
Towards a theory of bisimulation for local names

Alan Jeffrey
CTI, DePaul University
243 South Wabash Ave
Chicago IL 60604, USA
ajeffrey@cs.depaul.edu

Julian Rathke
COGS, University of Sussex

Brighton BN1 9QH, UK
julianr@cogs.susx.ac.uk

Extended abstract submitted to LICS 99

Abstract

Pitts and Stark have proposed the ν-calculus as a language for in-
vestigating the interaction of unique name generation and higher-
order functions. They developed a sound model based on logi-
cal relations, but left completeness as an open problem. In this
paper, we develop a complete model based on bisimulation for
a labelled transition system semantics. We show that bisimula-
tion is complete, but not sound, for the ν-calculus. We also show
that by adding assignment to the ν-calculus, bisimulation becomes
sound and complete. The analysis used to obtain this result illumi-
nates the difficulties involved in finding fully abstract models for
ν-calculus proper.

Keywords: semantics, bisimulation, nominal calculi.

1 Introduction

The use of localised information in computing is endemic. In a
workplace, where the prevalence of networks and mobile agents
is increasing, the concepts of private and public data are of great
importance, and the question of how secrecy can be maintained is
a significant one. Issues of privacy are important for notions of
locally defined names such as communication channels [11], ref-
erences [16], encryption keys [4], or locations [5]. Gordon has
described such languages as nominal calculi [7].

To this end, Pitts and Stark introduced the ν-calculus [14, 15, 21]
as a minimal higher-order nominal language, by extending the sim-
ply typed λ-calculus with an abstract type of names, together with
a name generator and an equality test. Even this small language
allows one to model and reason about visibility and scoping quite
thoroughly. In fact, the interaction between locally declared names
and higher-order functions is extremely complex, and at present
there is no known fully abstract model of ν-calculus beyond first-
order types.

In this paper we revisit the ν-calculus of Pitts and Stark and pro-
vide a novel treatment of the semantics of local names using a la-
belled transition systems (lts). In order for the standard notion of
weak bisimulation to be fully abstract for contextual equivalence,
we have:

� For completeness, we show that each transition ���γ � corre-

sponds to a small piece of context Cγ
�
t � such that t ���γ � v iff

Cγ
�
t � ���

v 	�

������� . (We call such lts’s contextual: the notion
that transition labels should correspond to small contexts ap-
pears to be folklore, and has only recently been investigated
formally by Sewell [20].)

� For soundness, we show that bisimulation is a congruence.

We notice that our approach to characterising contextual equiva-
lence is already in sharp contrast to Pitts and Stark. They propose
logical relations as an operational proof technique for establishing
contextual equivalence of ν-calculus terms. The logical relation
can easily be construed as a form of bisimulation on an lts, but the
labels which would have to be used are not contextual—this com-
promises completeness in order to obtain a direct proof of sound-
ness for their technique.

In the case of the λ-calculus, we revisit Gordon [6] and Bern-
stein and Stark’s [1] presentation of an lts semantics of the λ-
calculus. Completeness is routine, and soundness follows by using
Howe’s [10] technique to show bisimulation to be a congruence.

For the ν-calculus, there is a simple extension of the lts for the
λ-calculus to give a semantics for local names, but it transpires that
bisimulation fails to be a congruence. We make explicit the reason
for this failure and argue that the problem arises due to the paucity
of contexts in ν-calculus and that, by extending the base calculus
with more realistic features, the problem dissolves. By ‘more re-
alistic features’ we mean any side-effecting operators which have
the capability to model leaking secrets.

The particular extension we select for study in this paper is
the νref-calculus, given by adding global references which store
names. Leaking a secret name is implemented by assigning it to
a shared reference. We consider this to be a minimal extension
of the language for which our proof techniques are successful. We
demonstrate that bisimulation for the extended language is actually
a congruence and thus achieve a full abstraction result for contex-
tual equivalence.

We would like to thank Karen Bernstein, Matthew Hennessy,
Guy McCusker and Ian Stark for discussions about this paper.

2 λ-calculus

In this section we consider a simply typed call-by-value lambda-
calculus with booleans and pairing.

1

We present the usual small-step reduction semantics, and a slight
modification of Gordon’s [6] and Bernstein and Stark’s [1] labelled
transition system semantics. We then show that bisimulation (de-
fined on the lts semantics) is both sound and complete for contex-
tual equivalence (defined on the reduction semantics).

We show completeness (contextual equivalence implies bisim-
ulation) by observing that each label of the lts semantics corre-
sponds to a small piece of context, and so each lts transition can
be matched by contextual equivalence. This is proof is inspired by
Hennessy’s [8] proofs for may and must testing.

Soundness (bisimulation implies contextual equivalence) fol-
lows immediately once we can show that bisimulation is a congru-
ence. We briefly discuss Gordon’s [6] presentation of Howe’s [10]
technique for this proof, concentrating on the aspect of the proof
which is problematical for the ν-calculus.

