Logical Methods in Computer Science
Vol. 1 (1:4) 2005, 22 pages Submitted Sep. 17, 2004
www.Imcs-online.org Published Apr. 15, 2005

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED

ALAN JEFFREY 2 AND JULIAN RATHKEP

@ Bell Labs, Lucent Technologies, and CTI, DePaul University
e-mail address: ajeffrey@bell-labs.com

b School of Informatics, University of Sussex
e-mail address: julianr@sussex.ac.uk

ABsTRACT. The higher-order Tecalculus is an extension of the Te-calculus to allow communication of
abstractions of processes rather than names alone. It has been studied intensively by Sangiorgi in his
thesis where a characterisation of a contextual equivalence for higher-order Tecalculus is provided
using labelled transition systems and normal bisimulations. Unfortunately the proof technique used
there requires a restriction of the language to only allow finite types.

We revisit this calculus and offer an alternative presentation of the labelled transition system and
a novel proof technique which allows us to provide a fully abstract characterisation of contextual
equivalence using labelled transitions and bisimulations for higher-order Te-calculus with recursive
types also.

1. Introduction

It is evident that there is growing interest in the study of mobile code in process languages [3, 1,
9, 15]. Itis also clear that there is some relationship between the use of higher-order features and
mobility. Indeed, code mobility can be expressed as communication of process abstractions. For
this reason then it is important for us to develop a clear understanding of the use of higher-order
features in process languages.

Work towards this began several years ago with various proposals for higher-order versions of
known calculi [14, 4], including the higher-order te-calculus or HOTt[10]. This calculus was studied
intensively by Sangiorgi and one of his achievements was to provide a translation of the higher-
order language which supports code mobility, to a first-order Tecalculus which supports only name
mobility. This translation is proved to be fully abstract with respect to barbed congruence, but with
the restriction to a language of finite types.

While the translation is of interest in its own right, it also turned out to be very useful for pro-
viding a powerful fully abstract characterisation of barbed congruence in terms of labelled transition
systems and normal bisimulations. Providing direct proof techniques for contextual equivalences
in higher-order process languages is often considered to be hard [13]. In this paper, the difficulty

Key words and phrases: Higher-order languages, concurrency, full abstraction.

@ This material is based upon work supported by the National Science Foundation under Grant No. 0430175.
b Research partially funded by the Nuffield Foundation.

|E |LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-1 (1:4) 2005 @©A. Jeffrey and J. Rathke

2 A. JEFFREY AND J. RATHKE

arises in establishing soundness of the proof technique, which is tantamount to establishing some
sort of contextuality property. It has been seen that the use of a translation of higher- to first-order
communication can alleviate this problem and such translations have been employed to this effect
[11, 7].

However, due to the restriction to finite types for the correctness of these translations, the
soundness of the proof technique is only guaranteed for finite types. Given that recursive types are
used extensively in tecalculus, for encodings of datatypes and functions, this poses a significant
restriction. Sangiorgi has shown that by studying various subcalculi, such as the asynchronous Tt
calculus, he is able to remove the restriction to finite types [13]. To date, there has been no proof of
full abstraction for full HOTtin the presence of recursive types.

In this paper we present an alternative description of labelled transition systems and normal
bisimulations for HOTt, which is informed by Sangiorgi’s translation of higher-order to first-order
communication. Our alternative presentation allows a direct proof of soundness for contextual
equivalence which makes no use of the translation to first-order Te-calculus and, more importantly,
makes no restriction on types.

The innovation here lies in the introduction of operators Ty and (k < v) which simulate the
triggers Trx and meta-notation {k:= v} of Sangiorgi [11] where k is a unique identifier for the
trigger and v is a process abstraction. The crucial difference is that where Sangiorgi gives definitions
as HOrtterms for these devices:

Tri= (X)k(x) and {k:= v} = *k(X)v-x

where k(x) represents an output on name k and xk(x)P represents a replicated input on name k, we
leave the operators uninterpreted. There are no interactions between the operators Ty and (k < v).
Rather, we just mimic the behaviour of triggers in the labelled transition systems. The benefit of
doing this is that it allows us to obtain a direct soundness proof that (normal) bisimilarity implies
contextual equivalence without recourse to any translation in its correctness proof.

A challenge of approaching the problem in this way is that it is not immediately clear that
bisimilarity will be complete for contextual equivalence in HOTt That is to say, it is not obvious
whether each transition has a genuine HOT1tcontext which validates it. At this point however we can
interpret the operators Ty and (k < v) as HOTtterms exactly as Sangiorgi does. It is then a simple
matter to demonstrate completeness following familiar techniques [3, 7, 5]. The real payoff is that
not only do we obtain a direct soundness proof but the postponement of interpreting the triggers
allows us to finesse any restrictions to finite types.

The remainder of the paper is organised as follows: in Section 2 we recall the syntax and
semantics of HOTtalong with the definition of contextual equivalence which we will be using. This
is followed in Section 3 by a presentation of the novel labelled transition system using the operators
Tk and (k< v). We prove that bisimilarity over this labelled transition system is sound for contextual
equivalence in Section 4 and conversely, that it is complete for contextual equivalence in Section 5.
We conclude in Section 6 with some closing remarks.

2. Higher-order ttcalculus

Except for small changes in notation the language is as can be found in [13] with three main differ-
ences:

(1) We assume two distinct countably infinite sets of identifiers, 9 and A/, for variables and
channel names respectively. In general we will use X,y,zto range over variables and a,b,c
to range over channel names. This variable/name distinction makes the algebraic properties

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 3

T,U .= Value Types
: Unit type
ch[T] Channel type
T—o Abstraction type
Z Type variable
recZ.T Recursive type
PQ = Terms
V-W Application
v(x: T)P Input
v(w)P Output
if v=wthen Pelse Q Matching
v(a:T).(P) Name creation
P|lQ Concurrency
*P Repetition
0 Termination
Vv, W= Values
Unit value
a Channel name
X Variable
(x:T)P Abstractions

Figure 1: The Syntax

of the language a little cleaner and we are confident that the techniques proposed here would
also be applicable if we identified these sets.

(2) Since we have adopted a variable/name distinction, we have used Honda and Yoshida’s
definition of observational equivalence [6] in Section 2.4 rather than Sangiorgi’s. See [2]
for a discussion of this issue.

(3) We allow communication of channel names as well as process abstractions so that there is
a core Tecalculus as a direct subcalculus of HOTU

2.1. Syntax

We present the syntax of HOTtin Figure 1. The grammar of types for values includes:
e (-): asingleton type just containing the value (-).

e ch[T]: the type of channels which can be used for communicating data of type T. Note that
in this paper we are not considering input-only or output-only channels.

e T — o: the type of an abstraction (x: T)P. Such an abstraction can be applied to a value v
of type T to return a well-typed process P[v/x].

