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ABSTRACT.  Graph reduction is an implementation technique for the lazy A-calculus. It has been used to
implement many non-strict functional languages, such as lazy ML, Gofer and Miranda. Parallel graph reduction
allows for concurrent evaluation. In this paper, we present parallel graph reduction as a Chemical Abstract Ma-
chine, and show that the resulting testing semantics is adequate wrt testing equivalence for the lazy A-calculus.
We also present a T-calculus implementation of the graph reduction machine, and show that the resulting testing
semantics is also adequate.

1 Introduction

The lazy reduction strategy for the A-calculus investigated by ABRAMSKY (1989) has only
two reduction rules:
E—-FE

(A.E)F — E[F/X] EF - E'F
This can be compared with the full evaluation strategy of BARENDREGT (1984):
E—»FE F—F E—FE
(A.E)F = E[F/X] EF = E'’F EF —» EF’ AX.E —» AX.E'

If the full evaluation strategy can terminate, then the lazy evaluation strategy will. For
example, if we define:

K = Axy.x
I = AX.X

Y = A ((Ay-x(yy)) (Ay-X(yy)))

then YI =% but KI(YI) A%, whereas KI(Yl) =+* . However, the lazy evaluation strat-
egy is very inefficient, since it may duplicate arguments when applying a function. For
example, if we define:
Eo = |
Eit1 = (AXXX)E;
Then Ej —+2 | but E; —2"=21, that i the lazy strategy can be exponentially worse than

the full strategy. Thus, the early functional languages, such as LISP (MCCARTHY et al.,
1962) used a strict reduction scheme rather than the lazy reduction scheme.
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Graph reduction was introduced by WADSWORTH (1971) as a means of efficiently
implementing the lazy reduction strategy. Rather than reducing syntax trees, we reduce
syntax graphs which allows a more efficient representation of sharing. For example, we
can represent the reduction of E;; 1 as:

VAR
Ei

AX
)
@
v N\

X X

Graph reduction has been used to implement non-strict functional languages such as
JOHNSSON'’s lazy ML (1984), JONES’s Gofer (1992) and TURNER’s Miranda (1985). It is
discussed in PEYTON JONES’s textbook (1987).

However, there has been little work in the formal semantics of graph reduction. BAREN-
DREGT et al. (1987) have shown that graph reduction is sound and complete with respect
to term reduction. LESTER (1989) has shown that the G-machine of AUGUSTSSON (1984)
and JOHNSSON (1984) is adequate wrt a denotational model of the lazy A-calculus. In this
paper, we provide an alternative presentation of graph reduction, as a Chemical Abstract
Machine (CHAM), in the style of BERRY and BouDOL (1990).

The cHAM was introduced as a way of presenting the operational semantics of par-
allel languages in a clean fashion. It has been used to give a semantics for MILNER’s
CCS (1989) and MILNER, PARROW and WALKER’s Te-calculus (1989).

Here, we shall give a semantics for parallel graph reduction with blocking, as de-
scribed by PEYTON JONES (1987). We will show that this is an adequate semantics for
the lazy A-calculus, and that it can be implemented in a variant of the Tr-calculus.

2 Thelazy lambda-calculus
The A-calculus, introduced by CHURCH (1941), has the following syntax:
E:=x|EE|AXE
where x ranges over an infinite set of variables. This can be given a number of operational
semantics, but we shall only look at two of these. We shall call these the lazy semantics:
E—FE
(A.E)F — E[F/X] EF - E'F

and the full semantics:
E—FE F—F E—FE
(A.E)F —-» E[F/X] EF = E'’F EF —» EF’ AX.E —» AX.E'

Here, E[F /X] is E, with every free occurrence of x replaced by F, up to the usual renaming
of bound variables. We can define a variant of MORRIS’s testing pre-order (BARENDREGT,




1984, Exercise 16.5.5):
ECF iff VC.C[F]—" = C[E]—>"
We can also define a variant of the A-calculus with recursive declarations and strictness
annotations:
M = x| Xy| AX.M | recx:=DinM
D:=?M|IM
Here:

e recX:=?MinN declares x recursively to be M in the context N. For example, a fixed
point of f is recx:=?finrecy:= ?xyiny.

e recx:=IMinN is the same, except that x is strict in N, and so evaluation of M can be
sparked off as a parallel computation.