2.1 Syntax and type rules

The grammar of types is given by:

σ :: � � ���
����	�
���
� σ � σ � σ � σ

The grammar of values is given by:

v :: � x � � ���

�������������	� ��� � v 	 v ��� λx : σ � t
where x is drawn from some infinite set of variables, and the gram-
mar of terms is given by:

t :: � v � � � v
���� � t �
�	��� t �����
 v ��� �	� v � vv ������
 x � t ��� t

We have taken the liberty of limiting much of the syntax to val-
ues: we can use obvious syntax sugar (in the spirit of Moggi’s [13]
computational monads) to extend these to terms. For example the
term

�
t 	 t � � is defined:

�
t 	 t � �! #"%$�&����
 x � t ��� ����
 x � � t � �'� � x 	 x � �

The type system for this λ-calculus is standard, and is given by
judgements of the form Γ (t : σ where Γ is a type environment of
the form x1 : σ1)�*�+� 	 xn : σn for disjoint x1)�*�+� 	 xn.

2.2 Reduction semantics

We now consider the operational semantics of the λ-calculus, given

as small-step reductions t
τ,

t � . First, we give the atomic rules for
reduction:

� �

��� �
-��� � t ���	��� t � τ,
t� �.�����	� �
-��� � t ���	��� t � τ,
t �

���
 � v 	 v � � τ,
v

� �	� � v 	 v � � τ,
v ��

λx : σ � t � v τ,
t
�
v / x �

����
 x � v �'� t
τ,

t
�
v / x �

then, following Wright and Felleisen [22] we allow reduction in
any evaluation context given by the grammar:

E :: �10
������
 x � E �'� t

with the rule:
t

τ,
t �

E
�
t � τ,

E
�
t � �

Let
�

denote the reflexive, transitive closure of
τ,

.
We can define the usual notion of contextual equivalence: two

terms are considered equivalent whenever there is no boolean con-
text which can distinguish between them: for terms Γ (t : σ and
Γ (t � : σ, we define Γ (t 2 ctx t � : σ if for all closing contexts C of
type �3�
��� , we have C

�
t � �

����� iff C

�
t � � �

����� .

2.3 Labelled transition system semantics

We now introduce a lts semantics for λ-calculus terms.
Reductions are of the form v

γ,
t where the grammar of labels

is given by:

γ :: �

�������4�
���	����� @v ��56�87�9�� ��� �
58��� � ���	� γ � �:� γ
Atomic rules for reductions:

����� ;=<=>@?, � �
�
���	��� A)B=C)DE? , � �

λx : σ � t @v,
t
�
v / x � �

where (v : σ �
diagonal and terminal transitions:

v FEGIH)J , �
v 	 v �

v K)L D=F=BI< K , � �
and inference rules for pair contexts:

v
γ,

t�
v 	 v � � C)M γ, �

t 	 v � �
v � γ,

t ��
v 	 v � � <NM γ, �

v 	 t � �
recalling that

�
t 	 v � and

�
v 	 t � can be defined as syntax sugar using

let.
We can then include the reduction semantics to give reductions

of the form t
α,

t � where:

α :: � τ � γ
Define t � �γ � t � as t

�
v

γ,
t � . Define t � �α̂ � t � as t

�
t � when α

is τ and t � �α � t � otherwise.
A type-indexed relation on terms R is a family of relations RΓ O σ

such that if t RΓ O σ t � then Γ (t : σ and Γ (t � : σ. We shall usually
write Γ P t R t � : σ for t RΓ O σ t � , and often elide the type information
where it is obvious from context.

The open extension R Q of a type-indexed relation on closed terms
R is given by: R � (v : σ �S� � P t

�
v / x � R t � � v / x� : σ �

x : σ P t R Q t � : σ

A simulation is a type-indexed relation on closed terms R such that
the following diagram can be completed:

t1 T R ,
t2

t �1
α U as

t1 T R ,
t2

t �1
α U

T R ,
t �2

α̂V
WWW

2

A strong simulation is a type-indexed relation on closed terms R
such that the following diagram can be completed:

t1 T R ,
t2

t �1
α U as

t1 T R ,
t2

t �1
α U

T R ,
t �2

α U

A (strong) bisimulation is a (strong) simulation whose inverse is a
simulation.

Let 2 be the largest bisimulation, and let � be the largest strong
bisimulation.

2.4 Example

Let not be defined:

not #"%$� λx : �	�
��� � � � x
���� � ��������� ���	���

�����
then one sample reduction of not is:

not � �FEGIH)J � �
not 	 not �

�������C)M@ ;=<=>@?� �
not

�

������� 	 not �
� �τ � � ��������� 	 not �

� ��� � �<NM@ A)B=C)DE?� � ��������� 	 not
� �����	��� � �

� �τ � � ��������� 	�

��� ���
��� �C)M A)B=C#D=?� � � � 	�

�������
�����<�M ;=<E>N?� � � � 	 � � �

showing how not evaluates when applied to
������ or �����	��� .
2.5 Completeness

In this section, we shall show that bisimulation is complete, that is:

if t 2 ctx t � then t 2 Q t �
First we observe that the λ-calculus is deterministic and normaliz-
ing, and so bisimulation and trace equivalence coincide.

