Contextual equivalence for higher-order
m-calculus revisited

Alan Jeffrey !

School of Computer Science, Telecommunications and Information Systems
DePaul University
Chicago, US

Julian Rathke?

School of Cognitive and Computing Sciences

University of Sussex
Brighton, UK

Abstract

The higher-order m-calculus is an extension of the m-calculus to allow communication
of abstractions of processes rather than names alone. It has been studied intensively
by Sangiorgi in his thesis where a characterisation of a contextual equivalence for
higher-order m-calculus is provided using labelled transition systems and normal
bisimulations. Unfortunately the proof technique used there requires a restriction
of the language to only allow finite types.

We revisit this calculus and offer an alternative presentation of the labelled tran-
sition system and a novel proof technique which allows us to provide a fully abstract
characterisation of contextual equivalence using labelled transitions and bisimula-
tions for higher-order m-calculus with recursive types also.

1 Introduction

It is evident that there is growing interest in the study of mobile code in
process languages [TJ2[7A[T2]. Tt is also clear that there is some relationship
between the use of higher-order features and mobility. Indeed, code mobility
can be expressed as communication of process abstractions. For this reason
then it is important for us to develop a clear understanding of the use of
higher-order features in process languages.

! Email: ajeffrey@cs.depaul.edu
2 Email: julianr@cogs.susx.ac.uk
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Jgudi L i 4 AN LdufiLiiihvig

Work towards this began several years ago with various proposals for
higher-order versions of known calculi [3/TT], including the higher-order -
calculus or HO7 [8]. This calculus was studied intensively by Sangiorgi and
one of his achievements was to provide a translation of the higher-order lan-
guage which supports code mobility, to a first-order m-calculus which supports
only name mobility. This translation is proved to be fully abstract with re-
spect to barbed congruence, but with the restriction to a language of finite
types.

While the translation is of interest in its own right, it also turned out to be
very useful for providing a powerful fully abstract characterisation of barbed
congruence in terms of labelled transition systems and normal bisimulations.
Providing direct proof techniques for contextual equivalences in higher-order
process languages is often considered to be hard [I0]. The difficulty arises in
establishing soundness of the proof technique, which is tantamount to estab-
lishing some sort of contextuality property. It has been seen that the use of a
translation of higher- to first-order communication can alleviate this problem
and such translations have been employed to this effect [5J9).

However, due to the restriction to finite types for the correctness of these
translations, the soundness of the proof technique is only guaranteed for finite
types. Given that recursive types are used extensively in m-calculus, for encod-
ings of datatypes and functions, this poses a significant restriction. Sangiorgi
has shown that by studying various subcalculi, such as the asynchronous 7-
calculus, he is able to remove the restriction to finite types [I0]. To date, there
has been no proof of full abstraction for full HO7 in the presence of recursive
types.

In this paper we present an alternative description of labelled transition
systems and normal bisimulations for HO7, which is informed by Sangiorgi’s
translation of higher-order to first-order communication. Our alternative pre-
sentation allows a direct proof of soundness for contextual equivalence which
makes no use of the translation to first-order 7-calculus and, more importantly,
makes no restriction on types.

The innovation here lies in the introduction of operators 75, and (k < v)
which simulate the triggers Tr, and meta-notation {k := v} of Sangiorgi [9]
where £ is a unique identifier for the trigger and v is a process abstraction.
The crucial difference is that where Sangiorgi gives definitions as HOn terms
for these devices:

Try = (x)k(x) and {k :=v} =xk(x)v-x

where k(z) represents an output on name k and *k(z)P represents a repli-
cated input on name k, we leave the operators uninterpreted. There are no
interactions between the operators 7 and (k <= v). Rather, we just mimic
the behaviour of triggers in the labelled transition systems. The benefit of
doing this is that it allows us to obtain a direct soundness proof that (normal)
bisimilarity implies contextual equivalence without recourse to any translation

2

Jgudi L i 4 AN LdufiLiiihvig

in its correctness proof.

A challenge of approaching the problem in this way is that it is not im-
mediately clear that bisimilarity will be complete for contextual equivalence
in HOx. That is to say, it is not obvious whether each transition has a gen-
uine HO7 context which validates it. At this point however we can interpret
the operators 7, and (k < v) as HOx terms exactly as Sangiorgi does. It
is then a simple matter to demonstrate completeness following familiar tech-
niques [2H45]. The real payoff is that not only do we obtain a direct soundness
proof but the postponement of interpreting the triggers allows us to finesse
any restrictions to finite types.

The remainder of the paper is organised as follows: in Section 2 we re-
call the syntax and semantics of HO7 along with the definition of contextual
equivalence which we will be using. This is followed in Section 3 by a pre-
sentation of the novel labelled transition system using the operators 7, and
(k <= v). We prove that bisimilarity over this labelled transition system is
sound for contextual equivalence in Section 4 and conversely, that it is com-
plete for contextual equivalence in Section 5. We conclude in Section 6 with
some closing remarks.