We shall let bound variables be a-converted. The free variables of M are fvM:
fux = {x}
fv(xy) = {xy}
fv(Ax.M) = fvM \ {x}
fv(recx:=DinM) = (fvDUTvM) \ {x}

fv(IM) = fvM
fv(?M) = fvM
There is a translation | - | from the A-calculus to the A-calculus with rec:
|| = x
|EF| = recx:=!|E|inrecy :=?|F|inxy
[AX.E| = AX.|E|

Note that in the translation of EF, we know that E will be used, and so it can be evaluated
strictly. On the other hand, we do not know if F will be used or not, so it cannot be
annotated.

3 Thechemical abstract machine

The Chemical Abstract Machine (CHAM) of BERRY and BouDOL (1990) is a way of pre-
senting the operational semantics of parallel systems. We shall use it to give a semantics
for parallel graph reduction of the A-calculus with rec.

A CHAM gives reductions between solutions, which are multisets (or bags) of molecules.
The definition of molecules is specific to each cHAM, but a solution can always be regard-
ed as a molecule. In a solution {{my,...,my[}, the multiset brackets {---[} are called a
membrane. Let Srange over solutions, and let S& S be the multiset union of Sand S.
Each cHAM has three types of reduction:

e Heating rules, of the formS— S.
e Coaling rules, of the form S— S.



e Reactionrules, of the form S— S.

Heating and cooling rules are always given in pairs S= S, whereas reaction rules are
irreversible. We shall write =* for the transitive, reflexive, symmetric closure of =,
write — for =*—+"*, and let = range over —, — and . All cHAMs have the following
structural rules, where m[-] is a molecule containing precisely one hole:

S=S S=S
SyS' = 3w {mSg|} = {mS]}
In addition, the cHAMs we shall consider in this paper allow the outermost membrane
of any solution to be ignored. This allows us to write my,...,my = m,...,n{, for

{me,...,maft = {mh,..,m [

sk =s
The molecules and reduction rules are specific to each cHAM. In the case of the graph
reduction CHAM, molecules are defined:
m:=Xx:=D|S|vx.S
The free variables of mare fvm:
fv(x:=D) = {x}ufvD
fv{my,...,m[} = fvmu---ufvm,
fv(vx.S) = fvS\ {x}
The defined variables of mare dvm:
dv(x:=D) = {x}
av{my,...,mf} = dvmu-.--Udvm,
dv(vx.S) = dvS\ {x}
We shall only consider solutions which do not define any variables twice, so in any so-
lution {{my,...,my[}, the defined variables of each m; are distinct. For example, we do
not allow solutions such as vx.{|x:=IA\w.M,x:= IAw.N,y := Ixw[} which could reduce

nondeterministically to {y :=!M[} or to {ly:=INJ}. If X=Xq,...,%, then we can write
vx.mfor vx.{{m[} and v&.mfor vxi...vx,.m. Define:

amolecule is a positive ion with valency x iff it is x:= ?M or x:= IAy.M.

amolecule is a negative ion with valency y iff it is x ;= ly or x:= lyz.

amolecule is ionic iff it is a positive or negative ion.

a solution is plasmic iff it is {{v¥.{mu,...,mu[} [} or {{m,...,ms[} where each m is
ionic. A plasma is positive (negative) iff it contains only positive (negative) ions.



