Logical Methods in Computer Science
Volume 00, Number 0, Pages 000-000
S 0000-0000(XX)0000-0

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL

RADHA JAGADEESAN, ALAN JEFFREY, CORIN PITCHER, AND JAMES RIELY

CTI, DEPAUL UNIVERSITY
E-mail address: rjagadeesan@cti.depaul.edu

BELL LABS
E-mail address: ajeffrey@bell-labs.com

CTI, DEPAUL UNIVERSITY
E-mail address: cpitcher@cti.depaul.edu

CTI, DEPAUL UNIVERSITY
E-mail address: jriely@cti.depaul.edu

ABSTRACT. We study mechanisms that permit program components to express role constraints on
clients, focusing on programmatic security mechanisms, which permit access controls to be ex-
pressed, in situ, as part of the code realizing basic functionality. In this setting, two questions imme-
diately arise:
e The user of a component faces the issue of safety: is a particular role sufficient to use the
component?
e The component designer faces the dual issue of protection: is a particular role demanded in all
execution paths of the component?
We provide a formal calculus and static analysis to answer both questions.

1. INTRODUCTION

This paper addresses programmatic security mechanisms as realized in systems such as Java
Authentication and Authorization Service (JAAS) and .NET. These systems enable two forms of
access control mechanismsﬂ First, they permit declarative access control to describe security spec-
ifications that are orthogonal and separate from descriptions of functionality, e.g., in an interface /,
a declarative access control mechanism could require the caller to possess a minimum set of rights.
While conceptually elegant, such specifications do not directly permit the enforcement of access
control that is sensitive to the control and dataflow of the code implementing the functionality —
consider for example history sensitive security policies that require runtime monitoring of relevant
events. Consequently, JAAS and .NET also include programmatic mechanisms that permit access

Radha Jagadeesan and Corin Pitcher were supported in part by NSF CyberTrust 0430175.

James Riely was supported in part by NSF CAREER 0347542.

n this paper, we discuss only authorization mechanisms, ignoring the authentication mechanisms that are also part
of these infrastructures.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

2 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

control code to be intertwined with functionality code, e.g., in the code of a component imple-
menting interface /. On the one hand, such programmatic mechanisms permit the direct expression
of access control policies. However, the programmatic approach leads to the commingling of the
conceptually separate concerns of security and functionality.

There is extensive literature on policy languages to specify and implement policies (e.g., [16,
28, [15) 15 129} [13]] to name but a few). This research studies security policies as separate and or-
thogonal additions to component code, and is thus focused on declarative security in the parlance of
JAAS/.NET.

In contrast, we study programmatic security mechanisms. Our motivation is to extract the
security guarantees provided by access control code which has been written inline with component
code. We address this issue from two viewpoints:

e The user of a component faces the issue of safety: is a particular set of rights sufficient to
use the component? (ie. with that set of rights, there is no possible execution path that
would fail a security check. Furthermore, any greater set of rights will also be allowed to
use the component)

e The component designer faces the dual issue of protection: is a particular set of rights
demanded in all execution paths of the component? (ie. every execution path requires that
set of rights. Furthermore, any lesser set of rights will not be allowed to use the component)

The main contribution of this paper is separate static analyses to calculate approximations to these
two questions. An approximate answer to the first question is a set of rights, perhaps bigger than
necessary, that is sufficient to use the component. On the other hand, an approximate answer to the
second question, is a set of rights, perhaps smaller than what is actually enforced, that is necessary
to use the component.

1.1. An overview of our technical contributions. There is extensive literature on Role-Based
Access-Control (RBAC) models including NIST standards for RBAC [26) 12]; see [[11] for a textbook
survey. The main motivation for RBAC, in software architectures (e.g., [22} 21]]) and frameworks
such as JAAS/.NET, is that it enables the enforcement of security policies at a granularity demanded
by the application. In these examples, RBAC allows permissions to be de-coupled from users: Roles
are the unit of administration for users and permissions are assigned to roles. Roles are often
arranged in a hierarchy for succinct representation of the mapping of permissions. Component
programmers design code in terms of a static collection of roles. When the application is deployed,
administrators map the roles defined in the application to users in the particular domain.

In this paper, we study a lambda calculus enriched with primitives for access control, dubbed
A-RBAC. The underlying lambda calculus serves as an abstraction of the ambient programming
framework in a real system. We draw inspiration from the programming idioms in JAAS and .NET,
to determine the expressiveness required for the access control mechanisms. In a sequence of .NET
exampleﬂ closely based on [18]], we give the reader a flavor of the basic programming idioms.

Example 1 ([18]). In the .NET Framework CLR, every thread has a Principal object that carries
its role. This Principal object can be viewed as representing the user executing the thread. In
programming, it often needs to be determined whether a specific Principal object belongs to a
familiar role. The code performs checks by making a security call for a PrincipalPermission
object. The PrincipalPermission class denotes the role that a specific principal needs to match.
At the time of a security check, the CLR checks whether the role of the Principal object of the

2In order to minimize the syntactic barrage on the unsuspecting reader, our examples to illustrate the features are
drawn solely from the .NET programming domain. At the level of our discussion, there are no real distinctions between
JAAS and .NET security services.

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 3

caller matches the role of the PrincipalPermission object being requested. If the role values
of the two objects do not match, an exception is raised. The following code snippet illustrates the
issues:

PrincipalPermission usrPerm =
new PrincipalPermission (null,"Manager");
usrPerm.Demand ()

If the current thread is associated with a principal that has the the role of manager, the Principal-
Permission objects are created and security access is given as required. If the credentials are not
valid, a security exception is raised.]

In this vein, the intuitive operation of A-RBAC is as follows. A-RBAC program execution takes
place in the context of a role, say r, which can be viewed concretely as a set of permissions. The set
of roles used in a program is static: we do not allow the dynamic creation of roles. A-RBAC supports
run-time operations to create objects (i.e. higher-order functions) that are wrapped with protecting
roles. The use of such guarded objects is facilitated by operations that check that the role-context r
is at least as strong as the guarding role: an exception is raised if the check fails.

The next example illustrates that boolean combinations of roles are permitted in programs. In
classical RBAC terms, this is abstracted by a lattice or boolean structure on roles.

Example 2 ([[18]). The Union method of the PrincipalPermission class combines multiple
PrincipalPermission objects. The following code represents a security check that succeeds only
if the Principal object represents a user in the CourseAdmin or BudgetManager roles:

PrincipalPermission Perml =

new PrincipalPermission (null,"CourseAdmin");
PrincipalPermission Perm2 =

new PrincipalPermission(null,"BudgetManager’);

// Demand at least one of the roles using Union
perml.Union (perm2).Demand ()

Similarly, there is an Intersect method to represent a “join” operation in the role lattice. 0]

In A-RBAC, we assume that roles form a lattice: abstracting the concrete union/intersection
operations of these examples. In the concrete view of a role as a set of permissions, role ordering is
given by supersets, ie. a role is stronger than another role if it has more permissions; join of roles
corresponds to the union of the sets of permissions and meet of roles corresponds to the intersection
of the sets of permissions. Some of our results assume that the lattice is boolean, i.e. the lattice
has a negation operation. In the concrete view of the motivating examples, the negation operation is
interpreted by set complement with respect to a maximum collection of permissions

Our study is parametric on the underlying role lattice.

The key operation in such programming is rights modulation. From a programming viewpoint,
it is convenient, indeed sometimes required, for an application to operate under the guise of different
users at different times. Rights modulation of course comes in two flavors: rights weakening is over-
all a safe operation, since the caller chooses to execute with fewer rights. On the other hand, rights
amplification is clearly a more dangerous operation. In the .NET framework, rights modulation is
achieved via a technique called impersonation.

Example 3. Impersonation of an account is achieved using the account’s token, as shown in the
following code snippet:

4 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

WindowsIdentity stIdentity = new WindowsIdentity (StToken);

// StToken is the token associated with the Windows acct being impersonated
WindowsImpersonationContext stImp = stIdentity.Impersonate();

// now operating under the new identity
stImp.Undo(); // revert back

U

A-RBAC has combinators to perform scoped rights weakening and amplification.