In this extended abstract, we elide some relatively routine proofs. Since
much of the novelty of this paper is in our technique for establishing soundness,
we provide all of the proofs in Section 4.

2 Higher-order 7 calculus

We present the syntax of HOx in Figure [l Except for small changes in nota-
tion the language is as can be found in [I0] with two main differences: firstly,
we assume two distinct countably infinite sets of identifiers, VV and NV, for vari-
ables and channel names respectively. In general we will use x,y, z to range
over variables and a, b, c to range over channel names. This variable/name
distinction makes the algebraic properties of the language a little cleaner and
we are confident that the techniques proposed here would also be applicable if
we identified these sets. Secondly we allow communication of channel names
as well as process abstractions so that there is a core w-calculus as a direct
subcalculus of HO7.

The reduction semantics for the language is defined in a standard manner:
we first introduce the evaluation contexts

Eu=[-]11] &P | va.€

Structural equivalence, = is defined to be the least congruence with respect to
& contexts such that it makes (||, 0) into a commutative monoid and moreover
satisfies
va.(P||Q)=va.P|Q if a & fn(P)
xP = *P || P

3

Jgudi L i 4 AN LdufiLiiihvig

T, U = Value Types

. Unit type

ch[T] Channel type

T — o Abstraction type

Z Type variable

rec Z. T Recursive type
P, Q= Terms

v-w Application

v(z:T)P Input

v{w)P Output

if v =w then P else () Matching

v(a:T).(P) Name creation

Pl Q Concurrency

*P Repetition

0 Termination
v, W n= Values

Unit value

a Channel name

T Variable

(x:T)P Abstractions

Fig. 1. The Syntax

We will now consider processes up to structural equivalence throughout the

remainder. We define the reduction relation — as the least precongruence
with respect to £ contexts such that the following axioms hold

comm) a()P || a(@)Q S P @)Q-0
[— redn) (x)P-v — Plv/z]

cond—tt) if @ =athen Pelse @ — P

cond—ft) if a =>5bthen Pelse @ — Q (a #b)

In a standard notation we write == to denote the reflexive, transitive closure
of —.

We introduce a simple type system for the language which comprises types
for channels and abstractions. We also allow recursive types of the form
rec Z.I' where rec. forms a binder and Z is drawn from a countably infinite
supply of type variables. We must insist that for any rec Z.T that Z does
not appear unguarded in 7', that is to say that any free occurrence of 7 lies

4

Jgudi L i 4 AN LdufiLiiihvig

T()=T THo:T TrygyU

| I FFv:T 'Fv:U
Lx:THP 'cFv:T—o T'tw:T
FF(x:T)P:T—o F'Fov-w

['Fw:ch[T],w: ch[T]
'-P TFQ Ia:THP 'FP Q
I'Fif v = w then P else Q F'Fv(a:T).(P) 'EP| @, xP, 0

Fe:THP T'kwo:ch[l] T'HFP T'Fw:T T'Fov:chlT]
F'Fo(z:T)P I'+v(w)P

Fig. 2. The Typing Rules

within a subexpression of 7" of the form ch[U] or U — ¢. To allow us to infer
recursive types for terms we make use of type isomorphism. We define this by
letting ~;s, be the least congruence on types which includes

rec Z.T ~5, Trec Z.T/Z]

A type environment I' is a finite set of mappings from identifiers (channel
names or variables) to types with the restriction that channel names ¢ must
be mapped to channel types of the form ch[T]. We write I';n : T' to represent
the environment made up of the disjoint union of I' and the mapping n to 7T'.
We will call an environment closed if it contains mappings of channel names
only and will write A to indicate this. Type inference rules for the calculus
are given in Figure 2l We will call a well-typed process, P, closed if it can be
typed as A F P for some closed A. It is easily shown that subject reduction
holds for closed terms for the reduction relation and type inference system
given.

2.1 Contextual equivalence

We will now define an appropriate notion of behavioural equivalence based on
contexts and barbs.

Contexts are defined by extending the syntax of processes by allowing
typed holes | -r] in terms. The type inference system is extended to contexts
by using the rule

O[]
We write C[] to denote contexts with at most one hole and C[P] for the term
)

Jgudi L i 4 AN LdufiLiiihvig

which results from substituting P into the hole.
For any given channel name a such that A - a : ch[-] we write A = P |} a if

there exists some P’, P” such that P == vA’.(a(-)P" || P') with a ¢ A’. We
use type-indexed families of relations {Ra} between closed process terms to
describe equivalence. We will write R to refer to the whole family of relations
and

AEPRQ

to indicate that P and () are well-typed with respect to A and related by Ra.
For general process terms we define the open eztension R° of a typed relation
R as

Az Ty, ..,z T, EPR’Q

holds if for every A’ disjoint from A and every v; such that A, A’ Fv; : T; we
have (for 1 < i <mn)

AJA"E Plog, .o, v /21,0 2] R Qut, - vy 0n /T,y - -, T

Note that, in general, for closed terms A = P R @ is not equivalent to
A = P R° @ as R° enjoys the weakening property that A, A" = P R° Q
whenever A = P R° @, even when R does not. However, the contextual
equivalence which we study in this paper is defined as an open extension and
therefore will satisfy this weakening.