We then show that contextual equivalence implies trace equiv-
alence by constructing a context Cγ for each sequence of labels γ
such that such that:

t � �γ � v iff Cγ
�
t � � �

v 	
��������
For example:

C FEG H)J
�
t �)" $� ����
 x � t ��� � � x 	 x � 	�

�������

C C)M γ
�
t �)" $� ����
 � x1 	 x2 � � t�'� ����
 � x �1 	 x �2 � � Cγ

�
x1 ��'� � � x �1 	 x2 � 	 x �2 �

Cγ O γ � � t �)" $� ����
 � x1 	 x2 � � Cγ
�
t ��'� ����
 � x �1 	 x �2 � � Cγ
� � x1 ��'� � x �1 	 x2

�
x �2 �

using some obvious syntax sugar on terms.

Theorem 2.1 (completeness for λ-calculus)
If Γ P t 2 ctx t � : σ then Γ P t 2 Q t � : σ.

2.6 Soundness

In this section, we shall show that bisimulation is sound, that is:

if t 2 Q t � then t 2 ctx t �
This result is immediate from the result that bisimulation is a con-
gruence, for which we adopt Howe’s technique [10], following
Gordon [6].

For any type-indexed relation R, let
�
R be defined such that for

each type rule in the language:

Γ (t : σ
Γ (op

�
t � : σ

we have:
Γ P t R t � : σ

Γ P op
�
t � �R op

�
t � � : σ

For any type-indexed relation R on closed terms, let R � be defined:

t1
�
R � t2 R Q t3
t1 R � t3

Howe’s proof depends first on showing that 2�� is substitutive on
values:

if t1 2�� t2
and v1 2�� v2

then t1
�
v1 / x ��2�� t2

�
v2 / x �

and then showing that 2�� is a bisimulation on closed terms. The
only tricky case is let-β, where we complete:

����
 x � v1
��� t1 T

�2 � , ����
 x � v2
�'� t2 T 2 ,

t3

t1
�
v1 / x �
τ U

as:

����
 x � v1
��� t1 T

�2 � , ����
 x � v2
�'� t2 T 2 ,

t3

t1
�
v1 / x �
τ U

T 2�� ,
t2
�
v2 / x �
τ U

T 2 ,
t �3
V
WWW

which commutes because 2�� is substitutive on values.
From this, it is routine to show that bisimulation is a congruence,

and so is sound.

Theorem 2.2 (soundness for λ-calculus)
If Γ P t 2 Q t � : σ then Γ P t 2 ctx t � : σ.

2.7 Comments

The astute reader will notice that the 58�67�9 and �:� �
56��� � transitions
are redundant in this setting. In fact, it is a well known property of
pure functional languages that ‘operational extensionality’ holds,
that is, contextual equivalence can be verified by using applicative
contexts alone. This does certainly not hold true of the extensions
to the λ-calculus which we will consider later in this paper where
operational extensionality fails.

3

In a similar vein, we notice that the use of �3� and �:� tags rather
than Gordon’s ���
 and � �	� transitions is also unnecessary here
because pairing forms a product on values. In later sections, be-
cause of the presence of side-effects, the pairing operator is no
longer a product, but is symmetric monoidal.

It is an important feature of the transition systems being used
here, and also those of [6, 1] that they are applicative in nature.
That is, any arbitrary pieces of code being carried in the label is
always of lower order type than the term under scrutiny.

3 ν-calculus

We now extend the λ-calculus with unique name generation and
equality testing, in order to investigate Pitts and Stark’s [14] ν-
calculus.

Pitts and Stark have demonstrated that finding a sound and com-
plete semantics for the ν-calculus is a difficult open problem. They
provide a sound (but incomplete) semantics using logical relations.
In this section, we provide an ‘upper bound’ to complement their
‘lower bound’ by presenting a bisimulation which is complete (but
unsound). We observe that our complete bisimulation provides a
hands-on proof method for establishing contextual inequivalence
and allows one to construct distinguishing contexts in a piecemeal
fashion.

3.1 Syntax and type rules

Extend the grammar of types with:

σ :: �10)0#0�� � ��� �
Extend the grammar of values with:

v :: � 0#0)0�� n
Extend the grammar of terms with:

t :: � 0#0#0
� νn � t � v � v

Extend the type judgements Γ (t : σ to include a name context ∆
of the form n1)�*�+� 	 nn for distinct ni, so judgements are now of the
form Γ;∆ (t : σ. The type rules for the new terms are:

Γ;∆ 	 n 	 ∆ �-(n : � ��� � Γ;∆ 	 n (t : σ
Γ;∆ (νn � t : σ

Γ;∆ (v : � ��� � Γ;∆ (v � : � ��� �
Γ;∆ (v � v � : �3�����

The other rules do not change the name context.

3.2 Reduction semantics

Terms no longer reduce to values, instead they now reduce to
prevalues of the form:

p :: � νn � v
Extend the reduction relation with (when n

�� n �):
n � n

τ,

�����
n � n � τ, ���
�	���

Extend the grammar of evaluation contexts by:

E :: � 0#0)0�� νn � E

Replace the let-β reduction rule by:

����
 x � νn � v ��� t
τ, νn � t � v / x �

where we α-convert νn � v if necessary to ensure that none of the
free names in t are captured.