4 A. JEFFREY AND J. RATHKE

e Z and recZ.T: these allow recursive types, such as the type for monomorphic Te-calculus
channels recZ.ch[Z]. We require Z to be guarded: any free occurrence of Z lies within a
subexpression of T of the form ch[U] orU — o.

The grammar of process terms includes:

e v-w: the application of abstraction v to argument w. During execution, v will be instantiated
by an abstraction of the form (x: T)P, and (-reduction will give the process P[w/Xx].

e v(x: T)Pand v(w)P, which are the standard synchronous input and output of the Te-calculus,
except that since abstractions are first-class values, we can communicate higher-order data
as well as first-order data.

e if v=wthen P else Q: an equality test on values, where the type system will ensure that v
and w are channels, and so we will never compare abstractions for syntactic identity.

ev(@:T).(P), P|| Q, xP and 0: the standard Te-calculus processes for channel generation,
concurrency, replication and termination.

The grammar of values includes:
e (-): the only value of type (-).
e aand x: channel names and variables respectively.

e (x:T)P: an abstraction, which can be applied to a value v to return a process P[v/x]. Since
abstractions are considered first-class values, they can be communicated on channels, or
passed as arguments to other abstractions. This feature gives HOTtits higher-order power.

2.2. Reduction semantics

The reduction semantics for the language is defined in a standard manner: we first introduce the
evaluation contexts

Ex=[-]]| E|IP | va.E
Structural equivalence, = is defined to be the least congruence with respect to £ contexts such that
it makes (||,0) into a commutative monoid and moreover satisfies

va.(P[|Q) = va.P||Q if a ¢ fn(P)
*P = P[P
We will now consider processes up to structural equivalence throughout the remainder. We define

the reduction relation — as the least precongruence with respect to E contexts such that the
following axioms hold

(comm) a(V)P || a(x)Q — Pl (Q-v
(B—redn) (X)P-v — Plv/X

(cond—tt) ifa=athenPelseQ — P

(cond—ff) ifa=bthenPelseQ — Q (a#b)

In a standard notation we write == to denote the reflexive, transitive closure of — .

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 5

rvy=T Mx:TEP FEv:T Tr~inU
Me-:- FrEv:T FrEx:T)P:T =90 Mr=v:u

MFv:ch[T],w:ch[T]
r-pP r-Q ra:THP r-PQ
I if v=wthen Pelse Q FEv@@:T).(P) Fr=P|IQ, xR, 0

FrEv:T—o TFEwW:T MX:TEP TFv:ich[T] NP FEw:T T Evich(T]
r-v-w FEv(x:T)P I Ev(w)P

Figure 2: The Typing Rules

2.3. Type system

We introduce a simple type system for the language which comprises types for channels and ab-
stractions, together with recursive types. To allow us to infer recursive types for terms we make use
of type isomorphism. We define this by letting ~; be the least congruence on types which includes

recZ.T ~ig T[recZ.T /Z]

A type environment I is a finite set of mappings from identifiers (channel names or variables) to
types with the restriction that channel names a must be mapped to channel types of the form ch[T].
We write I',n: T to represent the environment made up of the disjoint union of I" and the mapping
nto T. We will call an environment closed if it contains mappings of channel names only and will
write A to indicate this. Type inference rules for the calculus are given in Figure 2. We will call a
well-typed process, P, closed if it can be typed as A+ P for some closed A. It is easily shown that
subject reduction holds for closed terms for the reduction relation and type inference system given.

2.4. Contextual equivalence

We will now define an appropriate notion of behavioural equivalence based on contexts and barbs.
Contexts are defined by extending the syntax of processes by allowing typed holes [-r] in
terms. The type inference system is extended to contexts by using the rule

We write CJ] to denote contexts with at most one hole and C[P] for the term which results from
substituting P into the hole.

For any given channel name a such that A a: ch[-] we write A |= P |} a if there exists some
P',P" such that P—=—= vA' . (a(-)P" || P') witha ¢ A".

We use type-indexed families of relations { ®a } between closed process terms to describe equiv-
alence. We will write R to refer to the whole family of relations and

AEPRQ

6 A. JEFFREY AND J. RATHKE

to indicate that P and Q are well-typed with respect to A and related by Ra. For general process
terms we define the open extension R ° of a typed relation R as

AX i Th, X T EPRCQ
holds if for every A’ disjoint from A and every v; such that A,A’ - v; : T; (for 1 < i < n) we have
AN = PVa, .. Vn/X1, .. X0 R Q[Ve, ..., Vn/X1,- . -, Xn]
Note that, in general, for closed terms A =P K Q is not equivalent to A =P R ° Q as X° enjoys the
weakening property that A, A’ =P R° Q whenever A = P R° Q, even when R does not. However,
the contextual equivalence which we study in this paper is defined as an open extension and therefore
will satisfy this weakening.
There are a number of properties of type-indexed relations that we must define:

Symmetry:: Atype-indexed relation & is symmetric whenever A =P R QimpliesA=Q R P.
Reduction closure:: A type-indexed relation & is reduction-closed whenever A =P K Qand
P — P’ implies there exists some Q' suchthat Q== Q' and AP R Q.

Contextuality:: Atype-indexed relation & is contextual whenever '’ =P R°Qand ' - C[-/]
implies I' = C[P] R° C[Q].
Barb preservation:: A type-indexed relation & is barb-preserving if A=P X QandA=PJla

impliesAEQJ a
Definition 2.1 (Contextual equivalence). Let 2 be the open extension of the largest type-indexed
relation which is symmetric, reduction-closed, contextual and barb-preserving. m|

For technical convenience it will be useful to work with a lighter definition of contextuality.
We say that a relation R is ||-contextual if it is preserved by all contexts of the form [-1] || Rand we
let =, denote the open extension of the largest typed relation over processes which is symmetric,
||-contextual, reduction-closed and barb-preserving. The following lemma demonstrates that this
lighter definition is sufficient.

Lemma 2.2 (Context lemma). ' =P=Q ifandonlyif TE=P=,Q
Proof. In Appendix A. L]

3. Full abstraction

In this section, we will present a bisimulation equivalence for HOTt, and show that this equivalence
is fully abstract for contextual equivalence.