There are a number of properties of type-indexed relations that we must
define:

Symmetry: A type-indexed relation R is symmetric whenever A =P R Q
implies A = Q R P.

Reduction closure: A type-indexed relation R is reduction-closed whenever

A = P R @Qand P — P'implies there exists some @)’ such that Q == @'
and A =P R Q.

Contextuality: A type-indexed relation R is contextual whenever I |=
P R° @ and T' + C[-1] implies T' = C[P] R° C[Q)]-

Barb preservation: A type-indexed relation R is barb-preserving if A |=
PR Qand A =P | aimplies A =Q | a.

Definition 2.1 [Contextual equivalence| Let = be the open extension of the
largest type-indexed relation which is symmetric, reduction-closed, contextual
and barb-preserving.

For technical convenience it will be useful to work with a lighter definition
of contextuality. We say that a relation R is ||-contextual if it is preserved by
all contexts of the form [-r | | R and we let 2, denote the open extension
of the largest typed relation over processes which is symmetric, ||-contextual,
reduction-closed and barb-preserving. The following lemma demonstrates that
this lighter definition is sufficient.

Jgudi L i 4 AN LdufiLiiihvig

Lemma 2.2 (Context lemma) ' =P =@ ifandonlyif I'=P=,Q

3 Labelled transitions

We will use a labelled transition system to characterize = over higher-order
m-calculus terms. The style of the labelled transition system differs a little
from previous transition systems offered for HOn. Most notably, the nodes of
the transition system are described using an augmented syntax rather than
process terms alone. Specifically, for each & drawn from a countable set of
names disjoint from A and V, we introduce two new operators:

Tk and (k < v)

with the intuitive reading that 7 is an indirect reference to an abstraction
and (k < v) stores the abstraction to which & refers so that access to v is
provided through interaction with k. The augmented syntax for nodes is given
the grammar of configurations C' obtained by extending Figure [l with:

v = ...(as Figure[)... | 7%
Cu=P | (k<v) | va:T.(C) | C|C

We impose a syntactic restriction on the augmented syntax so that in any
configuration C' for any given k then (k < v) appears at most once in C.
Structural equivalence and reduction lift to C in the obvious manner — note
that there are no reduction rules given for 7, and (k < v) though. We augment
the type rules by considering judgements of the form

r;0Fv:T and re-c

where O represents a set of mappings from reference names to types 7. The
rules in Figure P are easily decorated with the extra © environment. The
further rules required are given by

Ok)=T Ok) =T T;0Fv:T—o
F;0Fkn:T—o ['; OF (k<)

Nodes of our labelled transition system then are well-typed closed terms of
the augmented language of the form

(A; ©FC)
The transitions are of the form
(A @I—C)&(A; OFC)or (A; @I—C)l)(A; OFC)

where visible labels o are given by the grammar:

7

Jgudi L i 4 AN LdufiLiiihvig

az=va.a | vk.a(m)! | vk.a{m)? | a{v)? | a(v)!

and are presented in Figures BIEIF where we write d to mean either a channel
name ¢ or an indirect reference name k. The rules in Figures Bl Bl deserve some
comment: a convenient way to think of 75 is as a call to a function named
k and similarly (k < v) as the definition of function named & with body v.
With this idea in mind we can look at Figure @l The first rule is imported
directly from HOn. The second input rule represents the case in which the
system under test has previously tried to pass out a function which the tester
named k. The tester now can interact with this function by applying it to a
base value. Of course, the function definition itself remains intact. Of the two
rules for output we see the first one as in HOm whereas the latter captures
the case in which a named function, which the tester has previously sent in
to the system, has been applied to a base value. Given that in a context the
tester may provide any definition it likes for this function then it is reasonable
to expect that the tester may identify the base value which its function has
been applied to. This covers the rules for transmission of values of base type.
For values of higher-types we look to Figure Bl These follow the same pattern
as the rules in Figure H but, for input actions, rather than being required to
send in a process abstraction, the tester has the lighter task of simply sending
in a dummy for an abstraction in the form of a (freshly) named function. For
output actions, as the tester cannot identify abstractions through equality
checks, each time an abstraction is passed out of the system the tester simply
names it and leaves it stored as a function definition. This allows the tester
to uniquely identify each abstraction it has been passed and can interrogate
them repeatedly at a later stage.

We write & to denote the complement of an action «, which is defined
to be the action « with the input/output annotation inversed. We will often

write == to mean the reflexive transitive closure of — and == to mean
S > . The following proposition states that the labelled transition
system is well-defined in the sense that the transition relation only relates

well-typed terms.