We demonstrate the expressiveness of A-RBAC by building a range of useful combinators and a
variety of small illustrative examples. We discuss type systems to perform the two analyses alluded
to earlier: (a) an analysis to detect and remove unnecessary role-checks in a piece of code for a caller
at a sufficiently high role, and (b) an analysis to determine the (maximal) role that is guaranteed to
be required by a piece of code. The latter analysis acquires particular value in the presence of rights
modulation. For both we prove preservation and progress properties.

1.2. Related work. Our paper falls into the broad area of research enlarging the scope of founda-
tional, language-based security methods (see [27, 19, 3] for surveys).

Our work is close in spirit, if not in technical development, to edit automata [16], which use
aspects to avoid the explicit intermingling of security and baseline code.

The papers that are most directly relevant to the current paper are those of Braghin, Gorla and
Sassone [7] and Compagnoni, Garalda and Gunter [10]. [[7] presents the first concurrent calculus
with a notion of RBAC, whereas [[10]’s language enables privileges depending upon location.

Both these papers start off with a mobile process-based computational model. Both calculi
have primitives to activate and deactivate roles: these roles are used to prevent undesired mobility
and/or communication, and are similar to the primitives for role restriction and amplification in this
paper. The ambient process calculus framework of these papers provides a direct representation of
the “sessions” of RBAC— in contrast, our sequential calculus is best thought of as modeling a single
session.

[Z, [10] develop type systems to provide guarantees about the minimal role required for exe-
cution to be successful — our first type system occupies the same conceptual space as this static
analysis. However, our second type system that calculates minimum access controls does not seem
to have an analogue in these papers.

More globally, our paper has been influenced by the desire to serve loosely as a metalanguage
for programming RBAC mechanisms in examples such as the JAAS/.NET frameworks. Thus, our
treatment internalizes rights amplification by program combinators and the amplify role constructor
in role lattices. In contrast, the above papers use external — i.e. not part of the process language —
mechanisms (namely, user policies in [10], and RBAC-schemes in [7]]) to enforce control on rights
activation. We expect that our ideas can be adapted to the process calculi framework. In future
work, we also hope to integrate the powerful bisimulation principles of these papers.

Our paper deals with access control, so the extensive work on information flow, e.g., see [24]
for a survey, is not directly relevant. However, we note that rights amplification plays the same role
in A-RBAC that declassification and delimited release [9, 25, [20] plays in the context of information
flow; namely that of permitting access that would not have been possible otherwise. In addition,
by supporting the internalizing of the ability to amplify code rights into the role lattice, our system
permits access control code to actively participate in managing rights amplification.

1.3. Rest of the paper. We present the language in [Section 2| the type system in [Section 3| and
illustrate its expressiveness with examples in We discuss methods for controlling rights
amplification in[Section 3| [Section 6] provides proofs of the theorems from [Section 3|

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 5

2. THE LANGUAGE

After a discussion of roles, we present an overview of the language design. The remaining sub-
sections present the formal syntax, evaluation semantics, typing system, and some simple examples.

2.1. Roles. The language of roles is built up from role constructors. The choice of role construc-
tors is application dependent, but must include the lattice constructors discussed below. Each role
constructor, K, has an associated arity, arity(k). Roles A~F have the form x(Ay,...,A,).

We require that roles form a boolean lattice; that is, the set of constructors must include the
nullary constructors 0 and 1, binary constructors LI and I (written infix), and unary constructor
* (written postfix). O is the least element of the role lattice. 1 is the greatest element. 1 and
Ll are idempotent, commutative, associative, and mutually distributive meet and join operations
respectively. * is the complement operator.

A role may be thought of as a set of permissions. Under this interpretation, O is the empty set,
while 1 is the set of all permissions.

The syntax of terms uses role modifiers, p, which may be of the form TA or |A. We use role
modifiers as functions from roles to roles, with p(A|) defined as follows:

TA(B) =AUB lA(B) =ANB

In summary, the syntax of roles is as follows.

Kzs=0|1|u|mn|*]--- Role constructors
A-E 1= k(Ay,...,Ap) Roles
pi=1TA1| JA Role modifiers

Throughout the paper, we assume that all roles (and therefore all types) are well-formed, in the
sense that role constructors have the correct number of arguments.

The semantics of roles is defined by the relation “A = B” stating that A and B are provably equiv-
alent. In addition to any application-specific axioms, we assume the standard axioms of boolean
algebra. We say that A dominates B (notation A > B) if A = AU B (equivalently B =AT1B) is
derivable. Thus we can conclude1 > ALIB>A > AT B >0, for any A, B.

The role modifier |A creates a weaker role (closer to 0), thus we refer to it as a restriction. Du-
ally, the modifier TA creates a stronger role (closer to 1), and thus we refer to it as an amplification.
While this ordering follows that of the NIST RBAC standard [[12]], it is dual to the normal logical
reading; it may be helpful to keep in mind that, viewed as a logic, 1 is “false”, 0 is “true”, U is
“and”, M 1is “or” and > is “implies.”

2.2. Language overview. Our goal is to capture the essence of role-based systems, where roles
are used to regulate the interaction of components of the system. We have chosen to base our
language on Moggi’s monadic metalanguage because it is simple and well understood, yet rich
enough to capture the key concepts. By design, the monadic metalanguage is particularly well
suited to studying computational side effects (or simply effects), which are central to our work. (We
expect that our ideas can be adapted to both process and object calculi.)

The “components” in the monadic metalanguage are terms and the contexts that use them. To
protect terms, we introduce guards of the form {A} [M1], which can only be discharged by a context
whose role dominates A. The notion of context role is formalized in the definition of evaluation,
where A > M — N indicates that context role A is sufficient to reduce M to N. The term check M
discharges the guard on M. The evaluation rule allows A > check {B} [M] — [M] only if A > B.

6 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

The context role may vary during evaluation: given context role A, the term p (M) evaluates
M with context role p(A|). Thus, when |B(M) is evaluated with context role A, M is evaluated
with context role A B. A context may protect itself from a term by placing the use of the term in
such a restricted context. (The syntax enforces a stack discipline on role modifiers.) By combining
upwards and downwards modifiers, code may assume any role and thus circumvent an intended
policy. We address this issue in[Section 3]

These constructs are sufficient to allow protection for both terms and contexts: terms can be
protected from contexts using guards, and contexts can be protected from terms using (restrictive)
role modifiers.

2.3. Syntax. Let x,y,z.f,g range over variable names, and let bv range over base values. Our
presentation is abstract with respect to base values; we use the types String, Int and Unit (with
value unit) in examples. We use the standard encodings of booleans and pairs (see [Example 4.
The syntax of values and terms are as follows.

IV,U,W n= M,N,L = Values; Terms
bv | x v Base Value
Ax.M MN | fixM Abstraction
{A} [M] check M Guard
[M] letx=M;N Computation
p{M) Role Modifier

Notation. In examples, we write A (M) to abbreviate [0 (TA (M)), which executes M at exactly
role A.

The variable x is bound in the value “Ax. M” (with scope M) and in the term “let x=M; N”
(with scope N). If x does not appear free in M, we abbreviate “Ax. M” as “A.M”. Similarly, if
x does not appear free in N, we abbreviate “let x=M; N” as “M ; N”. We identify syntax up to
renaming of bound variables and write N{x := M} for the capture-avoiding substitution of M for x
inN. L]

In the presentation of the syntax above, we have paired the constructors on values on the left
with the destructors on computations on the right. For example, the monadic metalanguage distin-
guishes 2 from [2] and [1+1]: the former is an integer, whereas the latter are computations that,
when bound, produce an integer. The computation value [M] must be discharged in a binding con-
text — see the reduction rule for let, below. Similarly, the function value Ax. M must be discharged
by application; in the reduction semantics that follows, evaluation proceeds in an application till the
term in function position reduces to a lambda abstraction. {A} [M] constructs a guarded value; the
associated destructor is check .

The monadic metalanguage distinguishes computations from the values they produce and treats
computations as first class entities. (Any term may be treated as a value via the unit constructor
[M].) Both application and the let construct result in computations; however, the way that they
handle their arguments is different. The application “(Ax. N) [M]” results in N{x := [M]}, whereas
the binding “let x= [M] ; M” results in N{x := M }.

2.4. Evaluation and role error. The small-step evaluation relation A > M — M’ is defined induc-
tively by the following reduction and context rules.