3.1. Labelled transitions

We will use a labelled transition system to characterize = over higher-order Tecalculus terms. The
style of the labelled transition system differs a little from previous transition systems offered for
HOTt Most notably, the nodes of the transition system are described using an augmented syntax
rather than process terms alone. Specifically, for each k drawn from a countable set of names
disjoint from A and ¥/, we introduce two new operators:

Tk and (k<= V)

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 7

with the intuitive reading that T is an indirect reference to an abstraction and (k <= v) stores the ab-
straction to which k refers so that access to v is provided through interaction with k. The augmented
syntax for nodes is given the grammar of configurations C obtained by extending Figure 1 with:

v = ...(asFigurel)... | 1

C = P | (k«<v) | va:T.(C) | C|C
We impose a syntactic restriction on the augmented syntax so that in any configuration C for any
given k then (k < v) appears at most once in C. Structural equivalence and reduction lift to C in

the obvious manner — note that there are no reduction rules given for 1 and (k <= v) though. We
augment the type rules by considering judgements of the form

M okv:T and M orC

where © represents a set of mappings from reference names to types T. The rules in Figure 2 are
easily decorated with the extra © environment. The further rules required are given by

Ok =T Ok =T I;0FVIT—>0o
M oFnw:T—o M, OF(k<v)

Nodes of our labelled transition system then are well-typed closed terms of the augmented language
of the form

(A; ©FC)

The transitions are of the form (A; © +C) N (A; ©FC)or (A; ©FC) = (A; ©F C) where
visible labels a are given by the grammar:

a == va.o | vk.d(t)! | vk.d(t)? | d(W)? | d(v)!

where write d to mean either a channel name a or an indirect reference name k. The transitions are
presented in Figures 3,4,5. The intuition for these transitions is (eliding types for readability):

o P a—<v>—7> P': indicates that P is prepared to input a value v on channel a and then perform as

P'. The type system enforces that v is a first-order value, and not an abstraction. Moreover,
in this case both a and v are pre-existing values, and were not generated fresh for this

transition.

k(v)?
o P —@) P': indicates that P has provided a named abstraction reference k to the environment,

and that the environment is calling the abstraction with pre-existing argument v.

e P M P': indicates that P is prepared to input a fresh channel b on channel a and then

perform as P’. This is the same as P ﬂ P’, except that b is now a fresh channel generated
by the environment, and has not been seen before by the process.

b.k(b)?
o P u)—> P': indicates that P has provided a named abstraction reference k to the environ-
ment, and that the environment is calling the abstraction with fresh argument b.

la(t)? o . . .
e P % P': indicates that P is prepared to input an abstraction | on channel a and then

perform as P’. In this case, we do not record the abstraction itself in the label, but instead
we just generate a fresh reference | to the abstraction.

o P W—I((T'E) P': indicates that P has provided a named abstraction reference k to the environ-

ment, and that the environment is calling that abstraction with argument I. In this case, k
must be a higher-order abstraction, so is expecting an abstraction as an argument. Rather

8 A. JEFFREY AND J. RATHKE

than recording the abstraction itself in the label, we instead generate a fresh reference | to
the abstraction.

e Each of the above input transitions has a dual output transition, where the role of the process
and environment are exchanged.

We write o to denote the complement of an action a, which is defined to be the action o with the
input/output annotation inversed. We will often write == to mean the reflexive transitive closure

of — and q:> to mean == —» = . The following proposition states that the labelled
transition system is well-defined in the sense that the transition relation only relates well-typed
terms.

Proposition 3.1. If A; ©+-Cand (A; ©FC) N (AL 0,0 FC) then AN ; ©,0 HCis a
valid typing judgement.

Proof. Straightforward induction.]

3.2. Bisimilarity
We use a standard definition of (weak) bisimilarity to provide our characterisation of = for HOTT

Definition 3.2. We call a symmetric relation, &, between nodes of the labelled transition system a
bisimulation if whenever (n,m) € R we have

e n — 1 implies there exists some nY such that m==> ' and (n',m) eR

o N implies there exists some m' such that m— m and (n,m) eR
Let bisimulation equivalence, or bisimilarity, = be the largest bisimulation relation. m|
We will write
A;©C=x~D
to mean that A; © FC and A ; © F D are valid typing judgements and moreover, they are related
by = as nodes of the Its. In order to provide a bisimulation characterisation of = over HOTtwe will
consider a subrelation of = by restricting our attention to nodes of the form
(A FP)
whose terms are clearly definable in HOTt We will simply write (when © is empty)
AEP=Q
to indicate bisimilarity between such terms of HOTt considered as nodes of the labelled transition
system.

3.3. Soundness of bisimilarity for contextual equivalence

We need to demonstrate that bisimilarity implies contextual equivalence for all HOTt processes.
In particular, because of Lemma 2.2, we need only show that bisimilarity is contained in some
symmetric, reduction-closed, barb preserving and ||-contextual relation. The key to achieving this
is to study the ||-context closure of bisimilarity. If we can demonstrate that this is reduction-closed
then we have our result. To do this we must establish a decomposition theorem for interactions. For
instance, if P and Q are bisimilar and we compose each of them with a process R then suppose

PIR—S

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED

cC—C (A; OFC) = (A"; @ FC)

.,
(A; OFC) 5 (A; OFC) (A;OFC| D) S (A ; ©+C'|| D)
(Aa:T;0+C) S (Aa T,A; 0,0 +C) (a¢f(a))

(A; OFva:T.C) 5 (AN ;0,0 Fva:T.C)

LY

(Ab:T;OFC) 25
(A; ©Fvb:T.C) 220

(B,b:T;OFC) (d#£b)
WaB A b:T:OFC)

Bb:T:0r-C) ¥ Ab:T;0FC) (d#b)
;0rc) 2 aAp: T 0FC)

Figure 3: Structural labelled transition rules

TN|g)U_>0
(B OFax: T)P) 22T (A @k: Uk (x: T)P i)

B 0F (kev) 2T Ao THY-T || (ke)

A;OFVIT =0
ZEL (8 0k TH (ke v) | P)

(A; OF a(v)P)

O(K) ~igg T — ¢
MKIR (A 0,1 TH (I < V)

(A; OF1¢-v) —5

Figure 4: Basic higher-order labelled transition rules

A v: T abase type
@;orax:T)IP) 25 (a: oF (x: T)P-v)

O(k)=T AFw:T abase type
B 0F kev) M A oFv-w|| (kev)

At v:T abase type

@ oravP) X (a: orP)

O(k)=T T abase type
(A; OF 1¢-V) LLUA (A; ©F0)