There is an obvious translation from Pitts and Stark’s ν-calculus
into ours (theirs does not include pairing), and it is routine to show
that this translation is adequate.

The definition of contextual equivalence remains the same, ex-
cept that the results of a test can include some private names:
t 2 ctx t � whenever for all closing contexts C of type �	�
��� , we have
C
�
t � � νn �
������ iff C

�
t � � � νn �
�

��� � .

3.3 Labelled transition system semantics

We can no longer define the lts semantics as judgements v
γ ,

t,
for two reasons:
� Terms may reduce down to prevalues now, rather than values,

so transitions should be of the form p
γ,

t.

� One of the allowed transitions allows a private name to be-
come public, and we α-convert the name to ensure it does not
clash with any existing public names. To do this, we carry an
environment of existing public names, so transitions should

be of the form
�
∆ (p � γ , �

∆ 	 ∆ ��(t � . Note that transitions
can add new public names, but not remove any.

We extend the grammar of labels by:

γ :: � 0#0)0�� n � νn �����
��� � � n

These labels can be read as ‘the term announces a public name’,
‘the term announces a private name, and makes it public’, and ‘the
environment announces a new public name’.

A public name can be announced:

�
∆ (n � n, �

∆ (� � �
The environment can invent new public names:

�
∆ (p � � ?=B
	@?�� n, �

∆ 	 n (p �
The context νn �-0 is a reduction context:

�
∆ 	 n (p � γ, �

∆ 	 n 	 ∆ �8(t ��
∆ (νn � p � γ, �

∆ 	 ∆ �6(νn � t �
�
n not in γ �

Private names can announce themselves and become public:

�
∆ 	 n (p � ι M n, �

∆ 	 n (t ��
∆ (νn � p � ι M νn, �

∆ 	 n (t �
where ι � is a sequence of �3� and �!� tags. The side-condition on
application is weakened to allow values to have free public names:

�
∆ (λx : σ � t � @v, �

∆ (t
�
v / x � � �

where ∆ (v : σ �

4

We define the weak reduction
�
∆ (t � � γ � �

∆ �'(t � � whenever t
�

p

and
�
∆ (p � γ, �

∆ �8(t � � . We can then define bisimulation as usual
between configurations

�
∆ (t � .

3.4 Example

Consider the terms:

νn � λx : � ���
 � n �2 λx : � �!�
�� νn � n
These are not bisimilar because the first term has the reduction:

νn � λx : � ���
�� n � �FEGIH)J � νn � � λx : � ���
�� n 	 λx : � ���
�� n �
� � �C@M@ ����

νn � � n 	 λx : � �!�
�� n �
� � �<�M@ ����

νn � � n 	 n �
� �C)M νn� � � � 	 n �
���<NM n� � � � 	 � � �

which the second term can only match:

λx : � �!�
�� νn � n � �FEG H)J � �
λx : � ���
 � νn � n 	 λx : � ���
�� νn � n �

� � �C)M@ ����
νn � � n 	 λx : � ���
�� νn � n �

� � �<NM@ ����
νn � νn �
� � n 	 n � �

���C)M νn�
νn � � � � � 	 n � �

At this point the term cannot match the last � �<�M n � transition per-
formed by the first term because its only move is:

νn � � � � � 	 n � � � �<�M νn
�� � � � 	 � � �

Note that this example relies crucially on the use of 56�87�9 , �3� γ and
�!� γ transitions.

3.5 Completeness

Completeness for the ν-calculus follows in the same way as it does
for the λ-calculus. For any sequence γ we define a context C ∆

γ such
such that:

�
∆ (t � � �γ � �

∆ 	 ∆ �-(νn � v �
iff

�
∆ (C ∆

γ
�
t � � � �

∆ (νn � � ∆ ��	 v 	�

��� ��� �
The only interesting cases are:

C ∆
νn
�
t � #"%$� ����
 x � t����� � x � ∆

���� � � x 	 � � 	 �����������
���	� � � x 	 � � 	�

��� ���

C ∆
γ O γ � � t � #"%$� ����
 � x 	 x1 	 x2 � � C ∆

γ
�
t ���� ����
 � x � 	 x �1 	 x �2 � � C ∆ O x

γ
�
�
x1 ���� � x 	 x � 	 x �1 	 x2

�
x �2 �

using some obvious syntax sugar for terms. The result then follows
as for the λ-calculus.

Theorem 3.1 (completeness for ν-calculus)
If Γ;∆ P t 2 ctx t � : σ then Γ;∆ P t 2 Q t � : σ.