Plasmas can be regarded as graphs, for example the graph reduction:

z z
@ z z @
7 N\ @ @ v N\
!A¢W (N I !D\ /?D
'@ N N IAX
N\ ?|Eil !|Eil i
Iw 2w Ix
z z z
1@ 10 10 z
v N " ! 0 z
N AN 20 5 ?0 5 10 5 4 5 IAX
\ 1 \ 1 IAX \
IX IAX IAX IAX d IX
i \: 1 Ix
IX X X

is represented by the cHAM reduction:
vxy.{z:= Ixy,y = ?|Ei|, x ;= Aw.ww|[}
= vuwy.{z:=luv,y :=?|E]|,v:="2y,u:=ly}
—vuvy.{z:=luv,y :=l|Ei|,v:="2y,u:=ly]}

=T vuwy{z:=tuv,y == 1|I|,v:=2y,u:=ly]}
= vuvy.{z:=luv,y :=1|l|,v:="2y,u:= 1|}
= vw.{z:=lv,y:=ll|,v:="y]}

= vw.fz:=lvy:=1jl|,v:=ly}

= wiz:=lv,v:=l|]}

= {lz:= I}

In these diagrams:

Tagged nodes x ;= !'M are labelled with a !.

Untagged nodes x := ?M are labelled with a ?.

Application nodes x := yz are labelled with a @.

Indirection nodes x :=y are labelled with a y, if y is free, and with O otherwise.
Function nodes x := Ay.M are labelled with a Ay, and have the graph for {z:=IM[}
drawn beneath them, for some fresh variable z

The most important heating rule allows recursive declarations to become part of a solu-
tion, whilst hiding the bound variable. This is only valid when it would not cause the free
variable x to become bound by y, which we can achieve by a-converting y first.

x:= (Irecy:=DinM) = vy {x:= M,y := D]} (xX#£Yy)
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The scope of a hidden variable can migrate, as long as this does not result in variable
capture:

m,vx.n = vx.{|m,n7[} (x ¢ fvm)
Hidden variables may be a-converted, exchanged and evaporated:
vx.m = vy.(mly/x]) (y & fvm)
VXy.M = Vyx.m
vl = {}

Finally, we can perform garbage collection on positive plasmas, since a hidden positive
plasma can never make any reductions:

VEX:=D} ={}  ({X:=DJ} is a positive plama)

We shall sometimes write = for this thermal action, and =, for any other thermal
action. For example, the graph reduction:

Z V4
@ 1]
N T
1 ?l ?

can be derived:
vyx{x:=1y:=?l,z:= Ixy|}
vy {x:=1ly:=?,z:=ly}
—vyx{x:=1L{y:=?,z:=y} |}
— vyfvx{x:= 1}, {y:="2,z:=y} |}
=y vy {{ly:=2L,z:=y} |}
—vy{y:="?,z:=1ly}
A reaction can occur whenever one positive and one negative ion with the same valency

exist in a solution. Since there are two kinds of positive ion and two kinds of negative ion,
there are four reaction rules. The first two allow untagged molecules to become tagged:

X:=lyy:=?M = x:=lyy:=IM
x:=lyzy:="M— x:=lyzy:=IM

These can be drawn:

10 10
L=
M IM
@ 1@
v P
M IM




{S} =5
x:=!recy:=DinM = vy.{x:=IM,y: =D} (X#£Y)
m,vx.m’ = vx.{m,m’[} (x ¢ fvm)
vxm = vy(mly/x))  (y¢fvm)
vxy.m = vyx.m
ux{} = g ~
VX{X:B} = {} ({X:=D}} is a positive plasma)
x:=lyy="M = x:=lyy:=IM
x:=lyzy: ="M = x:=lyz,y:=IM
x:=ly,y:=1AwM i x:=Aw.M,y ;= 1Aw.M
x:=lyz,y:= AWM — x:=IM[z/w],y := Aw.M

TaBLE 1. Summary of the graph reduction CHAM
This models the first phase of graph reduction—we search along the spine of a graph,
tagging nodes for evaluation. Note that strict reactions do not occur:
X:=lyzz:=Mhx:=lyzz:=M

If a tagged indirection node points to a function, we can just copy the function. The
SKIM (STOYE €t al., 1984) and G-machine (JOHNNSON, 1984) use this as a method of
eliminating indirection nodes. It was shown by LESTER (1989) to be adequate:

x:=ly,y:= AWM = x:= IAwM,y = 1AwM
This can be drawn:

10 w.M
I |=
IA\wW.M AWM

If an application node points to a function, it can be 3-reduced:
x:=lyzy:= AWM — x:= IM[z/w],y ;= ]Aw.M
This can be drawn:

1@ M
v N v
\w N AwQd--- 0
! =L\
M M N
v v N\

We shall sometimes write g for this reaction, and g for any other reaction. This
CHAM is summarized in Table 1.