Figure 5: Basic first-order labelled transition rules

10 A. JEFFREY AND J. RATHKE

represents an interaction between P and R. We decompose this into complementary actions
PLP and RSHR

respectively. Note however that Sis not necessarily obtained by a parallel composition of the targets

of the transitions: P’ || R. Instead, P’ and R' may contain indirect references and their corresponding

resources. These need to be matched up correctly to obtain S. We achieve this by introducing the

merge (partial) operator ((-)) which will match up these terms and replace every indirect reference
to an abstraction with the abstraction itself. We write

Clv/td

to denote the substitution of the value v for every instance of the indirect reference 1. We define
((C)) then as the operator on terms of the augmented syntax (up to =) such that

(cy = C if C doesn’t contain (k < v) for any k,v
(v@:T).((k=w [C)) = (v(@:T).(Cv/ul)) ifrgv

Intuitively, this says that we substitute any values stored at a (k <= v) through for the corresponding
Tk. Note that this need not substitute for all the indirect reference identifiers in C. It is clear that the
above definitions are only partial. For example, if C contains an occurrence of (k <= v) for which
Tk occurs in v, then ((C)) is undefined. In order to identify for which terms the merge is defined we
make use of the notion of reference graph: For a term C we define the graph rg(C) to be the graph
which has nodes as the indirect reference identifiers k in C and edges

kil if yev for (ke<v) in C

Proposition 3.3. ((-)) is a well-defined partial function such that ((C)) is defined if and only if rg(C)
is acyclic.

Proof. Given in Appendix B. O
Lemma 3.4 (Composition/Decomposition). ForA; ©@+C,D
(i) If (C| D)) =E and
B 0FC) S (0,0 0,0 FC) and (A;0FD) S (AN 0,0 D)
then there exists a E’ such that E == E’ and ((vA'.(C' || D'))) =E’
(ii) If ((C)) =E and C — C' then there exists a E’ such that E — E’ and ((C')) = E'
(iii) If {(C || D)) = E and E — E' then one of the following hold
C — C'with (C' | D)) = F’
or D — D' with ((C|| D)) = E' -
a

or (A; OFC) = (AA; 0,0 FC')and (A; OF D) == (A,A'; ©,0 F D') with
{(va' . (C'|| D)) = E'.

Proof. Part (ii) is straightforward as the merge operator (()) simply removes subterm of the form
(k < v), which can’t be involved in reductions, and substitutes higher-order values through for
variables of higher-order type. Reductions are based on structure alone except for the conditionals
which can be affected by first-order substitutions of channel names only.

To show (i) we must consider all the possible cases for a. By symmetry there are four distinct
pairs of complementary actions. We only consider the cases where a is vk.a(tk)? and vl . k(1;)? as
the first-order actions can be treated similarly.

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 11

vk.a(tg)?

Case: A; OFC—5A;0,k:UFC'andA; ©FD —5
we see that
-C=vA' . (a(x: T)P| C") with T ~iggU — ¢
-C'=vA . (x:T)P-1¢ || C")
- D=vA". (a(v)Q || D)
-D'=vA".((k<V) || Q| D")

It is easy to see that ((C|| D)) — ((vA,A".((x:T)P-v||C"| Q| D"))) let us call the target
of this reduction E’. We simply need to check

vk.a(tg)!

A; ©,k:U + D'. By inspection

E' = (vA,A". ((x:T)P-v|C" | Q[D"))
(tk € V) = ((VIA'-((IX1T)P'Tk | C") [[vA". ((k<=v) | QI D))
= (C'|| D)
Case: A: OFC MM A @1 THC andA: ©FD 2X"S A @1 THD. Again, by

inspection we see that

-C=VvA'. ((k<v) ||C)

-C'=vA.(v-1y || (kv ||C)

- D=vA". (1x-w| D)

- D'=vA". ((l w) || D")
Note that the previous proposition tells us that rg(C || D) must be acyclic — in particular,
Tk ¢ V. Here we see that

{C1 Dy (o', 4" ((k <= v) || C" || - w || D")))
(o', 4" ((k <= v) || C" || v-w]| D")))
EEVA’ A" ((k=v) |IC" [v-1 [(I = w) [D))

c' D)

(kg V)
(u ¢ v,w,C",D")

So by letting E’ be ((C' || D)) we note that ((C || D)) == E’ as required.

To show (iii) we suppose ((C || D)) = E and that E — E’. We must consider all possible ways
in which this reduction can occur. If the reduction arises from a conditional then it is clear that we
must have C — C' or D — D’ for some C' or D’. Moreover it is easy to check that ((C' || D)) (resp
((C|| D'))) = E'. There are two more possibilities to consider:

Case: the reduction arises from a B-reduction. In this case either C — C’ or D — D’ as above and
the result follows easily, or vis (x: U)P and
- C=VA (1 w] C") with all names in A’ appearing in w
- D=vA" . ((k<v) | D" with ¢V
- E'=((vA",A". (Plw/x] | C" || (k<= V) || D")))
or a symmetric version of these with the roles of C and D reversed. So we notice that if
U ~ijxn T — ¢, we have
VLk(T))! , VLk(T)? /
A, OFC——=A;0,1:TEC and A;OFD=—=A;0,1:TFD
where C' = VA", ({(I < w) ||C") and D' = vA" . (P[t;/X] || (k< V) || D”). We check:
{(c' o (v ((I = w) || C") || vA". (P[t/X]) || (k<= V) || D"))
(v, A" (C" || Plw/x] || (k<= v) [| D")))
EI

(u ¢ v,w,C",D")

12 A. JEFFREY AND J. RATHKE

as required. Alternatively, it could be that U is a base type, in which case

! k(w
A orCc MU AN - ad A 0FD I AN OFD

where C'=C" and D' = VA" . (P[w/X] || (k<= V) || D”). Itiseasy to check that ((C' || D')) = E’
as required.

Case: the reduction arises from communication. Again we see that either C — C' or D — D', in

which case we easily obtain the result, or

- C=vA' . (a(v)P || C")

- D=vA".(a(x: T)Q| D"

- E'= (A" (P C") | vA". ((x: T)Q-v| D")))
or a symmetric version of this with the roles of C and D reversed. Again we must consider
whether the type T is a base type or higher-order. We omit the details of the former case.
Suppose thenthat A; O v: T ~jx U — o we know

vk.a{Tk)! vk.a(ty)?