Proposition 3.1 If A ; O+ C and (A ; O F C) 5 (A,A'; 0,0 F)
then A, A"; ©,0"+ C' is a valid typing judgement.

Proof. Straightforward induction. O

We use a standard definition of (weak) bisimilarity to provide our characteri-
sation of = for HOm:

Definition 3.2 We call a symmetric relation, R, between nodes of the la-
belled transition system a bisimulation if whenever (n,m) €R we have

 n - n' implies there exists some m’ such that m == m’ and (n/,m') €R

o
« n = n' implies there exists some m/ such that m == m/ and (n/,m') €R

8

Jgudi L i 4 AN LdufiLiiihvig

T ~go U— 0
(A; OFa(z:T)P) Y8 (A ©,k: Uk (z:T)P- 1)

O(k) ~iso T — ©

vl.k{T)?

(A; OF{(k<v) —> (A; 0,1:TFv-7 || (k<))

A;OFv: T =9
ZE) (A; ©,k:TH (k<) | P)

(A; ©F a(v)P)

O(k) ~igo T — ©
(A; OF7-0) 2 (AL 0,1:TF (1 <))

Fig. 3. Basic higher-order labelled transition rules

Let bisimulation equivalence, or bisimilarity, ~ be the largest bisimulation
relation.

We will write
A;0=C~D
to mean that A ; © - C' and A ; © F D are valid typing judgements and
moreover, they are related by a as nodes of the lts. In order to provide a
bisimulation characterisation of =2 over HOn we will consider a subrelation of
~ by restricting our attention to nodes of the form

(A; FP)

whose terms are clearly definable in HOw. We will simply write (when © is
empty)

AEP=Q
to indicate bisimilarity between such terms of HO7 considered as nodes of the
labelled transition system.

4 Soundness of bisimilarity for contextual equivalence

We need to demonstrate that bisimilarity implies contextual equivalence for all
HOm processes. In particular, because of Lemma 2.2 we need only show that
bisimilarity is contained in some symmetric, reduction-closed, barb preserving
and ||-contextual relation. The key to achieving this is to study the ||-context
closure of bisimilarity. If we can demonstrate that this is reduction-closed then
we have our result. To do this we must establish a decomposition theorem for
interactions. For instance, if P and () are bisimilar and we compose each of
them with a process R then suppose

PllQ—S
9

Jgudi L i 4 AN LdufiLiiihvig

AF v :T a base type
(A: OFa(x:T)P) 5 (A OF (z:T)P - v)

O(k) =T AF w:T abase type
(A: OF(k<=v) 5 (A OFv-w| (k<)

A Fwv:T a base type
(A; OFa(w)P) 5 (A; ©F P)

O(k) =T T abase type
(A OF 7 -v) 5 (A ©F 0)

Fig. 4. Basic first-order labelled transition rules

C —C (A: ©F0)
(A; 0FC) S (A; ©FCY) (A; ©FC| D)

(A"; ' FC)
(A"; ©FC'|| D)

«
—

«
—

(Aa:T; 0FC)S (Aa T,A"; ©,0'-C") (a¢fn(a))
(A; OFva:T.C) S (AA; 0,0 Fva:T.C"

Ab:T; 0FC) ™ (Ab:T;0FC) (d#£D)
(A; OFwh:T.C) 2 (A b.T; 0F)

AD:T;0FC) X5 (Ab:T: OFC) (d#D)
(A; OFC) 228 (A b:T: OF)

Fig. 5. Structural labelled transition rules

represents an interaction between P and R. We decompose this into comple-
mentary actions
PSP and RSR

respectively. Note however that S is not necessarily obtained by a parallel
composition of the targets of the transitions: P’ || R'. Instead, P’ and R’ may
contain indirect references and their corresponding resources. These need to
be matched up correctly to obtain S. We achieve this by introducing the
merge (partial) operator ((-)) which will match up these terms and replace
every indirect reference to an abstraction with the abstraction itself. We
write

Clo/m]
10

Jgudi L i 4 AN LdufiLiiihvig

to denote the substitution of the value v for every instance of the indirect
reference 7,. We define ((C)) then as the operator on terms of the augmented
syntax (up to =) such that

(o) =cC if (k < v) ¢ C for any k,v
(v@:T). (k<o) | O)) = (v(@:T). (Clo/n])) if i & v

Intuitively, this says that we substitute any values stored at a (k < v) through
for the corresponding 75. Note that this need not substitute for all the indirect
reference identifiers in C'. It is clear that the above definitions are only partial.
For example, if C' contains an occurrence of (k < v) for which 7, occurs in v,
then then ((C)) is undefined. In order to identify for which terms the merge is
defined we make use of the notion of reference graph: For a term C we define
the graph rg(C) to be the graph which has nodes as the indirect reference
identifiers k£ in C and edges

k—1l if nev for (k<wv) in C

Proposition 4.1 (-)) is a well-defined partial function such that {C)) is de-
fined if and only if rg(C) is acyclic.