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 7

(C-APP)

(R-APP) A>M—M

Av (Ax.M)N — M{x:=N} AbMN—M'N
(C-FIX)

(R-FIX) AbM—M

A fix (Ax. M) — M{x :=fix (Ax.M)} A fixM — fix M’
(C-CHK)

(R-CHK) AbM—M

A check {B} [M] — [M] A=B A > check M — check M’
(C-BIND)

(R-BIND) AbM— M

Abvletx=[M];N — N{x:=M} Apletx=M;N — letx=M'; N
(C-MOD)

(R-MOD) p(]A[) >M— M

A>p(V) =V A>p(M) — p(M")

The rules R/C-APP for application, R/C-FIX for fixed points and R/C-BIND for let are standard.
R-CHK ensures that the context role is sufficient before discharging the relevant guard. C-MOD
modifies the context role until the relevant term is reduced to a value, at which point R-MOD discards
the modifier.

The evaluation semantics is designed to ensure a role-monotonicity property. Increasing the
available role-context cannot invalidate transitions, it can only enable more evolution.

Lemmad. If B>M — M and A > Bthen AvM — M'. O

Proof. (Sketch) The context role is used only in R-CHK. Result follows by induction on the evalua-
tion judgement. []

Via a series of consecutive small steps, the final value for the program can be determined.
Successful termination is written A > M — V which indicates that A is authorized to run the program
M to completion, with result V. Viewed as a role-indexed relation on terms, —» is reflexive and
transitive.

Definition 5. (a) M, evaluates to M,, at A (notation A > My —» M,) if there exist terms M; such that
A>M; — M; 1, foralli(0<i<n-—1).(b) M diverges at A (notation A > M —®) if there exist terms
M; such that A > M; — M; 1, for all i € N.]

Evaluation can fail because a term diverges, because a destructor is given a value of the wrong
shape, or because an inadequate role is provided at some point in the computation. We refer to the
latter as a role error (notation A > M 4 err), defined inductively as follows.

A check {BY M1 ferr "7 8

A>M 4 err A M 4 err A M 4 err A>M 4 err plA)>M 4 err
AbMN serr AvfixM jerr Abletx=M;N 5err A>checkM jerr Avp(M) § err
L

8 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

Example 6. Recall from that B(M) abbreviates |0 (TB(M)), and define test as
follows')

test = check {B} [unit]

test is a computation that requires context role B to evaluate. For example, |B* (test)
produces a role error in any context, since |B* restricts any role-context to the negation of the role

B. [

Example 7. We now illustrate how terms can provide roles for themselves. Consider the following
guarded function:

from<A,B> = {A}[Ay. B(y)]

from<A,B> is a guarded value that may only be discharged by A, resulting in a function that runs
any computation at B. Let test = check {B} [unit]. No matter what the relationship is between
A and B, the following evaluation succeeds:

A > let z=check from<A,B>; z test — B (test) — [unit]

from<A, B> is far too powerful to be useful. After the A-guard is discharged, the resulting function
will run any code at role B. One can provide specific code, of course, as in Ay. B (M). Such func-
tions are inherently dangerous and therefore it is desirable constrain the way in which such functions
are created. The essential idea is to attach suitable checks to a function such as Ag.Ay.B(gy),
which takes a non-privileged function and runs it under B. There are a number of subtleties to con-
sider in providing a general purpose infrastructure to create terms with rights amplification. When
should the guard be checked? What functions should be allowed to run, and in what context? In
we discuss the treatment of these issues using the Domain and Type Enforcement ac-
cess control mechanism.]

3. TYPING

We present two typing systems that control role errors in addition to shape errors.

The first typing system determines a context role sufficient to avoid role errors; that is, with this
role, there is no possible execution path that causes a role error. This system enables the removal of
unnecessary role-checks in a piece of code for a caller at a sufficiently high role.

The second system determines a context role necessary to avoid role errors; that is, any role
that does not dominate this role will cause every execution path to result in a role error. Stated
differently, the second system calculates the role that is checked and tested on every execution path
and thus determines the amount of protection that is enforced by the callee.

Technically, the two systems differ primarily in their notions of subtyping. In the absence
of subtyping, the typing system determines a context role that is both necessary and sufficient to
execute a term without role errors.

Because it clearly indicates the point at which computation is performed, the monadic metalan-
guage is attractive for reasoning about security properties, which we understand as computational
effects. The type [T] is the type of computations of type 7. We extend the computation type [T
to include an effect that indicates the guards that are discharged during evaluation of a term. Thus
the term check {A} [1+1] has type (A)[Int] — this type indicates that the reduction of the term to a
value (at type Int) requires A. Guarded values inhabit types of the form {A}[T] — this type indicates
the protection of A around an underlying value at type 7. These may be discharged with a check,
resulting in a term inhabiting the computation type (A)[T].

3We do not address parametricity here; the brackets in the names test and from<A, B> are merely suggestive.

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 9

The syntax of types is given below, with the constructors and destructors at each type recalled

from [Section 2.3

T,S == V,UW == M,N,L == Types; Values; Terms
Base bv | x 1% Base Value
T-S Ax.M MN | fixM Abstraction
{A}[T] {A} [M] check M Guard
(A)[T] M] letx=M; N Computation

p (M) Role Modifier

3.1. Subtyping. The judgments of the subtyping and typing relations are indexed by o which
ranges over {1,2}. The subtyping relation for (A)[T] reflects the difference between the two type
systems.

If role A suffices to enable a term to evaluate without role errors, then any higher role context
also avoids role errors (using [Lemma 4). This explains the subtyping rule for the first type sys-
tem — in particular, ki (A)[T] < (1)[T], reflecting the fact that the top role is sufficient to run any
computation.

On the other hand, if a role A of the role-context is checked and tested on every execution path
of a term, then so is any smaller role. This explains the subtyping rule for the first type system —
in particular, 5 (A)[T] <: (0)[T], reflecting the fact that the bottom role is vacuously checked in any
computation.

- RT<T ifao=1thenA’ > A
t; Base <: Base b {A}T] < {A'}[T'] if ¢ =2then A > A’
}ET/<:T 'ES(:S, lETCT/ ifo=1thenA’ > A

LT—-S<T' =S8 b (A)[T] < (A")[T] if @ =2thenA > A’

Lemma 8. The relations t5; T <: S are reflexive and transitive. []

3.2. Type systems. Typing is defined using environments. An environment,
I' == x; T, x0T

is a finite partial map from variables to types.

As usual, there is one typing rule for each syntactic form plus the rule T-SUB for subsumption,
which allows the use of subtyping. Upwards and downwards role modifiers have separate rules,
discussed below. The typing rules for the two systems differ only in their notion of subtyping and
in the side condition on T-MOD-DN; we discuss the latter in[Example 15]

10 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

(T-SUB)
(T-BASE) (T-VAR) I'eM:T
LT <T
I'hbv:Base T,x:T,I"bx:T ThM:T
(T-ABS) (T-APP) (T-FIX)
Lx:ThEM:S I'eM:T-S THKEN:T 'eM:T->T
x ¢ dom(I) -
FbAx.M:T—S 'bMN:S ' fixM: T
(T-GRD) (T-CHK)
reM:T ' M : {A}[T]
'z {AYM] : {A}[T] ['t; check M : (A)[T]
(T-UNIT) (T-BIND)
'eM:T I'eM:(A)T] T,x:THN:(B)[S]
x ¢ dom(T)
Tk [M] : (0)[T] Tk letx=M;N:(AUB)[S]
(T-MOD-UP) (T-MOD-DN)
Tk M: (B)[T] Tk M: (B)[T]

Tk JA(M) : (BNA*)[T]

ifac=1thenA>B

Tl [AGM) : (B)[T]

The rules T-BASE, T-VAR, T-SUB, T-ABS, T-APP and T-FIX are standard. For example, the
identity function has the expected typing, k; Ax.x: T — T, for any T. Nonterminating computations
can also be typed; for example, I; fix (Ax.x) : T, for any 7.

Any term may be injected into a computation type at the least role using T-UNIT. Thus, in the
light of the earlier discussion on subtyping, if by M : T then, in the first system, [M] inhabits (A)[T]
for every role A; in the second system, the term inhabits only type (0)[7T], indicating that no checks
are required to successfully evaluate the value [M].

