to our language of data, using Moggi’s [9]
typed monadic language.

To do this, we extend STΣ to the monadic metalanguage, MMLΣ by adding two
new expression constructions:

e ::= · · · | [e] | letx⇐e in e

These are:

– [e] is a computation which immediately terminates with result e. This is similar
to ‘exit’ in LOTOS [1], and ‘return’ in Concurrent ML [13,14].

– letx⇐ e in f is a computation which evaluates e until it returns a value, which
is then bound to x in f . For example, letx⇐ [zero] in [succx] is the same as
[succzero].

We also extend the type system by adding a new type constructor for computations:

τ ::= · · · | Cτ

4

Jeffrey

and statically typingMMLΣ as:

Γ ` e : τ
Γ ` [e] : Cτ

Γ ` e : Cσ Γ,x : σ ` f : Cτ
Γ ` letx⇐ e in f : Cτ

Then MML forms a monad in the same way as ST does, with the addition of
Moggi’s [9] axioms (when x is not free in g):

(Γ ` lety⇐ f in g : Cτ) = (Γ ` letx⇐ f ing[x/y] : Cτ)
(Γ ` letx⇐ [e] in f : Cτ) = (Γ ` f [e/x] : Cτ)
(Γ ` letx⇐ e in [x] : Cτ) = (Γ ` e : Cτ)

(Γ ` lety⇐ (letx⇐ e in f) in g : Cτ) = (Γ ` letx⇐ e in (lety⇐ f in g) : Cτ)

Let SMon be the category of small categories with strong monads, together with
functors which respect the monadic structure. The next proposition shows that the
MML-algebras are precisely strong monads (hence the name ‘monadic metalan-
guage’). This result is due largely to Moggi [9].

Proposition 2.2 MML-Alg is equivalent to SMon.

2.3 Partial functions

We extend MMLΣ to the functional monadic metalanguage, MMLλΣ by adding
λ-binding and function application:

e ::= · · · | λx . e | ee

We also extend the type system by adding a new type constructor for functions:

τ := · · · | τ→Cτ

and statically typingMMLλΣ as:

Γ,x : σ ` e : Cτ
Γ ` λx . e : σ→Cτ

Γ ` e : σ→Cτ, f : σ
Γ ` e f : Cτ

Note that we are only allowing functions to return computations, for example there
is no type I→ I, only I→C I. This corresponds to our intuition that the only terms
which involve computation are terms of type Cτ, and this would not be true if we
allowed functions to return arbitrary type. This restriction also allows us to show
that:

– any term of type σ→Cτ is either an lvalue or of the form λx . e.

5

Jeffrey

Note that we have no similar result about terms of type Cτ.

Then MMLλ forms a monad in the same way as MML does, with the addition of
the standard α, β and η axioms for functions (when y is not free in e):

(Γ ` λx . e : σ→Cτ)= (Γ ` λy. e[y/x] : σ→Cτ)
(Γ ` (λx . e) f : Cτ)= (Γ ` e[f/x] : Cτ)

(Γ ` λy. (ey) : σ→Cτ)= (Γ ` e : σ→Cτ)

A category C is computationally cartesian closed iff it has a strong monad T :
C→C, and for each objects X and Y there is an object TY X such that there is a
natural isomorphism:

curry : C[X ×Y,TZ]→C[X ,TZY]

Let CCCC be the category of small computationally cartesian closed categories
together with functors which respect the monadic and T -exponential structure.

Proposition 2.3 MMLλ-Alg is equivalent to CCCC.

3 Nondeterminism

In this section, we extend the monadic metalanguage with the structure of a non-
deterministic programming language. We present an operational semantics for this
language, and show that a powerdomain semantics is fully abstract for may-testing
for this language.

3.1 Syntax

A signature has booleans iff it has a sort bool with constructors true, false : →bool.
A signature has deconstructors iff it has a set of deconstructors ranged over by d
with sorting d : ~A→A. Let SigBD be the category of signatures with booleans and
deconstructors, together with morphisms which respect the booleans, constructors,
deconstructors, and sorting.