3.6 Lack of soundness

Unfortunately, bisimulation is not sound for the ν-calculus. The
counterexample is from Pitts and Stark [21]. Consider three func-
tions of type

� � ��� � � �	�
��� � � �3����� :

t1)" $� λ f : � ��� �.� �3�
�
�
�

�����
t2)" $� νn � νn � � λ f : � ��� � � �3�
�
�
� f

�
n � � f

�
n � �

t3)" $� νn � λ f : � ��� � � �3����� � νn � � f
�
n � � f

�
n � �

These three terms are all bisimilar, but t2
�2 ctx t3, since the follow-

ing context distinguishes them:

C
� 0 �)" $� ����
 F � 0 ��� F

�
λx : � ��� �
� F � λx � : � ��� ��� x � x � � �

This is the same counterexample that Pitts and Stark use to show
that logical relations are incomplete, since logical relations identify
none of these terms.

Bisimulation is unsound because it is not a congruence. To see
why Howe’s proof fails, we have to observe that the crucial step
in Howe is that 2�� matches let-β reductions. In the ν-calculus we
would have to complete the diagram:

����
 x � ν∆1 � v1
��� t1 T

�2 � , ����
 x � ν∆2 � v2
��� t2 T 2 ,

t3

νn1 � t1 � v1 / x �
τ U

as:

����
 x � ν∆1 � v1
�'� t1 T

�2 � , ����
 x � ν∆2 � v2
��� t2 T 2 ,

t3

νn1 � t1 � v1 / x �
τ U

T ??? , νn2 � t2 � v2 / x �
τ U

T 2 ,
t �3
V
WWW

but in order to complete the diagram we need to know that 2�� is
substitutive on prevalues:

if t1 2�� t2
and νn1 � v1 2�� νn2 � v2

then νn1 � t1 � v1 / x ��2�� νn2 � t2 � v2 / x �
which is not true of the ν-calculus, as witnessed by the counterex-
ample described above.

The best we can manage is to show that bisimulation is sound for
the ν-calculus at first order, by showing that bisimulation coincides
with Pitts and Stark’s logical relation semantics.

Theorem 3.2 (soundness for ν-calculus at first order)
For first order σ, if Γ;∆ P t 2 Q t � : σ then Γ;∆ P t 2 ctx t � : σ.

3.7 Comments

We now consider how our bisimulation compares with logical re-
lations. The example given above serves to demonstrate that logi-
cal relations are strictly finer than bisimulation, and that they only
coincide at first order. The main difference between the two ap-
proaches is the view of privacy they adopted. In the bisimulation

5

approach names are considered private until the secret is leaked
by a νn transition, whereas the logical relations use a more overt
proof method whereby the environment has access to secrets but
can only test using them restrictedly. For terms of first-order type
the test values are of ground type and the restrictions imposed by
the logical relations are strong enough to disallow any testing with
secrets altogether, thus realigning the method with the more covert
approach of bisimulation.

There is also an evident analogue of Sangiorgi’s context bisim-
ulation [18], which could be formulated for the ν-calculus. In
essence, this says that whenever we need to test a λ-abstraction
we must consider its behaviour in every context. This could easily
be formulated in an lts by allowing suitably typed transitions of the

form v
f @,

f
�
v � . This of course, defies our insistence that labels

be applicative because the type of f here must be of higher-order
than v. In fact, bisimulation on such an lts could easily be shown
to be fully abstract but this would, in effect, be no more than a
restatement of the ciu-theorem of [14] following [9].

Although one obvious reason for bisimulation failing to be a
congruence is that the labels in our lts do not provide sufficient
distinguishing power, it is difficult to see how the label set could
be effectively enlarged without using non-applicative values such
as are used for context bisimulation. The problem is terms which
contain shared secrets such as νn � � v1 	 v2 � where the environment
can use v1 in testing v2. One possibility would be to add transitions:

�
v1 	 v2 � @ f @,

v1
�
f
�
v2 � �

together with reductions for the symmetric monoidal structure of
pairing. We speculate that such an lts would provide a fully abstract
semantics, but we leave this as an open problem.

As an alternative, we extend the ν-calculus to include imperative
side-effects, to get the νref-calculus, and show that the extra @v
transitions give us full abstraction. This is the subject of the next
section.

4 νref-calculus

We have shown that bisimulation is complete (but unsound) for the
ν-calculus. In this section we show that adding imperative side-
effects to the language allows us to recover a sound and complete
semantics.

The reason why assignments allows us to recover completeness
is that the counterexamples rely on the fact that n is a ‘secret’ in
terms such as:

λ f : � ��� � � �	�
��� � f
�
n �

despite the fact that some ‘foreign’ code f is being applied to n.
By adding assignment, f can leak the secret name n to the environ-
ment.

We believe that any form of side-effect which allows secrets to
leak like this will make bisimulation sound and complete, for ex-
ample call-cc, communication channels or imperative objects. We
have chosen to investigate assignment as it is the simplest addition
which is still deterministic and terminating.

4.1 Syntax and type rules

Extend the grammar of terms by:

t :: �10)0#0�� r : � v � t � ?r

where r ranges over an infinite set of references. These operations
allow a name to be written to, or read from, a reference.

We introduce a use-def type system which ensures that a refer-
ence is assigned to before it is read. Judgements are now of the
form Γ;∆;Θ (t : σ where Θ is a reference environment of the form
r1)�*�+� 	 rn (not necessarily distinct). The reference environment lists
the names which have been assigned to, and so can be read from.