Computations may be combined using T—BIN If M inhabits (A)[T] and N inhabits (B)[S],
then “M ; N inhabits (A LI B)[S]. More generally, we can deduce:

e Ax.let X' =x;x : (A)[(B)[T]] = (AUB)[T]

In the first type system, this rule is motivated by noting that the role context A LI B suffices to
successfully avoid role errors in the combined computation if A (resp. B) suffices for M (resp. N).
For the second type system, consider a role C that is not bigger than A LI B — thus C is not bigger
than at least one of A, B. If it is not greater than A, by assumption on typing of M, every computation
path of M in role context C leads to a role-error. Similarly for B. Thus, in role context C, every
computation path in the combined computation leads to a role error. Furthermore, using the earlier
subtyping discussion, the sequence also inhabits (1)[S] in the first system and (0)[S] in the second.

The rule T-GRD types basic values with their protection level. The higher-order version of
{A}[] has the natural typing:

 Ax. {AY[x] : T — {A}[T]

Recall that in the transition relation, check {A} [N] checks the role context against A. The typing
rule T-CHK mirrors this behavior by converting the protection level of values into constraints on role
contexts. For example, we have the typing:

I Ax. check x : {A}[T] = (A)[T]

“4The distinction between our system and dependency-based systems can be see in T-BIND, which in Dcc [1} 2} 30]]
states that - let x=M; N : (B)[S] if B> A, where - M : (A)[T] and x: T - N : (B)[S].

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 11

In the special case of typing I' I; check {A} [N] : (A)[T], we can further justify in the two systems
as follows. In terms of the first type system, the role context passes this check if it is at least A. In
terms of the second type system, any role context that does not include A will cause a role-error.

Role modifiers are treated by separate rules for upwards and downwards modifiers.

The rule for T-MOD-UP is justified for the first type system as follows. Under assumption that B
suffices to evaluate M without role-errors, consider evaluation of TA (M) in role context BIMA*. This
term contributes A to role context yielding A LI (BMA*) = (AUB) M (AUA*) = B for the evaluation
of M. For the second type system, assume that if a role is not greater than B, then the evaluation of
N leads to a role error. Consider the evaluation of TA (M) in a role context C that does not exceed
BT1A*. Then, the evaluation of M proceeds in role context C LUA which does not exceed B and hence
causes a role error by assumption.

The rule for T-MOD-DN is justified for the first type system as follows. Under assumption that B
suffices to evaluate M without role-errors, and A is greater than B consider evaluation of |A (M) in
role context B. This term alters role-context B to B[A = B for the evaluation of M, which suffices.
For the second type system, assume that if a role is not greater than B, then the evaluation of N leads
to a role error. Consider the evaluation of |A (M) in a role context C that does not exceed B. Then,
CT1A certainly does not exceed B and so the evaluation of M causes a role error by assumption.

[Example 16]and [Example 15| discuss alternate presentations for the rules of typing for the role
modifiers.

In stating the results, we distinguish computations from other types. holds trivially
from the definitions.

Definition 9. Role A dominates type T (notation A > T') if T is not a computation type, or 7 is a

computation type (B)[S] and A > B. [
Lemma 10. (a) fA>Band B> T then A>T. (b)If5r T <SandA > SthenA>T. (c)IfET < S
and A > T then A > S. L]

The following theorems formalize the guarantees provided by the two systems. The proofs may
be found in

Theorem 11. If5 M : T and A > T, then either A>M —® or A>M — V for some V.

Theorem 12. If5 M : T and A # T, then either A> M —® or there exists N such that A>M — N
and A N 4 err.

For the first system, we have a standard type-safety theorem. For the second system, such a
safety theorem does not hold; for example k; check {1} [unit] : (1)[Unit] and 1 > check {1} [unit] —
Cunit] but t£ [unit] : (1)[Unit]. Instead [Theorem 12| states that a term run with an insufficient

context role is guaranteed either to diverge or to produce a role error.
3.3. Simple examples.

Example 13. We illustrate combinators of the language with some simple functions. The identity
function may be given its usual type:
EAx.x:T—-T

The unit of computation can be used to create a computation from any value:
b Ax. [x]1: T—(0)[T]

The let construct evaluates a computation. In this following example, the result of the computation
x" must itself be a computation because it is returned as the result of the function:

e Ax.let X' =x; x": (AY[(B)[T]] = (ALB)[T]

12 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

The guard construct creates a guarded term:
B Ax. {AY[x] : T— {A}[T]
The check construct discharges a guard, resulting in a computation:
k Ax. check x : {A}[T]— (A)[T]
The upwards role modifier reduces the role required by a computation.
B Ax. TB(x) : (A)[T] = (AMNB*)[T]
The first typing system requires that any computation performed in the context of a downward role
modifier | B () must not require more than role B:
e Ax. [B(x) : (A)[T] = (A)[T] (whereB>Aifa=1)
In the first type system, the last two judgments may be generalized as follows:
 Ax. G0 < (p(AD)[T] = (A)[T]
Thus a role modifier may be seen as transforming a computation that requires the modifier into one

that does not. For further discussion see|[Example 16]

Example 14 (Booleans). The Church Booleans, tru = At. Af.t and fls = At. Af.{, illustrate the
use of subtyping. In the two systems, these may be given the following types.

Bool; = (A)[T] - (B)[T] -~ (AUB)[T] i tru,fls : Bool
Bool, = (A)[T] — (B)[T] - (AN B)[T] b tru,fls : Bool,
These types reflect the intuitions underlying the two type systems. The first type system reflects a

“maximum over all paths” typing, whereas the second reflects a “minimum over all paths” typing.
The conditional may be interpreted using the following derived rules.

'k L:Booly THEM:(A)T] ThN:(B)[T] TL:Booly I'bM:(A)[T] TI'kN:(B)[T]
['kif LthenMelse N: (AUB)[T] 'L if LthenMelse N: (AMB)[T]

O

Example 15 (T-MOD-DN). The side condition on T-MOD-DN does not effect typability in second
typing system, but may unnecessarily decrease the accuracy of the analysis, as can be seen from the
following concrete example.

Let M, N be terms of type (B)[T].

T M: (B)[T]
Tk M: (ANBY[T]
Tk JA(M) : (ANB)[T]

With the side condition, the term let x=|A (M) ; N would have to be given a type of the form
(AN B)[T], even though both M and N have type (B)[T]. Without the side condition, the “better”
type (B)[T] may be given to the entire let expression. OJ

(T-SUB)

(T-MOD-DN)

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 13

Example 16 (Alternative rule for role modifiers). In the first typing system, T-MOD-UP and T-MOD-
DN may be replaced with the following rule, which we call T-MOD-*.

Tk M: (p(B))(T]
'k p(M) : (B)[T]
Consider p = TA. Because C > (ALIC) MA*, the following are equivalent.
ChEM:(AUC)[T]

Tk M: (AUC)[T] THIAGD - (Auc)nanr] TMoPvP
(T-MOD-*) (T-SUB)
'k TAWM) : (C)[T] 'k TAWM) : (C)[T]
Because (DMA*)UA > D, the following are equivalent.
't M:(D)[T|
(T-SUB)
I'hM: (DNA*)UA)[T] I'h M:(D)[T|
(T-MOD-*) (T-MOD-UP)
'k TAM) : (DNA*)T) 'k TAM) : (DMA*)T)
Consider p = |A. Because A > AT1C and C > AT1C, the following are equivalent.
'k M:(ANC)[T]
Tk M: (ANC)[T] THIAQD : (Anic)yr] (TMoPPY
(T-MOD-*) (T-SUB)
'k |[AWM) : (C)[T] 'k [AWM) : (C)[T]
Suppose A > D. Then DIMA > D, and the following are equivalent.
' M:(D)[T|
Tk M: (pnayr U Tk M: (D)[T]
(T-MOD-¥) (T-MOD-DN)]

Th JAGMD : (D)[T] Th JAM) : (D)[T]

Example 17 (A sublanguage). The following proper sublanguage is sufficient to encode the com-
putational lambda calculus. Here values and terms are disjoint, with values assigned value types T
and terms assigned computation types (A)[T].