Given a signature Σ with deconstructors and booleans, the nondeterministic mon-
adic metalanguage NMMLΣ extends MMLλΣ with expressions:

e ::= · · · | if e thene else e | d~e | δ | e �
e | fix(x = e)

6

Jeffrey

and type judgements:

Γ ` e : [bool] Γ ` f : Cτ Γ ` g : Cτ
Γ ` if e then f elseg : Cτ

Γ ` e1 : [A1] · · ·Γ ` en : [An]

Γ ` d(e1, . . .,en) : C[A]
[d : A1, . . .,An→A]

Γ ` δ : Cτ
Γ ` e : CτΓ ` f : Cτ

Γ ` e
�

f : Cτ
Γ,x : Cτ ` e : Cτ

Γ ` fix(x = e) : Cτ

Note that deconstructors and if-statements are of computation type.

3.2 Operational semantics

In order to give an operational semantics for NMMLΣ, we need an operational
semantics for the deconstructors of Σ. This is given as a higher-order unlabeled
value production system, that is:

– an internal transition relation e ı−→ e′, and
– a termination relation e

√
−→ e′

such that:

– if e ı−→ e′ then ` e : Cτ and ` e′ : Cτ for some τ,
– if e

√
−→ e′ then ` e : Cτ and ` e′ : τ for some τ,

–
√
−→ is deterministic, and

– if e
√
−→ then e ı−6−→.

Given an operational semantics for terms of the form d~e, we can extend it to an
operational semantics for closed terms of NMMLΣ with:

[e]
√
−→ e

e ı−→ e′

letx⇐ e in f ı−→ letx⇐ e′ in f
e
√
−→ g

letx⇐ e in f ı−→ f [g/x]

if true then f elseg ı−→ f if false then f elseg ı−→ g

(λx . e) f ı−→ e[f/x] fix(x= e) ı−→ e[fix(x= e)/x]

e ı−→ e′

e
�

f ı−→ e′
�

f
f ı−→ f ′

e
�

f ı−→ e
�

f ′
e
√
−→ e′

e
�

f ı−→ [e′]
f
√
−→ f ′

e
�

f ı−→ [f ′]
7

Jeffrey

A (higher order, weak) simulation on NMMLΣ is a type-indexed family of relations
Rτ⊆ {(e, f) | ` e, f : τ} such that:

– if e R[A] f then e = f .
– if (e,e′) Rσ⊗τ (f , f ′) then e Rσ f and e′ Rτ f ′,
– if (λx . e) Rσ→Cτ (λy. f) then for all ` g : σ we have e[g/x] RCτ f [g/y],
– if e RCτ f and e ı−→ e′ then f ı−→∗ f ′ and e′ RCτ f ′, and
– if e RCτ f and e

√
−→ e′ then f ı−→∗

√
−→ f ′ and e′ Rτ f ′.

A bisimulation is a weak simulation whose inverse is a weak simulation. Write
|= e= f : τ iff there is a bisimulation R such that e Rτ f . Write~x :~σ |= e= f : τ iff
for every `~g :~σ we have |= e[~g/~x] = f [~g/~x] : τ.

Howe [6] has shown a technique for proving that simulation for a class of lazy func-
tional languages is substitutive. In an unpublished paper [5], Howe has also shown
that bisimulation is a congruence (this result was communicated to the author by
Andy Pitts). This technique can be used to show that bisimulation is a congruence
for NMMLΣ.

Proposition 3.1 Bisimulation is a congruence for NMMLΣ.

We can show that NMMLΣ forms a signature in the same way as MMLλΣ, ex-
cept that we view terms up to bisimulation. It is routine to verify that NMML is a
monad on SigBD. Any NMML-algebra is an MMLλ-algebra since we can exhibit
bisimulations for (when y is not free in g):

Γ |= x= ∗ : I
Γ |= (v.L,v.R)= v : σ⊗ τ

Γ |= letx⇐ [e] in f = f [e/x] : Cτ
Γ |= letx⇐ e in [x] = e : Cτ

Γ |= lety⇐ (letx⇐ e in f) in g= letx⇐ e in (lety⇐ f ing) : Cτ
Γ |= (λx . e) f = e[f/x] : Cτ
Γ |= λy. (gy) = g : σ→Cτ

For any Γ ` e, f : τ, define the may-testing preorder as Γ |= evO f : τ iff C[e]
√
=⇒∗

implies C[f]
√
=⇒∗ for any closing context C of type CI.