A;OFC—/LA;0,k:UFC and A;OFD /5 A;0,k:UFD
where C' = VA" ((k<=V) || P||C") and D' =vA" . ((x: T)Q- 1k || D"). We check:

(€D = (va.((kev) || P[CY) || vA". ((x: T)Q-Ti || D))
(¢ wP.C",D") = g,vA',A". (P[C" || (x: T)Q-v]| D")))
as required. L]

Definition 3.5. Let ~, be defined to be
A; ©F= ((Cy || D)) =m{(C, || D)) ifandonlyif A;©®EC;=C, and A;©FD
whenever ((Cy || D)) and ((C; || D)) are defined. O

Note that in the case where © is empty we have that ((C; || D)) = C; || D, and hence ~m, and =,
coincide.

Lemma 3.6. ~p, is reduction-closed.

Proof. Follows easily from the previous lemma. Take A; © = ((C1 || D)) =~m {(C2 || D)) and suppose
{((C1 || D)) — E. We must show that ((C; || D)) — E’ for some E’ suchthat A; © = E =~y E'. We
know from Part (iii) of the previous lemma that one of three cases must hold. Either, C; — Cf,

D — D’ or there are complementary actions from both C; and D. We only deal with the last case
as the others follow easily from the hypothesis that A ; © |= C1 = C, and Part (ii) of the previous
lemma. _

We have then that A; ©FC; == AA'; ©,0/ FCLandA; ©F D == A,A'; ©,0 - D' such
that E = ((C] || D’)). We know by hypothesis that there must exist some

A;OFC, == AN ; 0,0'+C)
such that
AL ;0,0 EC G (1)

We can now use Parts (i) and (ii) of the previous lemma to see that {(C || D)) == E’ such that
= ((C, || D’)). Note that (T) guarantees A ; © |= E =, E’ to finish.]

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 13

Theorem 3.7. For all closed terms P, Q of HOTT
AEP~Q implies AEP=,Q
Proof. We let ~, denote the relation
AN = (PR ~p (Q| R iffA=P~Qand A A R
It is easy to see that ~, is a ||-contextual relation over terms of HOTU It is also easy to see that ~
is symmetric and barb preserving and coincides with ~, for closed terms of HOTt, thus Lemma 3.6
can be instantiated to demonstrate that =, is reduction-closed and, given that =, is defined to be the

largest symmetric, ||-contextual, reduction-closed, and barb-preserving relation over terms of HOTT,
then we have our result. (]

Corollary 3.8 (Soundness). For all terms P,Q of HOTT
FrEP=°Q impliess MT=EP=Q

Proof. Follows from the previous theorem and Lemma 2.2. L]

3.4. Completeness of bisimilarity for contextual equivalence

The interactions described by the labelled transition system are not obviously derived by genuine
contextual observations in HOTt because of the use of the extra syntax for indirect references. In
order to show completeness of our bisimilarity for contextual equivalence we must demonstrate that
the indirect references are in fact definable as terms of the language proper. Following Sangiorgi
[13], we implement the implicit protocol outlined by the indirect references by using the following
translation of the augmented terms into HOTT

[[kl . T]_,...,kn . Tn]] = Kki: Ch[Tl],...,kn . Ch[Tn]
[F;ekC] = T,[e]+[Cle
[te = (X:T)k(x)0 ifok) =T

[ke=vile = +k[Vie
The translation acts homomaorphically on all other terms. We abuse notation here by using identifiers
k as channel names in the translation. It is evident that this translation is well-defined in the sense
that the translation of well-typed augmented terms are indeed well-typed terms of HOTU

We would now like to prove a correspondence between reductions from the terms of the aug-

mented syntax and reductions between their translations. However, we note that in translating a term
containing both (k <= v) and tx we provide matching input and output prefixes, which, in HOTtmay
create a communication which was not possible in the source term. This turns out not to be of par-
ticular concern to us though as we see that if we starting with terms of HOTt, then terms reachable
by transitions are balanced in the following sense: we call a term C of the augmented language
balanced if for each k then C contains at most one of Ty (possible multiple times) or (k < v). Un-
fortunately the translation may introduce extra reductions which aren’t present in the source term.
These arise through the translation of terms of the form Ty - v. Note that

[t-V] = (X: T)k({x)0- V] N k([[V])0
but T - v has no corresponding reduction. We will identify these rogue reductions as housekeeping

reductions and indicate them with — defined as any reduction which can be derived using the
axiom
(h —redn) (x: Tk(x)0-v — k(v)0

14 A. JEFFREY AND J. RATHKE

Lemma3.9. If A; ©F Cis balanced then
(1) IfC== C' then [CJlo = [CJo
(2) If [Clo == P then [C]lo = [DJo 2% P for some A ; © F D such that C == D,

Proof. We will omit mention of the environment © in the proof as it plays no role. Part 1 is straight-
forward. For Part 2 we use induction on the length of the reductions. If there are no reductions

then we are done. We examine the base case in which [[C] — P. If this reduction happens to be a
housekeeping move, that is, [[C]] " P then there is nothing to prove. Suppose otherwise, then it is

not too difficult to check that P = [[D]] for some D such that C — D. For the inductive case suppose
that

]l - =P (1)
By inspecting the translation [[-]] and using the fact that C is balanced we see that
€] —»Q implies [C] — 50Q
thus we may assume that the first reduction in (t) above is not of the form P . This means that

[C]] — [C'] == P for some C’ such that C — C'. It is clear that C' is also balanced so we may
apply the inductive hypothesis to

[Cl=P
to obtain a D such that C' = D’ and [[C'] = [D] 2+ P, putting these together we obtain
C—»C=D and [C] —[C]==[D]>*P
as required. L]
When A’ is of length at most one, we shall write &(A’) as shorthand, defined:
o(0) =0() o(a:T)=2d(a)

Moreover, note that whenever (A; © - D) = (AN ©,0 D), we have that A’ has at length
most one, and so &(A’) is well-defined.

Proposition 3.10. For each a,A and fresh channels 8,8’ of appropriate type given by o and A, there
exists a process ‘72 (defined in Figure 6) in HOTtsuch that if
A;OFC S AN ;0,0 -C

then

A, [©,07,5: ch[To],8 : ch[-] - T
and moreover, for balanced D

(A; OF D) = (AN ; ©,0' D)
ifand only if A; ©F+ D and

TPl Do == v’ (3() | P) with [D'Joo " P.

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 15

Proof. It is straightforward to check that A, [©,0'],8: ch[To],& : ch[-] - 72 whenever
A;OFC S AN 0,0 C.
For the remainder, to show the ‘only if” direction we use Lemma 3.9 Part 1 to reduce our obligation
to the case of a single transition %, and we must consider each label a. By way of example we
show the case for a = vl . k(t;)! (the other cases can be treated similarly). Suppose:
(A; OFD) 5 (A; ©,1:U D).
then we know that
D=vA". (tk-v]|| D")
and
D' =vA".({I < V) || D").
We see that for T ~joU — ¢
T [Dle = kx:T)((y: Uy (B)@8() || va". ((z: T)k(Z0) - [Ve || [D"]e)

— (8 @) [vAa". (xI(y:U)[V]e-y |l [D"]e)

= &() | [D'esu
as required.