T,S == Base | T—(A)[S] | {A}[T]
V,UW == bv | x | Ax.M | {A}[V]
M,N,L := [V] | VU | fixV | checkV | letx=M; N | p(M)

Encoding the Church Booleans in this sublanguage is slightly more complicated than in|Example 14|
tru and fls must accept thunks of type Unit — (A)[S] rather than the simpler blocks of type (A)[S].
Operations on base values that have no computational effect are placed in the language of
values rather than the language of terms. The resulting terms may be simplified at any time without
affecting the computation (e.g., [1+2 == 3] may be simplified to [trul).]

Example 18 (Relation to conference version). The language presented here is much simpler than
that of the conference version of this paper [14]. In particular, the conference version collapsed
guards and abstractions into a single form {A} [Ax. M] with types of the form T — {A>B}[S], which
translates here as {A} [T — (B)[S]]: the immediate guard of the abstraction is A, whereas the effect
of applying the abstraction is B.

In addition, the conference version collapsed role modification and application: the application
lCV U first checked the guard of V, then performed the application in a context modified by |C. In
the current presentation, this translates as “let x=check V; |C(xU).”]

14 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

4. EXAMPLES

In this section we assume nullary role constructors for user roles, such as Alice, Bob, Charlie,
Admin, and Daemon.

Example 19 (ACLs). Consider a read-only filesystem protected by Access Control Lists (ACLs).
One can model such a system as:

filesystem = Aname. if name=="file1" then check {Admin}["datal"]
else if name=="file2" then check {AliceMBob}["data2"]
else ["error: file not found"]

If Admin > Alice M Bob then code running in the Admin role can access both files:
Admin > filesystem "filel" — check {Admin}["datal"] — ["datal"]
Admin 1> filesystem "file2" — check {AliceMBob}["data2"] — ["data2"]
If Alice ? Admin then code running as Alice cannot access the first file but can access the second:
Alice 1> filesystem "filel" — check {Admin} ["datal"] 4 err
Alice 1> filesystem "file2" — check {AliceMBob} ["data2"] — ["data2"]
Finally, if Charlie 2 AliceBob then code running as Charlie cannot access either file:

Charlie > filesystem "file1" — check {Admin}["datal"] 4 err
Charlie > filesystem "file2" — check {AliceMBob} ["data2"] 4 err

The filesystem code can be assigned the following type, meaning that a caller must possess a
role from each of the ACLs in order to guarantee that access checks will not fail. If, in addition,
Admin > Alice " Bob then the final role is equal to Admin.

k; filesystem : String — (Admin LI (Alice M Bob) LI0}[String]

In the above type, the final role O arises from the “unknown file” branch that does not require an
access check. The lack of an access check explains the weaker 5 type:

b filesystem : String — (Admin 1 (Alice M Bob) M0)[String]

This type indicates that filesystem has the potential to expose some information to unprivileged
callers with role Admin 1 (AliceMBob) M0 = 0, perhaps causing the code to be flagged for security
review. L]

Example 20 (Web server). Consider a web server that provides remote access to the filesystem
described above. The web server can use the role assigned to a caller to access the filesystem (unless
the web server’s caller withholds its role). To prevent an attacker determining the non-existence of
files via the web server, the web server fails when an attempt is made to access an unknown file
unless the Debug role is activated.

webserver = Aname. if name=="file1" then filesystem name
else if name=="file2" then filesystem name
else check {Debug} ["error: file not found"]

For example, code running as Alice can access "file2" via the web server:
Alice > webserver "file2" — filesystem "file2" — ["data2"]

The access check in the web server does prevent the “file not found” error message leaking
unless the Debug role is active, but, unfortunately, it is not possible to assign a role strictly greater

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 15

than 0 to the web server using the second type system. The filesystem type does not record the
different roles that must be checked depending upon the filename argument.

b webserver : String — (Admin 1 (Alice M Bob) M0)[String] (derivable)
t# webserver : String — (Admin M (Alice M Bob) M Debug) [String] (not derivable) [

illustrates how the Domain-Type Enforcement (DTE) access control mechanism
[6l [31]], found in Security-Enhanced Linux (SELINUX) [17], can be modelled in A-RBAC. Further
discussion of the relationship between RBAC and DTE can be found in [11} [13]].

Example 21 (Domain-Type Enforcement). The DTE access control mechanism grants or denies
access requests according to the current domain of running code. The current domain changes as
new programs are executed, and transitions between domains are restricted in order to allow, and
also force, code to run with an appropriate domain. The restrictions upon domain transitions are
based upon a DTE type associated with each program to execute. For example, the DTE policy in
[31] only permits transitions from a domain for daemon processes to a domain for login processes
when executing the login program, because code running in the login domain is highly privileged.
This effect is achieved by allowing transitions from the daemon domain to the login domain only
upon execution of programs associated with a particular DTE type, and that DTE type is assigned
only to the login program.

The essence of DTE can be captured in A-RBAC, using roles to model both domains and DTE
types, and the context role to model the current domain of a system. We start by building upon the
code fragment Ag. Ay. B (gy), discussed in[Example 7] that allows a function checking role B to be
executed in the context of code running at a different role. We have the typing (for emphasis we use
extra parentheses that are not strictly necessary given the usual right associativity for the function
type constructor):

[z Ag.Ay.B(gy) : (T~ (B)[S]) = (T—(0)[S])
To aid readability, and fixing types T and S for the remainder of this example, define:
R=R- (T—=(0)[S))
So that the previous typing becomes:
i Ag.Ay.B(gy) : T (B)[S]

To restrict the use of the privileged function Ag. Ay.B (gy), it can be guarded by a role E acting
as a DTE type, where the association of the DTE type E with a function is modelled in the sequel by
code that can activate role E. The guarded function can be typed as:

{E}[Ag.Ay.B(gy)] : {E}[T = (B)[S]]

We now define a function domtrans<A, E, B> for a domain transition from domain (role) A to
domain (role) B upon execution of a function associated with DTE type (also a role) E. The function
first verifies that the context role dominates A, and then permits use of the privileged function
Ag.Ay.B(gy) by code that can activate role E. The function domtrans<A, E, B> is defined by:

domtrans<A, E, B> = Af. Ax. check {A}[unit] ; f {E}[Ag.Aly.B(gy)] x
We have the typing:

t; domtrans<A, E, B> : {E}[T — (B)[S]] = (T = (A)[S])

16 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

The above type shows that domtrans<A, E, B> can be used to turn a function checking role B
into a function checking role A, but only when the role E is available—in contrast to the type

(T—(B)[S])—= (T — (A)[S]) that does not require E.

In order to make use of domtrans<A, E, B>, we must also consider code that can activate E. We
define a function assign<E> that takes a function f and activates E in order to access the privileged
code Ag.Ay.B(gy) from domtrans<A, E, B>. The function assign<E> is defined by:

assign<E> = Af.Ax. Ay.let g=E (checkx) ;g fy
And we have the typing:
ks assign<E>: (T = (B)[S]) = {E}[T — (B)[S]]
Therefore the functional composition of assign<E> and domtrans<A, E, B> has type:
(T=(B)[S]) = (T = (A)[S])

To show that in the presence of both assign<E> and domtrans<A, E, B>, code running with context
A can execute code checking for role context B, we consider the following reductions in role context
A, where we take .% = Az.check {B} [unit] and underline terms to indicate the redex:

domtrans<A, E, B> (assign<E> .7) unit
= (Af.Ax.check {A} [unit] ; f ({E}[Ag.Ay.B(gy)1) x) (assign<E> .%) unit
— (Ax. check {A} [unit] ; (assign<E>.7) ({E}[Ag. Ay.B(gy)1) x) unit
— check {A} [unit] ; (assigh<E>.%) ({E}[Ag.Ay.B(gy)]) unit
— (assign<E> .7) ({E}[Ag.Ay.B(gy)]) unit
= ((Af.Ax.Ay.let g=E(checkx);gfy).#) ({E}[1g.Ay.B(gy)]) unit
— (Ax. Ay.let g=E(checkx); g Z# y) ({E}[Ag.Ay.B(gy)]) unit
— (Ay.let g=E(check {E}[Ag.Ay.B(gy)]);g.% y) unit
— let g=E (check {E}[Ag.ly.B(gy)]);g .# unit
—letg=E([Ag.1y.B(gy)]);g.Z unit
— letg=[1g.Ay.B(gy)1;g % unit
— (Ag.Ay.B(gy)) .Z unit
— (Ay.B(ZFy)) unit
— B (% unit)
= B ((Az.check {B} [unit]) unit)
— B (check {B} [unit])
— B ([unit])