3.3 Denotational semantics

Let Alg be the category of algebraic dcpo’s, together with continuous morphisms
(we are not requiring dcpo’s to have least elements). Let Alg⊥∨ be the category of
algebraic dcpo’s with all finite joins, together with continuous morphisms which
respect the joins. Let P : Alg→Alg be the lower powerdomain functor given
by the adjunction Alg F−→ Alg⊥∨

U−→ Alg. This forms a strong monad with P -
exponentials, where ηX = { } : X→P X and µX =

⋃
: P 2X→X . (Note that these

8

Jeffrey

exponentials exist even though Alg is not cartesian closed, since we are only con-
sidering functions whose target is an object in Alg⊥∨.)

Alg is a signature with booleans and deconstructors, since it has objects as sorts,
morphisms f : X1×·· ·×Xn→X as constructors, morphisms f : X1×·· ·×Xn→P X
as deconstructors, and a sort 1+1 with constructors κ,κ′ : 1→1+1. Since P is a
strong monad on Alg with P -exponentials, we therefore have a denotational seman-
tics [[]] :MMLλAlg→Alg given by Proposition 2.3.The semantics for NMMLAlg
extends this with:

[[Γ ` δ : Cτ]] =⊥
[[Γ ` e

�
f : Cτ]] = [[Γ ` e : Cτ]]∨ [[Γ ` f : Cτ]]

[[Γ ` fix(x = e) : Cτ]] = the least fixed pt of f 7→ 〈id, f 〉; [[Γ,x : Cτ ` e : Cτ]]
[[Γ ` if e then f elseg : Cτ]] = 〈id, [[Γ ` e : [bool]]]〉;dist; [[[Γ ` f : Cτ]], [[Γ ` gCτ]]]

where dist : X × (1+1)→X+X is the distributivity morphism.

For any Σ, if there is a morphism [[]] : Σ→Alg then we can extend this to NMMLΣ
as:

NMMLΣ NMML[[]]−−−−−→ NMMLAlg [[]]−→ Alg

A semantics [[]] : Σ→Alg is adequate iff:

[[` d~e : C[A]]] =
∨
{[[` [f] : C[A]]] | d~e

√
=⇒ f}

A semantics [[]] : Σ→Alg is expressive iff for any compact a ∈ [[A]] we can find
terms isa and testa such that:

[[` isa : [A]]] = a [[` testa : [A]→C I]] = (a⇒η⊥)

A semantics [[]] : NMMLΣ→Alg is correct iff:

[[Γ ` e : τ]]≤ [[Γ ` f : τ]] implies Γ |= evO f : τ

The semantics for NMMLΣ is fully abstract iff:

[[Γ ` e : τ]]≤ [[Γ ` f : τ]] iff Γ |= evO f : τ

The rest of this section shows that if a semantics for Σ is adequate then its extension
to NMMLΣ is correct, and that if a semantics for Σ is adequate and expressive, then
its extension to NMMLΣ is fully abstract.

9

Jeffrey

3.4 Program logic

In order to show the relationship between the operational and denotational seman-
tics of NMMLΣ, we shall use a program logic similar to that used by Abramsky [2]
and Ong [11] in modelling the untyped λ-calculus, based on Abramsky’s [3] do-
main theory in logical form.

This logic is similar to Ong’s [10] logic for an untyped nondeterministic λ-calculus.
Since we are looking at may-testing rather than simulation, we only have conjunc-
tion in the logic, and not disjunction, and only one modality rather than two.

The program logic for NMMLΣ has propositions:

φ ::= ∗ | (φ,ψ) | |a| |ω | φ∧ψ | [φ] | φ⇒ψ

These can be statically typed, so the propositions for type τ are those where φ : Lτ:

∗ : LI
φ : Lσ ψ : Lτ
(φ,ψ) : L(σ⊗ τ)

|a| : L[A]
[a ∈ [[A]],a is compact]

ω : L(Cτ)
φ : L(Cτ) ψ : L(Cτ)

φ∧ψ : L(Cτ)
φ : Lτ

[φ] : L(Cτ)

ω : L(σ→Cτ)
φ : L(σ→Cτ) ψ : L(σ→Cτ)

φ∧ψ : L(σ→Cτ)
φ : Lσ ψ : L(C τ)
φ⇒ψ : L(σ→Cτ)

The operational characterization of the logic has judgements |= e : φ given by:

|= ∗ : ∗
|= e : φ |= f : ψ
|= (e, f) : (φ,ψ)

a≤ [[` e : [A]]]
|= e : |a|

|= e : ω
|= e : φ |= e : ψ
|= e : φ∧ψ

e ı−→ e′ |= e′ : φ
|= e : φ

e
√
−→ f |= f : φ
|= f : [φ]