Proof. We consider the rewriting relation — which we will define as the
one-step rewriting used to define the merge operation:

C—»Vv if (k < v) ¢ C for any k,v
v@:T).((k<v)||C) »v@:T).(Clv/m)) if v & v

It is easy to see that —» is a terminating rewriting relation. Moreover, the
rewriting will terminate with a v from C (so that ((C)) is defined) exactly
when rg(C') is acyclic. To see this we consider the effect of — on reference
graphs: for

(k=v)lC = C/n]

the reference graph of (k < v) || C has the node k£ removed and any edges
such that
' kw1

for I',l # k, are replaced with an edge
I'—1

all other edges involving k£ are removed. So if node k£ is involved in a cycle
before rewriting occurs, that is

=" k—*]

for some [, then either it is a tight loop, that is | = k and k — k, or | # k
and the cycle still exist after rewriting as [—* [. The side-condition on the

11

Jgudi L i 4 AN LdufiLiiihvig

rewrite rule forbids tight loops hence we see that — preserves cyclicity. That
is:

if C'— C' then rg(C) is acyclic if and only if rg(C’) is acyclic.
Now, suppose that (C)) is defined. We know that there exists a finite sequence

C—Ci—»--=»Cp—>»V

with (C)) = C,,. We know that rg(C,,) is acyclic as it contains no edges. Thus,
rg(C) is acyclic also. Conversely, suppose that rg(C) is acyclic. Then as — is
terminating there must be a finite sequence

C—-C—---=0,

such that C,, cannot be rewritten. There are two possibilities for this: either
rg(C,,) contains a tight loop, or C, is v'. We see that rg(C) is acyclic, so C,, is
acyclic too and therefore cannot contain a tight loop. Thus C,, is v' and {C))
is defined.

To show that ((-)) is a well-defined partial function it suffices to show that
it is strongly confluent for acyclic terms. Note that if va : T'. (C') - C’ then
either C' is v or C' = va : T'. (C") such that C' — C". So without loss of

generality suppose that
C — Cl and C — CQ

for
C= C{ || <k1 <~ U1> and C= Cé || <k2 <~ ’l)2>

so that
C1 = Cilvi/x,] and Cy = Ch[ve/Ts,].
So either, k; = k9 in which case C; = C or k; # Iy and

C{ = Cé || <k'2 <~ U2> and Cé = C:IJ, ” <l€1 <~ ’1)1>
We notice that

Cy = Ci[v1 /7]
= (C3 || (k2 <= v2))[v1/ 7]
= Cslo1/ 7] || (k2 <= valv1 /7,])
= Cyv1/ Tk [[va[v1/ T, 1/ k]
= Cylvi[va[v1/ T |/ Tol/ T v2lr /T, |/ 7
(acyclicity) = Cilv1[va/ Tyl /Thy > V2[01) Tk)/ Tho]
(def) = C3
12

(acyclicity implies 7y, & veo[v1/7%,])

Jgudi L i 4 AN LdufiLiiihvig

By a symmetric argument we see that Cy — Ci[ve[v1/Tk, |/ Tk, V1[V2/ Tk,]/ Th:]
and, by definition, this is just C3 so we have Cy — C5. Thus — is strongly
confluent for acyclic terms and hence ((-)) is well-defined. O

Lemma 4.2 (Composition/Decomposition) For A; @+ C, D
(i) F(C D)= E
and (A; OFC) = (A,A; 6,0'+ ()
and (A ; ©F D) 5 (A A'; 0,0+ D)
then there erists a E' such that E == E' and {(vA'.(C" || D"))) = E'

(i2) If (C) = E and C — C'
then there erists a E' such that E — E' and (C')) = E'

(i31) If {(C || D) = E and E — E' then one of the following holds
C — C' with (C' || DY) = F'
or D — D" with {(C || D) = FE'
r(A; OFC)= (A,A"; 6,0+ (")
and (A; O F D)= (A,A’; ©,0' D)
with (vA" . (C"|| D"))) = E".

Proof. Part (ii) is straightforward as the merge operator {)) simply removes
subterm of the form (k < v), which cannot be involved in reductions, and
substitutes higher-order values through for variables of higher-order type. Re-
ductions are based on structure alone except for the conditionals which can
be affected by first-order substitutions of channel names only.

To show (i) we must consider all the possible cases for «. By symmetry
there are four distinct pairs of complementary actions. We only consider the
cases where « is vk . a(r)? and vl . k(1;)? as the first-order actions can be
treated similarly.

Case: A; 0HC —5A;0,k:UFC'andA; ©F D —=
U D'. By inspection we see that
e C=vA' . (alz:T)P | C") with T~ U — ©
e C'=vA" . ((z:T)P- -7 || C")
« D=vA" (a(v)Q || D")
e D'=vA". (k<) || Q| D"
It is easy to see that (C || D)) — (vA", A" . ((z:T)P-v || C"| Q|| D"))
let us call the target of this reduction E’. We simply need to check

vk.a(Ty)? vk.a(Tg)!