—» [unit]

The strength of DTE lies in the ability to factor access control policies into two components:
the set of permitted domain transitions and the assignment of DTE types to code. We illustrate
this by adapting the aforementioned login example from [31]] to A-RBAC. In this example, the DTE
mechanism is used to force every invocation of user code (running at role User) from daemon code
(running at role Daemon) to occur via trusted login code (running at role Login). This is achieved by
providing domain transitions from Login to User, and Daemon to Login, but no others. Moreover,
code permitted to run at Login must be assigned DTE type LoginEXE, and similarly for User and

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 17

UserEXE. Thus a full program running daemon code M has the following form, where neither M
nor N contain direct rights amplification.

let dtLoginToUser=domtrans<Login, UserEXE, User>;

let dtDaemonTolLogin=domtrans<Daemon, LoginEXE, Login>;

let shell = assign<UserEXE> (1. M);

let login =assign<LoginEXE> (A pwd. if pwd=="secret" then dtLoginToUser shell unit else ...);
Daemon (N)

Because login provides the sole gateway to the role User, the daemon code N must provide the cor-
rect password in order to execute the shell at User (in order to access resources that are available at
role User but not at role Daemon). In addition, removal of the domain transition dtDaemonToLogin
makes it impossible for the daemon code to execute any code at User.]

5. CONTROLLING RIGHTS AMPLIFICATION

Example 22. Suppose that M contains no direct rights amplification, that is, no subterms of the
form TA(-). Then, in

let priv=[Ax. TA(V x)1; |User (M)
we may view V as a Trusted Computing Base (TCB) — a privileged function which may escalate
rights — and view M as restricted user code. The function priv is an entry point to the TCB which
is accessible to user code; that is, user code is executed at the restricted role User, and rights ampli-
fication may only occur through invocation of priv.

Non-trivial programs have larger TCBs with more entry points. As the size of the TCB grows, it
becomes difficult to understand the security guarantees offered by a system when rights amplifica-
tion is unconstrained, even if only in the TCB. To manage this complexity, one may enforce a coding
convention that requires rights increases be justified by earlier checks. As an example, consider the
following, where amplify is a unary role constructor.

let at<A> = [Af. check {amplify(A)} [Ax. TA(fx)1]1;
let priv=at<A>V;
lUser (M)

In a context with role amplify(A), this reduces (using R-BIND, R-APP and R-CHK) to
let priv=[Ax. TA(V x)]; |[User (M)

In a context without role amplify(A), evaluation becomes stuck when attempting to execute R-CHK.
The privileged function returned by at<A> (which performs rights amplification for A) is justified
by the check for amplify(A) on any caller of at<A>.

One may also wish to explicitly prohibit a term from direct amplification of some right B; with
such a convention in place, this can be achieved using the role modifier |amplify(B).]

One may formalize the preceding example by introducing the unary role constructor amplify,
where amplify(A) stands for the right to provide the role A by storing TA in code.
We require that amplify distribute over L and " and obey the following absorption laws:

AU amplify(A) = amplify(A) AT amplify(A) = A

Thus amplify(A) > A for any role A.
To distinguish justified use of role modifiers from unjustified use, we augment the syntax with
checked role modifiers.
M,N == - | pa(M)

18 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

Whenever a check is performed on role M we mark role modifiers in the consequent to indicate that
these modifiers have been justified by a check. Define the function marks homomorphically over
all terms but for role modifiers:

marka(p(M)) = pa(marks(M))
marka(pg(M)) = paup (marka(M))

Modify the reduction rule for check as follows.

A>B
A check {BY [M1 — [markz(M)]

Thus, the check in the example above will execute as follows.
amplify(A) > check {amplify(A)} [Ax. TA(f)] — Ax. TAgpiiga) f X

In the residual, the abstraction contains a checked role modifier, indicating that the role amplification
has been provided by code that had the right to do so.
We now define role modification errors so that TAp (M) produces an error if B does not domi-

nate amplify(A).

TB(M) 4 moderr TBc(M) 4 moderr C % amplify(B)

M 4 moderr M 4 moderr M 4 moderr M 4 moderr
M N 4 moderr letx=M; N 4 moderr check M 4 moderr p (M) 4 moderr

Using this augmented language, unjustified rights amplification is noted as an error. To prevent
such errors, we modify the typing system to have judgments of the form I';C kK M : T, where C
indicates the accumulated guards on a term which must be discharged before the term may be
executed; since M is guarded by C, it may include subterms of the form TA (-) when C > amplify(A).
In addition to adding rules for checked role modifiers, we also modify T-GRD and T-MOD-UP. The
rule T-MOD-UP ensures that any amplification is justified by C. The rule T-GRD allows guards to be
used in checking guarded terms; the rule is sound since guarded terms must be checked before they
are executed.

(T-GRD') (T-MOD-DN-CHECKED)
INCUARM: T ICHEM: (B)[T]
ifc =1thenA > B
[;C K {AYIM] : {A}[T] I;Ch [Ap(M) : (B)[T]
(T-MOD-UP') (T-MOD-UP-CHECKED)
ICHEM: (B)[T] ICHM: (B)[T]
C > amplify(A) CUD = amplify(A)

IC K TAMM) : (BMAY)[T] IC K TAp (M) - (BMA™)[T]
One may not assume that top level terms have been guarded; therefore, let I' g M : T be shorthand
forI;0 5 M T.

Example 23. The functions domtrans and assign from |[Example 21|are not typable using this more
restrictive system. Recall the definitions:
domtrans<A, E, B> = Af. Ax. check {A} [unit] ; f {E}[Ag.Aly.B(gy)] x
assign<E> = Af. Ax. Ay.let g=E (check x);gfy

The amplification of B in domtrans is not justified; neither is the amplification of E in assign. The
required form is:

domtrans<A, E, B> = {amplify(B)} [Af. Ax. check {A} [unit]; f {E}[Ag.1y.B(gy)] x]

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 19

assign<E> = {amplify(E)} [Af. Ax. Ay. let g=E (check x) ; g f y]

The login example must now be modified in order to discharge the guards. Again the modifications
are straightforward:

let dtLoginToUser = check domtrans<Login, UserEXE, User>;

let dtDaemonTolLogin =check domtrans<Daemon, LoginEXE, Login>;

let assignXUser = check assign<UserEXE>;

let assignXLogin =check assign<LoginEXE>;

let shell =assignXUser (A. M) ;

let login =assignXLogin (Apwd. if pwd=="secret" then dtLoginToUser shell unitelse ...);
Daemon (N)

Thus modified, the program types correctly, but will only execute in a context that dominates the four
roles amplify(User), amplify(UserEXE), amplify(Login), and amplify(LoginEXE). This ensures that
domain transitions and assignments are created by authorized code. []

establishes that the typing system is sufficient to prevent role modification errors.
The proof of relies on the following lemma, which establishes the relation between
typing and mark.

Lemma 24. [fTI;CUARG M : T then T';Ct; marka(M) : T.
Proof. By induction on the derivation of the typing judgment, appealing to the definition of mark. []
Proposition 25. Ift; M : T and A>M — N then —=(N 4 moderr)

Proof Sketch. That —=(M 4 moderr) follows immediately from the definition of role modification
error, combined with T-MOD-UP’ and T-MOD-UP-CHECKED. It remains only to show that typing is
preserved by reduction. We prove this for the type systems of in the next section. The
proof extends easily to the type system considered here. The only wrinkle is the evaluation rule for
check, which is handled using the previous lemma.]

6. PROOF OF TYPE SAFETY THEOREMS

The proofs for the first and second systems are similar, both relying on well-studied techniques
[23]]. We present proofs for the second system, which is the more challenging of the two.

Definition 26 (Compatibility). Types T and S are compatible (notation T ~ S) if T =Sor T = (A)[R]

and S = (B)[R], for some type R. L]
The following lemmas have straightforward inductive proofs.

Lemma 27 (Compatibility). If k5 T < T then T ~ S iff T' ~ S. 0]

Lemma 28 (Substitution). [fTEM: T andU,x: T N: S, then T, N{x =M} :S.]

Lemma 29 (Bound Weakening). IfI,x:St,M : T andb; S' < S, thenTU,x:S'tu M : T.]

20 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

Lemma 30 (Canonical Forms).