The new type judgements are:

Γ;∆;Θ (v : � ��� � Γ;∆;Θ 	 r (t : σ
Γ;∆;Θ (r : � v � t : σ Γ;∆;Θ 	 r	 Θ �-(?r : � ��� �

For example, we cannot type:

(λx : σ � ?r

since r has not necessarily been initialized, whereas if we add an
initialization statement for r then we can type:

(� νn � r : � n � λx : σ � ?r � : σ � � ��� �
4.2 Reduction semantics

Prevalues are now terms of the form:

p :: � d � v d �80 :: � νn � r : � n �60
The reduction semantics for the νref-calculus is defined up to a
structural equivalence, following Berry and Boudol’s Chemical
Abstract Machine [2]. Let � be the least equivalence such that:

r : � n � νn � � t � νn � � r : � n � t �
n

�� n � �
r1 : � n1 � r2 : � n2 � t � r2 : � n2 � r1 : � n1 � t �

r1
�� r2 �

r : � n1 � r : � n2 � t � r : � n2 � t
νn � νn � � t � νn � � νn � t

r : � n ������
 v � t ��� t � � ����
 v � r : � n � t ��� t �
and:

t1 � t2
E
�
t1 ��� E

�
t2 �

Extend the evaluation contexts to include assignment:

E :: � 0)0#0-� r : � v � E

Extend the reduction semantics with a rule for dereferencing:

r : � n � ?r
τ,

r : � n � n
Since we have extended prevalues, we need to extend the let-β rule:

����
 x � d � v ��� t
τ,

d � t � v / x �
Add a structural equivalence rule:

t1 � t2 t2
τ,

t3 t3 � t4

t1
τ,

t4

The definition of contextual equivalence remains the same, ex-
cept that the results of a test can include some assignments:
t1 2 ctx t2 whenever for all closing contexts C of type �3�
��� , we
have C

�
t1 � � d1 �

��� � iff C

�
t2 � � d2 �

����� .

6

4.3 Labelled transition system semantics

We need to allow free references in values, so judgements are now

of the form
�
∆;Θ (p � γ, �

∆ 	 ∆ � ;Θ (t � .
Extend the grammar of labels with:

γ :: � 0#0#0
� r: � n � ?r

The new transitions allow a name to be assigned:
�
∆ 	 n 	 ∆ � ;Θ (� � � r: � n, �

∆ 	 n 	 ∆ � ;Θ (r : � n � � � �
and to be read:

�
∆;Θ 	 r	 Θ � (� � � ?r, �

∆;Θ 	 r	 Θ � (?r �
We weaken the side-condition on application to allow the argument
to include free references:
�
∆;Θ (λx : σ � t � @v, �

∆;Θ (t
�
v / x � � �

where ∆;Θ (v : σ �
Transitions are allowed in assignment contexts:

�
∆;Θ 	 r (p � γ, �

∆ 	 ∆ � ;Θ 	 r (t ��
∆;Θ (r : � n � p � γ, �

∆ 	 ∆ � ;Θ (r : � n � t �
Add a structural equivalence rule:

t1 � t2
�
∆;Θ (t2 � γ, �

∆ 	 ∆ � ;Θ (t3 � t3 � t4�
∆;Θ (t1 � γ, �

∆ 	 ∆ � ;Θ (t4 �
We can define bisimulation between configurations

�
∆;Θ (t � as

we did for the ν-calculus

4.4 Example

We can distinguish the problem cases from the ν-calculus:

t1 #"%$� λ f : � ��� � � �3�
��� �

�����
t2 #"%$� νn � νn � � λ f : � ��� �.� �3�
��� � f

�
n � � f

�
n � �

t3 #"%$� νn � λ f : � ��� � � �3�
�
�
� νn � � f
�
n � � f

�
n � �

It is easy to distinguish t1 from the others, since we just let f be a
function with a side-effect. To distinguish t2 from t3 we have:

t2 ��� �r: � n
� ��

νn � νn � � r : � n � � � t �2
� �FEG H@J � νn � νn �
� r : � n � �
� � t �2 	 t �2 �

� � � � � � � � � � � � � �C)M@λx:�@B � ?#M r : � x M ;=<=>@?� νn � νn �
� r : � n ��� �

��� ��	 t �2 �
���������C)M K)L D=FEBI< K� νn � νn � � r : � n � � � � � 	 t �2 �

� �C@M ?r�
νn � νn �
� r : � n ��� � n ��	 t �2 �

� � � � � � � � � � � � � �<NM@λx:�@B � ?#M r : � x M ;=<=>@?� νn � νn �
� r : � n ��� � n ��	�

��� ���
���������<NM K)L D=FEBI< K� νn � νn �
� r : � n ��� � n ��	 � � �

� �<�M ?r�
νn � νn �
� r : � n ��� � n ��	 n � �

where:
t �2 #"%$� λ f : � ��� � � �3�
��� � f

�
n � � f

�
n � �

whereas when we try to emulate these transitions in t3 we end with:

νn � νn � � νn � � � r : � n � � � � n � 	 n � � �
which are easily distinguished.