For the converse direction we suppose that
71 || [D]o == va . (3() || P)

Again, we must perform a case analysis on a. We show the case in which a is vl . k(t|)? (the other

cases can be treated similarly). We know A’ is empty so QZ,A’[[OH || [Dle == &() || P. Note that
78190 has no reductions of its own and can only interact with [D] e so we can detail the assumed
reductions as

T | [Dle = T | R0 — (B) @8() | PL==3() || P

where [D] == P, and P, == P. We assumed that D is balanced so Lemma 3.9 Part 2 applied to

[D]] == Py tells us that [D] == [Do]le LA P, for some Dg such that D —= Dg. We know that
Po is obtained from [Do]e by housekeeping reductions and that it interacts with 72, This tells us
that we must have the forms

Po=VvA". (xk[V]e || Pp)
and

PL=VvA". (Ve [ulle)u Il *k[Vle || Po)

This in turn tells us that

Do=VvA".((k< V) | Dp)

such that [Dglle Ay Py. Now it is clear that

(A; ©F Do) XM (A @,1:U) FDy)

16 A. JEFFREY AND J. RATHKE

Ti> = AW @)

{Z;j%v)! = d(x:T)if x=vthen (3)®d()) else 0 where A(d) = ch[T]

Toaiwy> = VO T.(d{b)(3(b) ®3'())) where A(d) = ch[T]

‘Z;%d@! = d(x: T)if x¢ Athen (0(x) ®d()) else 0 where A(d) = ch[T]

‘Z;?(_d<Tk)? = d({(x:U)k(x)0)(3() ® &'()) where A(d) = ch[T]and T ~jgpU — ¢
‘Z:,ﬁd“k)! = dx:T)(xl(y:U)x-y]| (8() @ d'())) where A(d) = ch[T]and T ~ijx U — o

@ represents an encoding of internal choice in HOTt
if X¢ 0then Pelse Q=P
if X¢ (a:T,A) then Pelse Q=if Xx=athen Qelse if X¢ A then P else Q

Figure 6: Testing processes for labelled transitions

where D; = VA" . (v-1; || (k< V)

| Dg). We check

Dideju = vA".(Me-[ulesu || +KIV] || [DhJe)
P v (Vie- [tilesu || #KIV] || P)
= Pl
= P

Therefore [D4]] == P and we can apply Lemma 3.9 Part 2 to this to see that [D1]] == [D'] Axp
for some D’ such that D; == D’. By collecting the above together we obtain

(A; OF D) == (A; OF Do) — (A; ©,1 :UFDy) = (A; ©,1 :U D)
with [D'Je,:u D pas required.]

Lemma 3.11 (Extrusion). If Aj=VvA'. (8(A") || P) =, VA". (3(4) || Q) then A, A" =P =, Q
Proof. Follows a similar argument found in [7]: define a relation & such that
ANEPRQ iff AREvAL(3(A) | P)=pva". (3(A) || Q)

and show that R is barb-preserving, reduction-closed and ||-contextual. These properties follow
from the corresponding property for 22, and an extra piece of context to interact with 6(A’).]

Theorem 3.12 (Completeness). For all closed terms P,Q of HOTt
AEP=,Q impliess AEP=xQ
Proof. We define & over terms of the augmented language to be
A;©FCRKRD iff AO]=[Clo=p[Dlo

and show that & is a bisimulation. Take A; © = C & D and suppose that

(A;0HC) S (AN ;0,0 HC).
We know from Proposition 3.10 that

A,[0,0'],8: ch[To), & : ch[] - 7!

and that

71| [Clo = v&v. (5(8) || P)

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 17

with [C'Jee A% P, We know that
A, [9] = [Cle =p [Dlle
by the definition of &, and hence, by contextuality we also have
A,[0,0'],8: ch[Tg], 8 : ch[] = TV || [Clo 22, %) || [D]lo
This tells us that
%2 | [DJlo — @
such that
A [0, v . (3(A) | P)=p Q. (1)
But by the construction of ‘Z{,A’[[@]] we notice that vA'. (3(4') || P) barbs on & but not on &'. Therefore,
by the preservation of barbs property of =, we know that Q' must also barb on & but not on &'. This
constrains Q' so that Q' = vA'. (3(A') || Q). We apply Lemma 3.9 Part 2 to gAMel | [Dle = Q
to see that there is some D" such that 71! || [D]o == [D"Jo.o * vA'. (3(&) || Q) from which
it clearly follows that D" = vA'. (8(A') || D’) and [D']e,e 2 Q. We use Proposition 3.10 again to
see that
(A; OF D) = (AN ; ©,0' D)
and we now must show that A,A’ ; ©,0 =C' ® D'. To do this we use Lemma 3.11 on (1) (note
that Q' = vA'. (&(4) || Q)) to see that A,A,[©,0'] = P =, Q. Itis also easy to check that h-
reductions are confluent with respect to all other reductions and hence preserve contextual equiva-
lence, that is —h>*g%p, so we also have A,A',[[0,0] = [C'loe =p [D']o,e because [C'o e Dep
and [D'Jee P Q. This allows us to conclude A, A’ ; ©, = C' R D’ as required.
We must also consider transitions of the form
(A; OFC) = (AL ;0,0 -C).
These can be dealt with as above but in this case no 72 is needed. U]

Corollary 3.13 (Full abstraction). For all terms P,Q of HOTtT
reP=°Q ifandonlyif TEP~Q

Proof. Follows from Corollary 3.8, Lemma 2.2, and the previous theorem. L]

4. Concluding remarks

We have re-examined the use of labelled transitions to characterise contextual equivalence in the
higher-order 1tcalculus. The technique of augmenting the core syntax with extra operators to assist
in the definition of the labelled transitions allows use to give a direct proof of soundness of bisimi-
larity for contextual equivalence. This advances Sangiorgi’s analagous result by allowing recursive
types also.

We believe that the technique of using extra operators to describe the points of interaction with
the environment in the lts is fairly robust and should be applicable to many higher-order languages.
Indeed, this was the approach that the authors developed for their work on concurrent objects [8].

We have only concerned ourselves with the characterisation of contextual equivalence in HOTtand
so far have not studied Sangiorgi’s translation of higher-order to first-order mobility. Thus, the re-
striction to finite types for his translation is still necessary. It would be interesting to investigate
whether the current work could be of use in removing this type restriction for his translation also.