A O,k:

E'
(Th & v)

(AL A" (2= T)P-v [|C"]| Q|| D))
(A" (@ :T)P -7 || C") | A" ((k = 0) | @ || D))
(o

13

Jgudi L i 4 AN LdufiLiiihvig

Case: A: OF C A 9 1. THC and A ©F D2 A 0.

T+ D'. Again, by 1nspect10n we see that

s C=vA'. ((k<=w) | C")

e C'=vA'.(v-m || (k<) | C")

e D=vA" (1w || D")

s D'=vA".((l < w)| D"

Note that the previous proposition tells us that rg(C' || D) must be acyclic
— in particular, 7, &€ v. Here we see that

(c [Dy
(76 & v)
(n ¢ v,w,C", D")

If
—_ _

(WAL A" ((k = o) | C" [7w || D))

WAL A" ((k<=v) [C" [v-w | D))

WAL A" ((k=v) [C" [v-n || { = w) || D"))
(D7

11—l
_ _

So by letting E' be {(C" || D')) we note that (C' || D)) == E' as required.

To show (iii) we suppose {C || D)) = E and that E — E'. We must consider
all possible ways in which this reduction can occur. If the reduction arises
from a conditional then it is clear that we must have C — C’ or D — D' for
some C' or D'. Moreover it is easy to check that (C" || D)) (resp (C || D))
= E’. There are two more possibilities to consider:

Case: the reduction arises from a S-reduction. In this case either C — C' or
D — D' as above and the result follows easily, or
e C=vA' . (1,-w || C") with all names in A’ appearing in w
=vA". (k<) || D") with 7, €
e B'= (AL A (v-w || O || (k < v) | DY)
or a symmetric version of these with the roles of C' and D reversed. So we
notice that if ©(k) ~;5, T — ©, we have

vi.k(m)!

A:OFCMM AN 01 THC and A OFDYM S A 01 TFD

where C' = vA'. ((l < w) || C") and D' = vA" . (v -7 || {k < v) || D").
We check:

{c" I D)
(Tl ¢ v, W, C”’ D”)

Il

(A" (L= w) [C") | vA" . (v -7 || (k <= v) | D))
(AL A" A(C" [v-w || (k<= v) || D")))
E

as required. Alternatively, it could be that ©(k) is a base type, in which
case

A:OFCYHUANN.OFC and A; OF DAHIA A OF D!
14

Jgudi L i 4 AN LdufiLiiihvig

where C' = C" and D' = vA" . (v-w || (k < v) || D"). It is easy to check
that (C" || D")) = E' as required.

Case: the reduction arises from communication. Again we see that either
C — C"or D — D', in which case we easily obtain the result, or
e C=vA'. (a{v)P | C")
e D=vA" (a(z:T)Q| D")
* B = (A (P CY) || vA" (2 T)Q - v || D))
or a symmetric version of this with the roles of C' and D reversed. Again we
must consider whether the type 7T is a base type or higher-order. We omit

the details of the former case. Suppose then that A ; O v : T ~;, U — ©
we know

A:OFCESMEAN . @k UFC and A: OFD2SA. 0 k. UF D

where C' = vA' . (k<) || P || C") and D' = vA" . ((z: T)Q - 7% || D").
We check:

(C | D) = A" (k<o) | P C*) | vA" . ((z: T)Q - 7 || D))
(e v, P,C",D") = (wALA". (P || C"| (z:T)Q-v [D))
=F
as required. O

Let ~,, be defined to be

A5 0= (Cr] D) ~m (C2 || D)
if and only if
A;O0=C~Cy, and A; OFD
whenever (C; || D)) and {(C, || D)) are defined.

Lemma 4.3 =,, is reduction-closed.

Proof. Follows easily from the previous lemma. Take A ; © = (C} || D)) ~,

{Cs || D)) and suppose (Cy || D)) — E. We must show that {(Cs || D)) — E'
for some E' such that A ; © = E =, E'. We know from Part (iii) of

the previous lemma that one of three cases must hold. Either, C; — C1,

D — D' or there are complementary actions from both C; and D. We only
deal with the last case as the others follow easily from the hypothesis that
A; © = Oy = Cy and Part (ii) of the previous lemma.