This cHAM implements the algorithm for parallel graph reduction described by PEY-
TON JONES (1987). A process is assigned to evaluating a node, which is tagged. It then
searches along the spine, tagging each node as it passes. If it reaches a function node
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which can be B-reduced, it does so. If it reaches a function node which cannot be 3-
reduced, this is returned as the result. If it reaches a previously tagged application or
indirection node, it is blocked until the tagged node is evaluated. For example, in the
graph:

X

'@
N
g 1@
N N
M N

only one process will evaluate M. This is mirrored in the cCHAM by the fact that M
will only be reduced once. However, this algorithm produces some surprising result-
s with cyclic graphs. The solution {ly:=!recx:=IXinx[} heats to become the plasma
{vxqly:=xx:=Ix} [} and the graph:

y
I
1
I

U

This has no reductions, because it is negative. This is mirrored in the parallel graph
reduction algorithm, since the process evaluating y will discover that the indirection node
at x has already been tagged. Thus, it is possible for evaluations to deadlock, when a
sequential algorithm would diverge.

Our translation of the A-calculus will not produce cyclic graphs, although it can still
produce divergent terms. For example, the translation of (Ax.xx)(Ax.xx) has the reduc-
tions:

z z z
1@ 1@ 1@
v N\ 1 I
AX AX 5 AX R AX N
{ { { !
1@ 1@ 1@ 1@
v N N\ v N\ v
X X X X X X X X

Since |E| is an acyclic graph, we will be able to show that the cHAM semantics for the
A-calculus is adequate. To do this, we define the testing preorder on molecules:

mCm iff VC.Cm]—=" = C[m| —»°

and show that the cCHAM semantics is adequate, that is if (x:= ?|E|) C (x:= ?|F|) then
ECF.



THEOREM 1 (ADEQUACY). If (x:=?|E|) C (x:=?|F|) thenEC F.

PROOF. Given in (JEFFREY, 1992). |
However, it is not fully abstract.

THEOREM 2. E C F doesnotimply (x:=?|E|) C (x:=?|F|).

PROOF. Given in (JEFFREY, 1992). |

It is an open problem as to whether the cHAM semantics is fully abstract wrt ABRAM-
SKY’s (1989) A-calculus with C, and as to whether the canonical semantics for the lazy
A-calculus D ~ (D — D), is adequate wrt the CHAM semantics.

4 Theasynchronous pi-calculus

The 1rcalculus, introduced by MILNER, PARROW and WALKER (1989) is a process alge-
bra in which scope is considered important. MILNER has shown that it can be used to
model pointer-structures (1991) and the lazy A-calculus (1992), which has been further
investigated by SANGIORGI (1991).

Since the tecalculus was designed with pointer structures and the A-calculus in mind,
it seems natural to use it to encode a parallel graph reduction algorithm. We shall consider
a variant of BouboL’s asynchronous Tecalculus (1992). This has the syntax:

Pu=Xyz | x(y2).P[P|P|vxP|[x=y]P|[x#Y]P| AX)
Here:

e X[yZ is the process which outputs the pair (y,z) along channel x.

X(yz).P is the process which inputs a pair (y',Z) along channel x, then behaves like
PIX /%Y /3].

P| Q places P and Q in parallel.

vX.P creates a new channel x for use in P.

[x = y]P acts like P whenever x =y, and deadlocks otherwise.

[x # y]P acts like P whenever x # y, and deadlocks otherwise.

A(X) is a recursive definition, in the style of MILNER (1989). We shall assume an

environment of definitions A(X) ¥ p, where fvP C %.