4.5 Completeness

Completeness for the νref-calculus follows as it does for the λ-
calculus and ν-calculus. The contexts corresponding to the extra
transitions for reference manipulation are immediate.

Theorem 4.1 (completeness for νref-calculus)
If Γ;∆;Θ P t 2 ctx t � : σ then Γ;∆;Θ P t 2 Q t � : σ.

4.6 Soundness

The subject of the next section of this paper is to establish that
bisimulation is a congruence for the νref-calculus, from which
soundness immediately follows.

Theorem 4.2 (soundness for νref-calculus)
If Γ;∆;Θ P t 2 Q t � : σ then Γ;∆;Θ P t 2 ctx t � : σ.

4.7 Comments

In the definition of Standard ML [12] a model of references is pre-
sented using configurations of the form

�
S 	 t � where S is a state (a

mapping of references to values). In this paper, we have included
states in the syntax of terms, so the configuration

���
r �� v ��	 t � is

modelled by the term r : � v � t. A similar use of syntax to model
configuration is used in Ferreira, Hennessy and Jeffrey’s [3] lts
model of Reppy’s [17] configuration-based model of Concurrent
ML.

A recent paper of Pitts and Stark [16] also concerns itself with an
operational study of locality using references. The difference here
is that they use a language of integer references so that all equal-
ity tests between local names are definable from primitive opera-
tions, such as assignment and equality test on integers. The logical
relations presented in [16] are much stronger than those of the ν-
calculus, largely because of their non-applicative nature. They are
closer in spirit to context bisimulation than to the bisimulations
presented here.

We speculate that the techniques here could be adapted to an
extension of Pitts and Stark’s [16] where references are allowed to
all ground types, including references. We leave this as an open
problem.

5 Congruence of bisimulation for the νref-
calculus

5.1 Active and passive names

To show that bisimulation is a congruence, we need to perform
some analysis on the names generated by the prevalues. We define
n to be active in

�
∆;Θ (t � if there is some sequence of transitions

γ not containing n such that
�
∆;Θ (t � �
�γ � �
�ι M n � �

∆ 	 ∆ � ;Θ (t � � ,
and passive otherwise.

Intuitively, if a name is passive in a term then it is a secret which
the term never reveals. Unfortunately, this intuition does not hold
for the ν-calculus, where we can construct terms:

F #"%$� λ f : � ��� � � �3�
��� � νn � � � � f
�
n � � � f

�
n �
���� � n � ���	� � n

f #"%$� λx : � ��� �
� x � n

7

then we have n is passive in F and f , but is active in F
�
f � . This is

not only very counterintuitive, but strikes at the heart of the prob-
lem for finding a fully abstract model for ν-calculus. The logical
relations approach fails to be complete because when new names
are generated it must be guessed whether the names are active
(global) or passive (secret). The environment is then allowed to
test with secret names provided they occur passively in the test
value. During testing though the names may change their status
from passive to active so no consistent guess can be made.

In comparison, in the νref-calculus, although n is passive in f , it
is not passive in F since we have the reduction:

F �����������������������@λx:�@B � ?#M r : � x M ;=<=>@?� νn � � r : � n � n �
� ��� �K)L D=FEBI< K� νn ��� r : � n � � �
� �?r �

νn ��� r : � n � n
� �n � νn ��� r : � n � � �

We can generalize this to get the following proposition, which is
not true of the ν-calculus:

Proposition 5.1 If n is passive in t and v then n is passive in t
�
v / x � .

Proof: A very long and involved proof, which we will appear in
the full version of this paper. �

5.2 Overt bisimulation

Motivated by the distinction between active and passive names, we
present an alternative bisimulation for the νref-calculus, which is
more complex, but turns out to be more suitable for Howe-style
proof.

This relation is inspired by Pitts and Stark’s logical relations se-
mantics although there are some subtle differences, which we will
discuss later.

A type-indexed family of relations RΠ (where Π is a name envi-
ronment) is an overt simulation if:

1. We can complete the following diagram:

�
∆ (t1 � T RΠ, �

∆ (t2 �

�
∆ 	 ∆ � (t �1 �

α U

when ∆ � is disjoint from Π as:

�
∆ (t1 � T RΠ , �

∆ (t2 �

�
∆ 	 ∆ � (t �1 �

α U
TRΠ, �

∆ 	 ∆ � (t �2 �
α̂V WWW

2. If
�
∆ (νn � p1 � RΠ �

∆ (p2 � then either:

(a) p2 � νn � p3 and
�
∆ 	 n (p1 � RΠ �

∆ 	 n (p3 � , or

(b)
�
∆ (p1 � RΠ O n � ∆ (p2 � .

3. If
�
∆ (p1 � RΠ �

∆ (p2 � and
�
∆ (p1 � ι M n, �

∆ (p �1 � then n � ∆.

Let 2 Π
o be the largest overt bisimulation. We shall write 2 o when

Π is empty.
Intuitively, the definition of an overt bisimulation says:

1. 2 Π
o is a bisimulation,

2. If ∆ (νn � p1 2 Π
o p2 then either:

(a) n is active in p1, so p2 has to match it by having an
appropriate name binder (which is added to the active
name environment ∆), or

(b) n is passive in p1, so p2 can match it by ignoring the
name (which is added to the passive name environment
Π).