We have then that

A;OFC, = A,A'; 0,0+

and .
A;OFD=A,A;0,0+D
15

Jgudi L i 4 AN LdufiLiiihvig

such that E = {C] || D')). We know by hypothesis that there must exist some
A; OFCy=A,A"; 0,0'+C),

such that
AN 0,0 =)~ . (1)
We can now use Parts (i) and (ii) of the previous lemma to see that {Cs ||

D)) == FE' such that E' = (C} || D"). Note that () guarantees A ; © |=
E ~,, E' to finish. O

Theorem 4.4 For all closed terms P,Q of HOx:
AEP=~Q implies AEP=,Q
Proof. We let ~, denote the relation
AJAN=(P||R)~, (Q| R IfAEP~Qand A)A'FR

It is easy to see that =, is a ||-contextual relation over terms of HOx. It is also
easy to see that ~, is symmetric and barb preserving and coincides with ~,,
for closed terms of HO7, thus Lemma can be instantiated to demonstrate
that =2, is reduction-closed and, given that =, is defined to be the largest
symmetric, ||-contextual, reduction-closed, and barb-preserving relation over
terms of HOmx, then we have our result. O

Corollary 4.5 (Soundness) For all terms P,Q of HOn:
F'EPx°Q implies TEP=Q

Proof. Follows from the previous theorem and Lemma O

5 Completeness of bisimilarity for contextual equivalence

The interactions described by the labelled transition system are not obviously
derived by genuine contextual observations in HOm because of the use of the
extra syntax for indirect references. In order to show completeness of our
bisimilarity for contextual equivalence we must demonstrate that the indirect
references are in fact definable as terms of the language proper. Following
Sangiorgi [T0], we implement the implicit protocol outlined by the indirect
references by using the following translation of the augmented terms into HO:

[kr :Thy .. kn i Th] = Ky s ch[Th], ..., ky : ch[T},]
s 0FC]=T,[0]F[Cle
[7k]e = (z : T)k(z)0 ifeOk)=T
[(k < v)]e = *k[v]e
16

Jgudi L i 4 AN LdufiLiiihvig

The translation acts homomorphically on all other terms. We abuse notation
here by using identifiers k£ as channel names in the translation. It is evident
that this translation is well-defined in the sense that the translation of well-
typed augmented terms are indeed well-typed terms of HOm.

We would now like to prove a correspondence between reductions from
the terms of the augmented syntax and reductions between their translations.
However, we note that in translating a term containing both (k < v) and 7
we provide matching input and output prefixes, which, in HOr may create
a communication which was not possible in the source term. This turns out
not to be of particular concern to us though as we see that if we starting
with terms of HOm7, then terms reachable by transitions are balanced in the
following sense: we call a term C' of the augmented language balanced if for
each k then C' contains at most one of 7, (possible multiple times) or (k < v).
Unfortunately the translation may introduce extra reductions which aren’t
present in the source term. These arise through the translation of terms of
the form 7, - v. Note that

[- v] = (z : T)k({x)0 - [v] N k{[v])0

but 7 - v has no corresponding reduction. We will identify these rogue reduc-

. h
tions as housekeeping reductions and indicate them with — defined as any
reduction which can be derived using the axiom

(h — redn) (x: T)k{x)0-v — k{v)0

Lemma 5.1 If A ; © F C s balanced then
(i) If C == C"' then [Cle == [C"]e
(ii) If [Cle == P then [C]le == [D]e 2 P for some A ; © F D such
that C == D.

Proposition 5.2 For each o, A and fresh channels 6,8" of appropriate type
given by a and A, there ezists a process T~ (defined in Figure[d) in HOm such
that if

A;OFC S AN ;0,0
then
A,[0,0',8 : ch[Ty), 8" : ch[] - TA€]
and moreover, for balanced D
(A; OF D)= (A,A"; ©,0' D)
if and only if A ; © F D and

TAMOL || [D]e == vA' . (5(AY | P) with [D']ee —* P.
17

Jgudi L i 4 AN LdufiLiiihvig

T = d(v)(6() ® 5'())

Tiwy = d(z : T)if = v then (6() & 6'()) else 0 where A(d) = ch[T]
Tooaw: =vb:T.(dd)((b) ®d'()) where A(d) = ch[T]

7; apy = d(@:T)if & A then (6(z) ® () else 0 where A(d) = ch[T]

TA donye = (@ : DIRE@I0) (50 @ 50) where A(d) ~igo chU = o]
T uoy = Az T8y - V) || GO ®) where A(d) ~iap ch[U —]

(& represents an encoding of internal choice in HO)

Fig. 6. Testing processes for labelled transitions

Lemma 5.3 (Extrusion) IfA =vA' (§(A") || P) =2, vA'.(6(A") || Q) then
AN =P Q.

Theorem 5.4 (Completeness) For all closed terms P,Q of HOx:
A=P=,Q implies AEP==Q
Proof. We define R over terms of the augmented language to be
AiOECRD i A6] = [Cle 2 [Dlo

and show that R is a bisimulation. Take A ; © = C R D and suppose that
(A; OFC) S (AA; 0,0).