(1) If5V : T —SthenV has form (Ax.M) where x:T 5 M : S.
(2) If 5V : (A)[T] then'V has form [M] wherets M : T and A = 0.
(3) If 5V : {A}[T] then V has form {B} [M] where s M : T and B > A.

Proof.

(I) By induction on derivation of i; V : T — S. The only applicable cases are T-SUB and T-ABS.
(T-SUB) We know 5V : T/ =S where 5 V:T—=Sand 5 T-S<T' =-S,s05T' < T
and 15 S <: §'. By the IH, V has form (Ax. M) where x:T & M : S. By [Lemma 29 and
subsumption, x: 7" 5 M : §'.
(T-ABS) Immediate.
(2) By induction on derivation of l; V : (A)[T']. The only applicable cases are T-SUB and T-UNIT.
(T-SUB) We know | V : (A")[T"], where 5 V : (A)[T] and k5 (A)[T] < (A")[T'],so5 T < T’
and A > A’. By the IH, V has form [M] where 5 M : T and A =0, so A’ =0. By
subsumption, 5 M : T'.
(T-UNIT) Immediate.
(3) By induction on derivation of ; V : {A}[T]. The only applicable cases are T-SUB and T-GRD.
(T-sUB) We know k5 V : {A'}[T'], where ; V : {A}[T] and ;5 {A}[T] < {A'}[T’], so 5 T < T’
and A > A’. By the IH, V has form {B}[M] where 5 M : T and B > A, so B > A’. By
subsumption, 5 M : T,
(T-GRD) Immediate.]

Proposition 31 (Preservation). If5 M : T and A M — N then there exists S such that S =~ T and
EN:SandifA> SthenA>T.

Proof. By induction on the derivation of 5 M : T. The induction hypothesis includes the quantifica-
tion over A, N. For values, the result is trivial; thus we consider only the rules for non-values.

(T-suB) We know b5 M : T', where 5 M : T and 5 T < T/, and A>M — N. Applying the IH to
EM:T and A>M — N yields S such that b N: Sand S~ T and if A > Sthen A > T.
By this extends to if A > S then A > T". In addition, by we have
S~T.
(T-APP) We know 5 M N : T, where 5 M : Ty > T, and 5 N : 11, and A> M N — L. There are two
subcases depending on the reduction rule usedin A M N — L.
(M is a value) By M = Ax.M" and x:Ty 5 M’ : T». The reduction yields L =
M'{x:=N}. By 5 L : T,. The remaining requirements on 7; are immediate.
(M has a reduction) Therefore A>M — M’ and L=M'N. Applying the I[Htobs M : Ty - T
and A> M — M’ yields S such that 5 M’ : S and S ~ Ty — T>, which implies that § =
T - T». Hence 5 L : T;. The remaining requirements on 7, are immediate.
(T-FIX) We know k5 fix M : T, where b M : T — T and A > fix M — L. There are two subcases
depending on the reduction rule used in A > fix M — L.
(M is a value) By M = Ax.M'"and x:T 5 M’ : T. The reduction yields L =
M'{x:=M}. By b L : T. The remaining requirements on 7 are immediate.
(M has a reduction) Therefore A>M — M’ and L = fix M’. Applying the [Hto M : T —T
and A> M — M’ yields S such that 5 M’ : S and S ~ T — T, which implies that § =
T —T.Henceh L:T. The remaining requirements on 7" are immediate.
(T-CHK) We know 5 check M : (A;)[T], where 5 M : {A;}[T], and A > check M — L. There are two
subcases depending on the reduction rule used in A > check M — L.
(M is a value) By M = {A;}[M'] and 5 M’ : T and A, > A;. The reduction
yields L = [M’] and from the reduction we deduce A > A;, so A > Ay always holds.

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 21

We assign type b5 L: (0)[T], where (0)[T] = (A;)[T], and we have already shown that
A Z>0impliesA > A;.

(M has a reduction) Therefore A>M — M’ and L = check M’. Applying the IHto 5 M :
{A1}[T] and A>M — M’ yields S such that ; M : S and S = {A}[T], so S = {A}[T].
Hence b L: (A;)[T]. The remaining requirements on (A;)[7T] are immediate.

(T-BIND) We know b letx=M; N : (A| LUA2)[T2], where b M : (A1)[Ti] and x: Ty & N : (A2)[T],
and A> letx=M; N — L. There are two subcases depending on the reduction rule used in
Apletx=M;N — L.

(M is a value) By[Lemma 30 M = [M'] and 5 M : T; and A; =0, so A UA; = Ay. The
reduction yields L = N{x:=M'}. By b L: (A2)[T3]. The remaining re-
quirements on 7, are immediate.

(M has a reduction) Therefore A>M — M’ and L = let x=M’; N. Applying the IH to
b M:(A)[T1] and A>M — M’ yields S such that ; M": S and S ~ (A,)[T1] and if
A > SthenA > (A1)[T1]. Hence S = (A3)[T1], for some A3, and A > A3 implies A > A;.
We deduce | L : (A3 UA»)[Tz], where (A3 LAy)[T2] ~ (A} UA)[T»]. Finally, suppose
A > (A3UAy) D), ie., A > A311Ap, s0 A > Az and A > A;. By the above, this entails
A>Aj,s0A > A UA;. Therefore A > (A} LUA,) T3], as required.

(T-MOD-UP) We know 5 TA; (M) : (A,MA7T)[T], where 5 M : (A2)[T],and A>TA| (M) — L. There
are two subcases depending on the reduction rule used in A > TA; (M) — L.

(M is a value) Therefore L =M and & L : (A2)[T], where (A2)[T] =~ (A, MAT)[T]. By
M=[M1and b M :T and A, =0, and the remaining requirement on
(A2)[T], that A > (A5)[T| implies A > (A, MA7T)[T], is immediate.

(M has a reduction) Therefore 1A;(A)) >M — M’ and L = 1A; (M"). Applying the IH to
b M : (A)[T] and TA;(A) > M — M’ yields S such that 5 M’ : S and S = (A,)[T], so
S = (A3)[T] for some A3, and if TA;(A) > S then TA|(A) > (A2)[T], i.e., AUA| > A3
implies ALIA; > A,. We have 5 TA; (M') : (A3TAT)[T] and (A3 MA})[T] = (A2
A})[T]. Finally, if A > (A3 AT)[T], then A > A3 AT, so AUA;| > (A3MAT)UA| =
(A3 LA) M1=A3UA . Hence ALIA| > A3,50ALIA| > A», andAI‘IAT = (A HA’I() Lo =
(AUA) MAYT > A, MAT. Therefore A > A, MAT and A > (A, MAT)[T], as required.

(T-MOD-DN) We know b5 [A; (M) : (A2)[T], where |5 M : (A2)[T], and A> |A; (M) — L. There are
two subcases depending on the reduction rule used in A > |A; (M) — L.

(M is a value) Therefore L=M and k5 L: (A;)[T], and we are done.

(M has a reduction) Therefore |A;(A)>M — M’ and L= |A; (M"). By A > |A;(A) and
we have A>M — M’. Applying the IHto 5 M : (A)[T] and A>M — M’
yields S such that ; M’ : S and S ~ (A;)[T], so S = (A3)[T] for some A3z, and if A > §
then A > (A,)[T]. Hence b5 |A; (M) : (A3)[T], which completes the subcase. [

Corollary 32. If5 M : T and A>M —V, thenA>T.

Proof. By induction on the length of the reduction sequence A > M — V. For the base case, M =V
and implies that A > T, because every non-computation type is dominated by any role,
and in a computation type T = (B)[S] tells us that B = 0. For the inductive step, there
exists N such that Ab M — NandA> N — V. By there exists S such that 5 N : S
and if A > Sthen A > T. Applyingthe [Hto5 N:Sand AN — V yields A > S, hence A > T as
required. []

Proposition 33 (Progress). For all A, ift; M : T then either M is a value, A>M 4 err, or there exists
N such that A M — N.

22 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

Proof. By induction on the derivation of 5 M : T. We need only consider the cases when M is not a
value.

(T-suB) Weknow i M : T/, where 5 M : T and 5 T <: T'. Immediate by the IH.