∀|= f : φ . |= e f : ψ
|= e : φ⇒ψ

This can be generalized to open terms as:

~x :~φ |= e : ψ iff ∀|= ~f :~φ . |= e[~f /~x] : ψ

Let ∆ range over propositional contexts of the form x1 : φ1, . . .,xn : φn, and write

10

Jeffrey

∆ : LΓ for:

(x1 : φ1, . . .,xn : φn) : L(x1 : τ1, . . .,xn : τn) iff φ1 : Lτ1, . . .,φn : Lτn

We can also define a denotational semantics for propositions, so that if φ : Lτ then
[[φ]] ∈ [[τ]]:

[[∗]] = ⊥ [[(φ,ψ)]] = ([[φ]], [[ψ]]) [[|a|]] = a

[[ω]] = ⊥ [[φ∧ψ]] = [[φ]]∨ [[ψ]] [[[φ]]] = η[[φ]] [[φ⇒ψ]] = [[φ]]⇒ [[ψ]]

Whenever ∆ : LΓ, we can define [[∆]]∈ [[Γ]] as: [[x1 : φ1, . . .,xn : φn]] = ([[φ1]], . . ., [[φn]])

Proposition 3.2 a ∈ [[τ]] is compact iff ∃φ : Lτ .a= [[φ]].

3.5 Proof system

In order to relate the denotational and operational characterizations of the program
logic, we shall use an intermediate proof system. This is a sequent calculus with
judgements of the form ∆ ` e : φ where Γ ` e : τ, ∆ : LΓ and φ : Lτ.

Let ≤ be the preorder on propositions given by:

– ω is the top element, and (∧) is meet.
– (,), [] and (φ⇒) are monotone.
– (φ⇒) preserves ω and ∧.
– | | and (⇒ψ) are anti-monotone.

Proposition 3.3 φ≤ψ iff [[φ]]≥ [[ψ]].
11

Jeffrey

We can then define the proof system for NMMLΣ as:

[[φ]]≤ [[Γ ` c~e : [A]]][[∆]]
∆ ` c~e : φ

[[φ]]≤ [[Γ ` d~e : C[A]]][[∆]]
∆ ` d~e : φ

∆ ` e : ψ
∆ ` e : φ

[ψ≤ φ]
∆,x : φ ` x : φ

∆ ` x : φ
∆,y : ψ ` x : φ

[x 6= y]

∆ ` ∗ : ∗
∆ ` e : φ ∆ ` f : ψ

∆ ` (e, f) : (φ,ψ)

∆ ` e : ω
∆ ` e : φ ∆ ` e : ψ

∆ ` e : φ∧ψ

∆ ` e : φ
∆ ` [e] : [φ]

∆ ` e : [φ] ∆,x : φ ` f : ψ
∆ ` letx⇐ e in f : ψ

∆,x : ψ ` e : χ
∆ ` λx . e : ψ⇒χ

∆ ` e : ψ⇒χ ∆ ` f : ψ
∆ ` e f : χ

∆ ` e : ψ ∆ ` f : χ
∆ ` e

�
f : ψ∧χ

∆ ` e : |t| ∆ ` f : φ
∆ ` if e then f elseg : φ

∆ ` e : | f | ∆ ` g : φ
∆ ` if e then f elseg : φ

∆ ` fix(x = e) : ψ ∆,x : ψ ` e : χ
∆ ` fix(x= e) : χ

Note that all of the structural rules for the proof system, such as weakening and
contraction, have been absorbed into the definition of φ≤ ψ.

Proposition 3.4 ∆ ` e : φ iff [[φ]]≤ [[Γ ` e : τ]][[∆]].

3.6 Full abstraction

We can now show that the semantics for NMMLΣ is fully abstract. We begin by
showing that if Σ is expressive, then so is NMMLΣ. Let termτ φ be defined:

termI ∗= ∗
termσ⊗τ(φ,ψ)= (termσ φ, termτψ)
term[A] |a|= isa
termCτ ω= δ

termCτ(φ∧ψ) = termCτ φ �
termCτ ψ

termCτ[φ] = [termτ φ]
termσ→Cτ ω=λx .δ

termσ→Cτ(φ∧ψ) =λx . (termσ→Cτ φ)x �
(termσ→Cτ ψ)x

termI→C τ(∗⇒χ) =λx . termCτ χ

12

Jeffrey

termρ⊗σ→Cτ((ψ,φ)⇒χ) =λx . lety⇐ (termρ→C I(ψ⇒ [∗]))(x.L)
in(termσ→Cτ(φ⇒χ))(x.R)