The cHAM for this variant of the asynchronous Te-calculus is given in Table 2, and is very
similar to BouDOL’s cHAM for the asynchronous Tecalculus (1992). The only new rules
are:

e {S} = S which is missing from BouDOL’s paper. This rule is required to prove the
result that for any solution Sthere is a process P such that S=* {P[}. For example,
we cannot show {|{|IX[yZ][} [} =* {{X[yZ][} without this rule.

e [x=x]P = Pand[x# y]P = P whenever x #y, which gives semantics for the condi-
tional operators missing from BOUDOL’s paper.

o A(X) = P[X/¥] whenever A(Y) ¢ P, which gives semantics for recursive definitions
which were not used in BOUDOL’S paper.



{s} = s
PIQ = PQ
vx.P = vx.{P[}
m,vx.m’ = vx.{m,m’} (x & fvm)
vxm = vy(mly/x])  (y¢fvm)
VXy.M = vyx.m
VXX.M = vX.m
x=xlp=P
x#FP =P (x#y)
A(R)= PIX/Y (ACSHP)
X[yz],x(vw).P — P[y/v,z/w]

TABLE 2. CHAM for the Tecalculus

We can define much of the same vocabulary for this cHAM as we did for the graph reduc-
tion CHAM.

A molecule is a positive ion with valency x iff it is x(yz).P.

A molecule is a negative ion with valency x iff it is X[yZ].

A molecule is ionic iff it is a positive or negative ion.

A solution is plasmic iff it is {{VK.{Py,...,Pa} [} or {|P4,...,Pa[} and each R is ionic.
A plasma is positive (negative) iff it contains only positive (negative) ions.

We can give a translation of each molecule of the graph reduction CHAM into the T
calculus. This uses a special variable %, which we shall use to represent a function which
is being evaluated, but which has not (yet) been given an argument. The semantics for
terms is:

Xz = x+7
[z = xlyZ
[AxM]z = 12(xy). ([x = ] [AxM]y | [x# ] [M]y)
[recx:=DinM]zZ vx([D]x|[M]2)  (x#2)
where MILNER’s (1991) replication operator is defined:
IPEIP|P

Note that the definition of [Ax.M] is recursive, which is why we are taking recursion to
be primitive, rather than replication. It is not obvious whether one could define a se-
mantics using replication for which there would be a one-to-one correspondence between
CHAM reductions and Te-calculus reductions. Note also that [[recx := Din M]z is defined
only when x # z, but we can use a-conversion on x to assure this. The semantics for
declarations is:

[1M]zE [M]z
[PMIzZ 2(xy).(Zxy] | [M]2)
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TABLE 3. A sample graph reduction in the Tecalculus

The semantics for molecules is:
[x:= D] £ [D]x
[ux.m] £ vx.[rm]
def
[[{|m17- .- 7nh|}]] = {I[[ml]]7 LERD) [Inh]]l}
This semantics can be drawn with flow graphs. For example, if we draw:
z
@ for [D]z
z z
for ['X]z for [?X]z
X X

z z
xy for [Ixy]z xy for [?xy]z

Then the reduction of E; given in section 1 can be drawn (with some extraneous processes
removed to account for garbage collection) in Table 3. This is exactly the same reduction

as given in Section 3.

In general, we can show that each cHAM reduction is matched by exactly one T
calculus reduction, and thus that the Tecalculus semantics is adequate wrt the CHAM se-

mantics for graph reduction (and so wrt the A-calculus).
THEOREM 3 (ADEQUACY). If[S|C[[S] thenSCS.
PROOF. Given in (JEFFREY, 1992).

However, it is not fully abstract.
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THEOREM 4. mC m' does not imply [[m]] C [m'].
PROOF. Given in (JEFFREY, 1992). |

SANGIORGI (1991) has investigated A-calculi semantics for which MILNER’s Tr-calculus
translation is fully abstract. It is an open problem as to whether similar results can be
shown for the cHAM for graph reduction.
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