(T-APP) Weknow l; M N : T, where ;b M : Ty > T, and 5 N : T;. Apply the IHto; M : T} - T, and
role A. If M is a value, then, by [Lemma 30} M has form (Ax.L),so A>M N — L{x:=N}.
IfA>M 4 err,thenA>M N 4 err. Finally, if Ab M — L, then AbM N — LN.

(T-F1X) We know F; fix M : T, where 5 M : T —T. Apply the IHtob; M : T —» T and role A. If
M is a value, then, by M has form (Ax.L), so A>fix M — L{x:= (Ax.L)}. If
A M 4 err,then A>fix M 4 err. Finally, if A>M — L, then A > fix M — fix L.

(T-CHK) We know b check M : (A,)[T], where 5 M : {A}[T]. Apply the IH to 5 M : {A;}[T] and
role A. If M is a value, then, by there exists B, L such that M = {B}[L], so
either A > check M — [L] or A > check M 4 err depending on whether A > B holds or not.
IfA>M 4 err, then A > check M 4 err. Finally, if A>M — L, then A > check M — check L.

(T-BIND) We know b let x=M; N : (A UA,)[T»], where 5 M : (A})[T}] and x: Ty 5 N : (A2)[T>].
Apply the IH to 5 M : (A;)[T}] and role A. If M is a value, then, by [Lemma 30] M has form
[L],s0Apletx=M; N — N{x:=L}.IfA>M 4 err,then A>letx=M; N 4 err. Finally, if
AbM — L, thenApletx=M;N — letx=L; N.

(T-MOD-UP) We know 5 TA| (M) : (A2 TTA})[T], where 5 M : (A2)[T]. Apply the IH to 5 M :
(A2)[T] and role TA;(A]). If M is a value, then A> TA; (M) — M. If TA|(A) > M § err,
then A > TA; (M) 4 err. Finally, if JA;(A) >M — L, then A> TA; (M) — TA; (L).

(T-MOD-DN) We know | |A; (M) : (A2)[T], where 5 M : (A2)[T]. Apply the IH to 5 M : (A2)[T]
and role |A;(A]). If M is a value, then A > |A; (M) — M. If |[A(A) > M 4 err, then
A> |Ay (M) 4 err. Finally, if |[A;(A)>M — L, then A |[A; (M) — [Ay(L). []

Theorem . If5M:T and A # T, then either A>M —© or there exists N such that Ax>M — N
and A N j§ err.

Proof. We use a coinductive argument to construct a reduction sequence that is either infinite or
terminates with a role check failure. When 5 M : T and A * T, we know that M is not a value by
[Lemma 30} By [Proposition 33| either A > M 4 err or there exists N such that A>M — N. In the
former case, we are done. In the latter case, using there exists S such that s N : S
and if A > S then A > T. However, we know that A 2 T, so A # S, as required.]

7. CONCLUSIONS

The focus of this paper is programmatic approaches, such as JAAS/.NET, that use RBAC. From
a software engineering approach to the design of components, RBAC facilitates a separation of
concerns: the design of the system is carried out in terms of a role hierarchy with an associated
assignment of permissions to roles, whereas the actual assignment of users to roles takes place at
the time of deployment.

We have presented two methods to aid the design and use of components that include such
access control code. The first — admittedly standard — technique enables users of code to deduce
the role at which code must be run. The main use of this analysis is to optimize code by enabling
the removal of some dynamic checks. The second — somewhat more novel — analysis calculates
the role that is verified on all execution paths. This analysis is potentially useful in validating
architectural security requirements by enabling code designers to deduce the protection guarantees
of their code.

A-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 23

We have demonstrated the use of these methods by modeling Domain Type Enforcement, as
used in SELinux. As future work, we will explore extensions to role polymorphism and recursive
roles following the techniques of [, 4]].

ACKNOWLEDGMENTS

The presentation of the paper has greatly improved thanks to the comments of the referees.

REFERENCES

[1] M. Abadi. Access control in a core calculus of dependency. SIGPLAN Not., 41(9):263-273, 2006.
[2] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency. In POPL ’99, pages 147-160.
ACM Press, 1999.
[3] M. Abadi, G. Morrisett, and A. Sabelfeld. Language-based security. J. Funct. Program., 15(2):129, 2005.
[4] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM TOPLAS, 15(4):575-631, 1993.
[5] S. Barker and P. J. Stuckey. Flexible access control policy specification with constraint logic programming. ACM
Trans. Inf. Syst. Secur., 6(4):501-546, 2003.
[6] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity policies. In CSS ’85, 1985.
[7] C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for role-based access control. In CSFW, pages 48—60,
2004.
[8] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality and subtyping. Fundam. Inf.,
33(4):309-338, 1998.
[9] S. Chong and A. C. Myers. Security policies for downgrading. In CCS ’04, pages 198-209, 2004.
[10] A. Compagnoni, P. Garralda, and E. Gunter. Role-based access control in a mobile environment. In Symposium on
Trustworthy Global Computing, 2005.
[11] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access Control. Computer Security Series. Artech
House, 2003.
[12] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Trans. Inf. Syst. Secur., 4(3):224-274, 2001.
[13] J. Hoffman. Implementing RBAC on a type enforced system. In Computer Security Applications (ACSAC ’97),
pages 158-163, 1997.
[14] R.Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely. A-RBAC: Programming with role-based access control. In ICALP
’06, volume 4052 of Lecture Notes in Computer Science, pages 456—467. Springer, 2006.
[15] S.Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple access control policies.
ACM Trans. Database Syst., 26(2):214-260, 2001.
[16] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms for run-time security policies. Int. J.
Inf. Sec., 4(1-2):2-16, 2005.
[17] P. A. Loscocco and S. D. Smalley. Meeting critical security objectives with Security-Enhanced Linux. In Ottawa
Linux Symposium, 2001.
[18] S. Malhotra. Microsoft .NET Framework Security. Premier Press, 2002.
[19] J. C. Mitchell. Programming language methods in computer security. In POPL ’01, pages 1-26, 2001.
[20] A.C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In CSFW, pages 172-186, 2004.
[21] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to enforce mandatory and discre-
tionary access control policies. ACM Trans. Inf. Syst. Secur., 3(2):85-106, 2000.
[22] J.S.Park, R. S. Sandhu, and G.-J. Ahn. Role-based access control on the web. ACM Trans. Inf. Syst. Secur., 4(1):37—
71,2001.
[23] B. Pierce. Types and Programming Languages. MIT Press, 2002.
[24] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas in Communica-
tions, 21(1):5-19, Jan. 2003.
[25] A. Sabelfeld and A. C. Myers. A model for delimited information release. In ISSS, pages 174-191, 2003.
[26] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models. I[EEE Computer, 29(2),
1996.
[27] E. B. Schneider, G. Morrisett, and R. Harper. A language-based approach to security. In Informatics—10 Years Back,
10 Years Ahead, volume 2000 of LNCS, pages 86—101, 2000.
[28] F. Siewe, A. Cau, and H. Zedan. A compositional framework for access control policies enforcement. In FMSE 03,
pages 32-42, 2003.

24 JAGADEESAN, JEFFREY, PITCHER, AND RIELY

[29] E. G. Sirer and K. Wang. An access control language for web services. In SACMAT 02, pages 23-30, 2002.

[30] S. Tse and S. Zdancewic. Translating dependency into parametricity. In /CFP, pages 115-125, 2004.

[31] K. M. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac, D. L. Shermann, and K. A. Oostendorp. Confining root
programs with Domain and Type Enforcement (DTE). In USENIX Security Symposium, 1996.

CTI, DEPAUL UNIVERSITY
E-mail address: rjagadeesan@cti.depaul.edu

BELL LABS
E-mail address: ajeffrey@bell-labs.com

CTI, DEPAUL UNIVERSITY
E-mail address: cpitcher@cti.depaul.edu

CTI, DEPAUL UNIVERSITY
E-mail address: jrielyQcti.depaul.edu

	1. Introduction
	1.1. An overview of our technical contributions
	1.2. Related work
	1.3. Rest of the paper

	2. The Language
	2.1. Roles
	2.2. Language overview
	2.3. Syntax
	2.4. Evaluation and role error

	3. Typing
	3.1. Subtyping
	3.2. Type systems
	3.3. Simple examples

	4. Examples
	5. Controlling rights amplification
	6. Proof of Type Safety Theorems
	7. Conclusions
	Acknowledgments
	References