We know from Proposition that
A,[0,0',6 : ch[Ty), 8" : ch[] - T2 [€]

and that
T [Cle = vA' . (6(A") || P)

with [C"]e.er —* P. We know that
A, 0] = [Cle =, [Ple
by the definition of R, and hence, by contextuality we also have
A, [0,0,6: ch[Ty), 8" : ch[] = TV [Cle 22, TV || [Dle

This tells us that
TP [Dle = @

18

Jgudi L i 4 AN LdufiLiiihvig

such that
A [0,0]EVvA . ((A) | P) =, Q. (1)

But by the construction of 71! we notice that vA' . (6(A"Y || P) barbs on
0 but not on ¢§'. Therefore, by the preservation of barbs property of 2, we
know that @’ must also barb on § but not on §’. This constrains @)’ so that

Q' = vA'. (§(A") || Q). We apply Lemma BT Part i to 7o I®? || [D]e == @'
to see that there is some D" such that Tz L°! | [Ple == [D"]o,e Dy
vA' . (6(A") | Q) from which it clearly follows that D" = vA’. (§(A") || D)
and [D']e,er 2+ Q. We use Proposition again to see that

(A; ©F D)= (A,A'; ©,0' D)

and we now must show that AJA’ ; ©,0' = C' R D'. To do this we use
Lemmab3on (1) (note that Q' = vA'.(§(A') || Q)) to see that A, A’ [©,0'] &=
P =, Q. It is also easy to check that h-reductions are confluent with re-
spect to all other reductions and hence preserve contextual equivalence, that

is —h>*§%p, so we also have A, A’ [0,0] = [C'lee =, [D']e,er because
[C'e.e 2+ P and [D'e.e L% Q. This allows us to conclude A, A’ ; ©, 0" =
C' R D' as required. We must also consider transitions of the form (A ; ©

C) 5 (A,A"; ©,0'F (C"). These can be dealt with as above but in this case
no 7.2 is needed. O

Corollary 5.5 (Full abstraction) For all terms P,Q of HOr:
Fr=EPx°Q if and only if FreP=qQ

Proof. Follows from Corollary L5, Lemma P22 and the previous theorem. O

6 Concluding remarks

We have re-examined the use of labelled transitions to characterise contextual
equivalence in the higher-order 7 calculus. The technique of augmenting the
core syntax with extra operators to assist in the definition of the labelled
transitions allows use to give a direct proof of soundness of bisimilarity for
contextual equivalence. This advances Sangiorgi’s analagous result by allowing
recursive types also.

We believe that the technique of using extra operators to describe the
points of interaction with the environment in the Its is fairly robust and should
be applicable to many higher-order languages. Indeed, this was the approach
that the authors developed for their work on concurrent objects [6].

We have only concerned ourselves with the characterisation of contextual
equivalence in HO7m and so far have not studied Sangiorgi’s translation of
higher-order to first-order mobility. Thus, the restriction to finite types for

19

Jgudi L i 4 AN LdufiLiiihvig

his translation is still necessary. It would be interesting to investigate whether
the current work could be of use in removing this type restriction for his
translation also.

References

[1] Cardelli, L. and A. Gordon, Mobile ambients, in: Proc. FoSSaCS ’98, LNCS
(1998).

[2] Fournet, C., G. Gonthier, J.-J. Levy, L. Maranget and D. Remy, A calculus
of mobile agents, in: Proc. CONCUR, Lecture notes in computer science 1119
(1996).

[3] Giacalone, A., P. Mishra and S. Prasad, Facile: A symmetric integration
of concurrent and functional programming, in: Proceedings TAPSOFT89
conference, Lecture Notes in Computer Science 352 (1989), pp. 184-209.

[4] Hennessy, M. and J. Rathke, Typed behavioural equivalences for processes in
the presence of subtyping, in: Proceedings Computing: the Australasian Theory
Symposium CATS 2002, Electronic notes in theoretical computer science (2002).

[5] Jeffrey, A. and J. Rathke, A theory of bisimulation for a fragment of concurrent
mi with local names, in: Proc. LICS2000, 15" Annual Symposium on Logic in
Computer Science, Santa Barbara (2000), pp. 311-321.

[6] Jeffrey, A. and J. Rathke, A fully abstract may testing semantics for concurrent
objects, in: Proc. Lics2002, 17" Annual Symposium on Logic in Computer
Science, Copenhagen (2002), pp. 101-112.

[7] Riely, J. and M. Hennessy, A typed language for distributed mobile processes, in:
Proc. POPL (1998).

[8] Sangiorgi, D., “Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms,” Ph.D. thesis, University of Edinburgh (1993).

[9] Sangiorgi, D., Bisimulation for higher-order process calculi, Information and
Computation 131(2) (1996), pp. 141-178.

[10] Sangiorgi, D. and D. Walker, “The pi-calculus: A Theory of mobile processes,”
Cambridge University Press, 2001.

[11] Thomsen, B., “Calculi for Higher-Order Communicating Systems,” Ph.D. thesis,
University of London (1990).

[12] Vitek, J. and G. Castagna, Seal: A framework for secure mobile computations,
in: Internet Programming Languages, LNCS 1686 (1999).

20

	Introduction
	Higher-order calculus
	Contextual equivalence

	Labelled transitions
	Soundness of bisimilarity for contextual equivalence
	Completeness of bisimilarity for contextual equivalence
	Concluding remarks
	References