term[A]→C τ(|a|⇒χ) =λx . lety⇐ (testax) in termCτ χ
termσ→Cτ(ω⇒χ) =λx . termCτ χ

termσ→Cτ(φ∧ψ⇒χ) =λx . lety⇐ termσ→C I(φ⇒ [∗])x
in termσ→Cτ(ψ⇒χ)x

termCσ→Cτ([φ]⇒χ) =λx . lety⇐x in termσ→Cτ y
term(ρ→Cσ)→Cτ((φ⇒ψ)⇒χ) =λx . (termCσ→Cτ(ψ⇒χ))(x(termρ φ))

We can then verify that: [[φ]] = [[` termτ φ : τ]] This expressivity result is used in
showing that the semantics for NMMLΣ is fully abstract. The relationship between
expressivity and full abstraction has been long known [8,12].

In Section 3.5 we showed that the denotational characterization and proof system
for the program logic were equivalent:

∆ ` e : φ iff [[φ]]≤ [[Γ ` e : τ]][[∆]]

We can extend this to show (as long as the semantics for Σ is adequate and expres-
sive) that:

∆ ` e : φ implies ∆ |= e : φ implies [[φ]]≤ [[Γ ` e : τ]][[∆]]

and so the operational characterization of the program logic is equivalent to the
denotational characterization and to the proof system. From this we prove full ab-
straction.

Theorem 3.5 [full abstraction]

(i) If a semantics for Σ is adequate, then its extension to NMMLΣ is correct.
(ii) If a semantics for Σ is expressive and adequate then its extension to NMMLΣ

is fully abstract.

4 Further work

The results given here are part of a larger paper [7], which builds on the results
presented here to give an operational and fully abstract denotational semantics for
a typed higher-order concurrent language based on Concurrent ML.

The techniques presented here can be applied to concurrent systems, and in par-
ticular the program logic for the concurrent language is a modal logic similar to
Hennessy’s program logic for untyped higher-order concurrency [4].

13

Jeffrey

The author is currently working on applying these techniques to the ISO communi-
cations protocol specification language LOTOS [1], as part of the development of
an extended LOTOS standard.

Acknowledgement

Many thanks to Bill Ferreira, Matthew Hennessy, and Edmund Robinson for long
discussions on this material. Thanks to Andy Pitts for pointing out the proof that
higher-order bisimulation is a congruence.

References

[1] ISO 8807. LOTOS—A formal description technique based on the temporal ordering
of observational behaviour, 1989.

[2] Samson Abramsky. The lazy lambda calculus. In David Turner, editor, Declarative
Programming. Addison-Wesley, 1989.

[3] Samson Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic, 51:1–77,
1991.

[4] Matthew Hennessy. A denotational model for higher-order processes. Technical
Report 6/92, University of Sussex, 1992.

[5] Douglas Howe. Proving congruence of simulation orderings in functional languages.
Unpublished manuscript, 1989.

[6] Douglas J. Howe. Equality in lazy computation systems. In Proc. LICS 89, pages
198–203, 1989.

[7] Alan Jeffrey. A fully abstract semantics for a higher-order functional conurrent
language. Technical report, University of Sussex, 1994. In preparation.

[8] Robin Milner. Fully abstract semantics of typed λ-calculi. Theoret. Comput. Sci.,
4:1–22, 1977.

[9] Eugenio Moggi. Notions of computation and mondad. Inform. and Computing,
93:55–92, 1991.

[10] C.-H. L. Ong. Non-determinism in a functional setting. In Proc. LICS 93, pages
275–286. IEEE Computer Soc. Press, 1993.

[11] C.-H. Luke Ong. The Lazy Lambda Calculus: An Investigation into the Foundations
of Functional Programming. PhD thesis, Imperial College, London University, 1988.

[12] Gordon Plotkin. LCF considered as a programming language. Theoret. Comput. Sci.,
5:223–256, 1977.

14

Jeffrey

[13] J. H. Reppy. A higher-order concurrent langauge. In Proc. SIGPLAN 91, pages 294–
305, 1991.

[14] J. H. Reppy. Higher-Order Concurrency. Ph.D thesis, Cornell University, 1992.

15