18 A. JEFFREY AND J. RATHKE

Appendix A. Proof of The Context Lemma

We recall the statement of Lemma 2.2 and detail its proof here.
rN=P=Q ifandonlyif I'=P=,Q.

The force of this lemma is to show that the simplified form of observational testing allowed by =
is sufficient to capture the power of full contextual testing. In order to prove this we essentially need
to show that =, is preserved by the operators of HOTL For the most part, this can be done directly
and is stated in Lemma A.1 below.

Lemma A.l.
(1) FAX:TEP=,QandAkFVv:TthenAl= (X:T)P-vE, (X:T)Q-V.
(2 tAX:TEP=,QandAkFa:ch[T]thenAE=a(x: T)P=,a(x: T)Q.
() FAEP=,Q AF-w:TandAFa:ch[T]then A = a(w)P =, a(w)Q.

(4) TAEPL=,Qrand A= P,=,Qathen A= if v=wthen Py else P> = if v=wthen Q1 else Q».

) Ifp,a:TEP=,QthenAl=v(a:T).(P) =,v(a: T).(Q).
6) FAEP =, QrandAE=P, =2, Qxthen A= Py || P2 =, Q1 || Q.
(7) IfA=P=pQthen A= +P =, xQ.
Proof. The majority of these are straightforward by exhibiting appropriate symmetric, reduction-

closed, ||-contextual, barb-preserving relations. As an example of this we show the case for input
prefixing (Case 2). We define R so that =, C K and moreover

AEax:T)P||RRa(x:T)Q|RforanyAFR (1)
It is clear that R is symmetric, barb-preserving and ||-contextual so if we can show that it is

reduction-closed then we may conclude that & coincides with =, and we have our result.
Suppose that (1) holds and

ax:T)P||R— P
We know then that either R— R and P’ = a(x: T)P || R or the reduction came about by in-
teraction, that is R=vA'. (a(v)R" || R”) with a ¢ A’ and by writing R for R” || R” we have
P'=vA'. (Plv/X || R) for some A,A'Fvand A,A' R If the former is true then we see im-
mediately that

ax:T)QR— ax: T)Q| R

where

AEa(x:T)P|R Ra(x:T)QJ R.
If instead the latter is true then we use the fact that

AX:TEP=,Q

to see that A, A’ = P[v/x] 22, Q[v/x] and note that

a(x: T)Q[|R— vA". (Q[v/X | R)
where (using ||-contextuality and Case 5)

A VA" (Plv/X] || R) = vA'. (Q[v/X] || R)

as required.]

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 19

Notice that there are two particular cases which are not covered by this lemma: application of
a function to, and output of higher-order = -related values (c.f. Corollary A.11). Establishing that
=, is preserved in these cases can be done directly but is a little more involved. We notice that the
property we require in both cases follows immediately from Substitutivity (cf. Corollary A.10) , that
is (ignoring types):

if P2, Qthen R[(X)P/y] =, R[(X)Q/Y].

The remainder of the appendix is devoted to achieving this. The proof follows a very similar scheme
to the proof of Proposition 4.2.6 in [10] but simplified to avoid any use of induction on type as
appeared there.
LemmaA2. IfAF (x:T)P-wthen A= (x: T)P-w=, Plw/X].

In the following we will make use of a “bisimulation up to” argument [12].
Definition A.3. A type-indexed relation R is reduction-closed up to (=, 2p) whenever A|=P X Q
and P — P’ implies there exists some Q' such that Q == Q' and A =P’ R=, Q. O
Lemma A.4. For any type-indexed relation ® which is symmetric, reduction-closed up to (=,),
||-contextual and barb-preserving, K C =,
Definition A.5. We say that x is (un)guarded in P whenever:

(1) if x ¢ P then xis (un)guarded in P,

(2) if x € wthen x is unguarded in x-w,

(3) if v#£ xthen xis guarded in v-w,

(4) xis guarded in v(y: T)P, v(w)P, and if v=w then P else Q, and

(5) if xis (un)guarded in P and Q then x is (un)guarded inv(a: T).(P), P || Qand *P. O
LemmaA.6. Forany A,y: T — o Rwith yguarded in Rand forany AFv: T —oand AFwW: T — o,
if Riv/y] — R then R = R’[v/y] for some R’ and moreover, Rjw/y] — R’[w/y].
Proof. We first observe that as A+ v: T — o it must be the case that v is an abstraction and not
a channel name. From this it is routine to check that the required property holds for the reduction

axioms. Furthermore, if y is guarded in ‘E[P] then y is guarded in P and so the required property is
preserved by reduction in evaluation contexts. O

Lemma A.7. For any P and x we can find Q and y such that x is guarded in Q, y is unguarded in Q
and P = Q[x/y].

Proof. A routine induction on P. []
Lemma A.8 (Unguarded Substitutivity). If A,x: T E=P=,Qand A,y: T —oF Randy is un-
guarded in Rthen A = R[(x: T)P/y] =, R[(x: T)Q/yl.

Proof. We proceed by induction on the structure of R. If y ¢ Rthen the result is immediate. If R is
not of the form v-w, the result follows easily by induction by making use of Lemma A.1. Otherwise,
since y is unguarded in R we must have that R is of the form y-w with y & w. Hence:

AE=R[(x:T)P/y] (x:T)P-w (asR=y-wandy ¢ w)

=, Plw/X (by Lemma A.2)
=, Qw/X (by hypothesis)
=, (x:T)Q-w (by LemmaA.2)

R(x:T)P/y] (asR=y-wandy¢ w).
as required.]

20 A. JEFFREY AND J. RATHKE

Lemma A.9 (Guarded Substitutivity). IfA,x: T =P =, Qand Ay: T — o Randy is guarded
in Rthen A |=R{(x: T)P/y] =, R[(x: T)Q/Y].
Proof. Let R be defined as

AER[(x:T)P/y] R R[(x:T)Q/y] whenever A)y: T — o =R and y is guarded in R

We show that R is symmetric, reduction-closed up to (=, =), ||-contextual, and barb-preserving
and so the result follows by Lemma A.4. Symmetry, ||-contextuality, and barb-preservation are
direct. For reduction-closure up to (=, 2,) we suppose:

R[(x:T)P/y] = R’
By Lemma A.6 we have that R' = R”[(x: T)P/y] and moreover:

RI(x:T)Q/y] = R[(x: T)Q/Y]

We use Lemma A.7 to find a R”" and z such that y is guarded in R", z is unguarded in R"" and
R" = R"|z/y]. Hence:

R' = R'"[(x:T)P/y] (from above)
= R"[(x:T)P/y,(x:T)P/Z (from above)
R R"[(x:T)Q/y,(x:T)P/z (from definition of & and y guarded in R"[(x: T)P/2])
=, R"[(x:T)Q/y,(x:T)Q/Z (from Lemma A.8 and zunguarded in R™[(x: T)Q/y])
= R'[(x:T)Q/y] (from above)
as required. [
Corollary A.10. IfA,x: T =EP=pQandA,y: T — o Rthen AER[(X: T)P/y] =2, R(Xx: T)Q/Y].
Proof. Follows from Lemmas A.7, A.8 and A.9. L]

Corollary A.11.

(1) FAX:TEP=Z,QandAFV:T —wothenAl=v:- (Xx:T)P=,v- (x:T)Q.

(2 TAX:TEP=,Q AFa:ch[T = oland AF Rthen A= a((x: T)P)R=pa((x: T)Q)R.
Proof. Follows from Corollary A.10.]

Proof of Lemma 2.2: The ‘only if’ direction is immediate. For the converse it is sufficient to
show that =, is preserved by each process operator of HOTtas demonstrated by Lemma A.1 and
Corollary A.11. L]

Appendix B. Mergeisa partial function
Proof of Proposition 3.3: We consider the rewriting relation — which we will define as the one-step
rewriting used to define the merge operation:
C » VvV if C doesn’t contain (k < v) for any k,v
v(@:T).((k<w|C) — v(@:T).(Cv/u]) ifgv
It is easy to see that — is a terminating rewriting relation. Moreover, the rewriting will terminate

with a v* from C (so that ((C)) is defined) exactly when rg(C) is acyclic. To see this we consider the
effect of — on reference graphs: for

(k<=v) || C —» Clv/1y]

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER 1-CALCULUS REVISITED 21

the reference graph of (k <= v) || C has the node k removed and any edges such that

1" ki |
for I,1 # k, are replaced with an edge

"

all other edges involving k are removed. So if node k is involved in a cycle before rewriting occurs,
that is

[=" k="
for some |, then either it is a tight loop, that is | = kand k— k, or | # k and the cycle still exist after
rewriting as | —* I. The side-condition on the rewrite rule forbids tight loops hence we see that —
preserves cyclicity. That is:

if C — C' then rg(C) is acyclic if and only if rg(C') is acyclic.
Now, suppose that ((C)) is defined. We know that there exists a finite sequence
C»CL—» - >»Ci—>V
with ((C)) = C,,. We know that rg(Cy) is acyclic as it contains no edges. Thus, rg(C) is acyclic also.
Conversely, suppose that rg(C) is acyclic. Then as — is terminating there must be a finite sequence
C—»CL—»--—>»C,

such that C,, cannot be rewritten. There are two possibilities for this: either rg(Cp) contains a tight
loop, or C, is v'. We see that rg(C) is acyclic, so Cy, is acyclic too and therefore cannot contain a
tight loop. Thus Cy is v and ((C)) is defined.

To show that ((-)) is a well-defined partial function it suffices to show that it is strongly confluent
for acyclic terms. Note that if va: T.(C) — C’ then either C' is v or C' = va: T.(C") such that
C — C". So without loss of generality suppose that

C»C and C—»GC

for
C=Cl|[{(ki<vi) and C=C,| (k<)
so that
C1 =Ci[v1 /1] and Co = Ch[Va/ Tk, -
So either, k; = ky in which case C; = C, or k; # 1, and
Ci=C|(kk<w) and Co=Ch|| (ki< Vi)
We notice that

Q)
S

Ca[va/Th]

(G5l (k2 <= V2)) [v1/Tiq]

Calva/Tig] [I (k2 <= V2[v1/Tiy])

Ca[va/Thy] [V2[V1/Tiy] /Tie
CI3[V1[V2[V1/T|<1]/Tkz]/rklaVZ[Vl/Tkl]/Tkz]

(acyclicity) C[Va[Va/ T, /Ty V2 V1 / T/ Tie]

(dEf) Cs

By a symmetric argument we see that Co — C5[Va[V1/Tk, |/ Tk,, V1[V2/Tk,] / Tk,] @nd, by definition, this

is just Cz so we have C, —» C3. Thus — is strongly confluent for acyclic terms and hence ({-)) is

well-defined.

(acyclicity implies Ty, & Vo[v1 /Ty,])

11T e | R 11

22 A. JEFFREY AND J. RATHKE

References

[1] L. Cardelli and A. Gordon. Mobile ambients. In Proc. Foundations of Software Science and Computation Structures
(FoSSaCs), Lecture Notes in Computer Science. Springer-Verlag, 1998.

[2] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. In Proc. Int. Conf. Automata,
Languages and Programming (ICALP), volume 1443 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[3] C. Fournet, G. Gonthier, J-J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents. In Proc. CONCUR,
volume 1119 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[4] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concurrent and functional programming.
In Proc. TAPSOFT, volume 352 of Lecture Notes in Computer Science, pages 184-209. Springer-Verlag, 1989.

[5] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the presence of subtyping. In Proc.
Computing: the Australasian Theory Symposium (CATS), Electronic Notes in Theoretical Computer Science. Else-
vier, 2002.

[6] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer Science, 152(2):437-486,
1995.

[7] A.S.A Jeffrey and J. Rathke. A theory of bisimulation for a fragment of Concurrent ML with local names. In Proc.
IEEE Symp. Logic in Computer Science (LICS), pages 311-321. Computer Society Press, 2000.

[8] A.S.A Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects. In Proc. IEEE Symp.
Logic in Computer Science (LICS), pages 101-112. Computer Society Press, 2002.

[9] J. Riely and M. Hennessy. A typed language for distributed mobile processes. In Proc. ACM Conf. Principles of
Programming Languages (POPL). ACM Press, 1998.

[10] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis,
University of Edinburgh, 1993.

[11] D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Computation, 131(2):141-178, 1996.

[12] D. Sangiorgi and R. Milner. On the problem of “‘weak bisimulation up to’. In Proc. CONCUR, volume 630 of Lecture
Notes in Computer Science, pages 32-46. Springer-Verlag, 1992.

[13] D. Sangiorgi and D. Walker. The pi-calculus: A Theory of mobile processes. Cambridge University Press, 2001.

[14] B. Thomsen. Calculi for Higher-Order Communicating Systems. PhD thesis, University of London, 1990.

[15] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In Internet Programming Languages,
volume 1686 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