3. If ∆ (p1 2 Π
o p2 then ∆ contains all the active names of p1.

Since an overt simulation is a simulation, it is easy to see that 2 o is
a finer relation than 2 . In fact, we can show that overt bisimulation
coincides with bisimulation.

Proposition 5.2 2 is the same as 2 o

Proof: Define ∆ P t1 2 Π t2 whenever ∆ P νΠ � t1 2 νΠ � t2 and all
the names in Π are passive in t1 and t2. It is routine to verify that
this is an overt bisimulation, and that it coincides with bisimulation
when Π is empty. �

5.3 Congruence of overt bisimulation

The proof that overt bisimulation is a congruence uses Howe’s
technique, but the definition of 2�� is rather more complex, since
we have to allow names to move between the passive and active
name environments.

Define 2 Π
o
� by two rules (for any name environment Ξ):

Γ;∆ 	 Ξ;Θ P t1
�2 Π

o � t2 Γ;∆;Θ P t2 2 Π O Ξ
o

Q t3
Γ;∆;Θ P t1 2 Π O Ξ

o
� t3

and:

Γ;∆;Θ P νn � t1
�
2 Π O n

o
� t2 Γ;∆;Θ P t2 2 Π

o
Q t3

Γ;∆;Θ P νn � t1 2 Π
o
� t3

Then we can verify that 2 Π
o
� is substitutive on prevalues, up to

strong bisimulation:

Proposition 5.3

if t1 2 Π
o
� t2

and d � v1 2 Π
o
� d � v2

then d � t1 � v1 / x � ��2 Π
o
� d � t2 � v1 / x �

Proof: By structural induction on the prevalues. This proof relies
on substitution preserving passivity (Propn 5.1). �

We can then show that 2 � is a bisimulation up to
�
� 	 � � [19],

from which it is routine to show that overt bisimulation, and hence
bisimulation, is a congruence.

Theorem 5.4 2 Q is a congruence for the νref-calculus.

8

5.4 Comments

Earlier in the paper we described the logical relations of [15] as an
overt proof technique for ν-calculus. We can see now that there
are similarities between our overt bisimulation and the logical re-
lations. In particular, both techniques make use of a predicate to
track the private names of terms under test. In the logical rela-
tions the predicate takes the form of a partial injection between the
free names of terms—secret names are those not in the domain (or
range) of this injection.

The key point is that when a new name is to be generated, in both
overt bisimulation and logical relations, it must be guessed whether
the name will be active or passive. Where the two approaches differ
greatly however is in the tests allowed in the @v transitions. Log-
ical relations allow the environment to use secrets passively, even
though, morally, they have no knowledge of them. Overt bisimu-
lations forbid this and insist that a secret is a secret and until the
environment knows the secret it cannot test with it at all. It would
be interesting to show that these two approaches coincide for the
νref-calculus. In light of Proposition 5.1 there is strong evidence
to suggest that they do, but we leave this as an open problem.

References

[1] K. L. Bernstein and E. W. Stark. Operational semantics of a
focussing debugger. In Proc. MFPS 95, number 1 in Elec-
tronic Notes in Comp. Sci. Springer-Verlag, 1995.

[2] G. Berry and G. Boudol. The chemical abstract machine.
In Proc. 17th Ann. Symp. Principles of Programming Lan-
guages, 1990.

[3] W. Ferreira, M. Hennessy, and A.S.A. Jeffrey. A theory of
weak bisimulation for core CML. In Proc. ACM SIGPLAN
Int. Conf. Functional Programming, pages 201–212. ACM
Press, 1996. To appear in J. Functional Programming.

[4] A. Gordon and M. Abadi. A calculus for cryptographic pro-
tocols: The spi calculus. Research Report 149, Digital Equip-
ment Corporation Systems Research Center, 1998. To appear
in Information and Computation.

[5] A. Gordon and L. Cardelli. Mobile ambients. In Proc. FoS-
SaCS ’98, LNCS. Springer-Verlag, 1998.

[6] A. D. Gordon. Bisimilarity as a theory of functional pro-
gramming. In Proc. MFPS 95, number 1 in Electronic Notes
in Comp. Sci. Springer-Verlag, 1995.

[7] A. D. Gordon. Nominal calculi for security and mobility. In
Proc. DARPA Workshop on Foundations for Secure Mobile
Code, pages 10–14, 1997.

[8] M. Hennessy. Algebraic Theory of Processes. MIT Press,
1988.

[9] F. Honsell, I.A. Mason, S. Smith, and C. Talcott. A variable
typed logic of effects. Inform. and Comput., 119(1):55–90,
1995.

[10] D. Howe. Equality in lazy computation systems. In Proc.
LICS ’89, pages 198–203. IEEE Computer Society Press,
1989.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
proceses. Inform. and Comput., 100(1):1–77, 1992.

[12] R. Milner, M. Tofte, and R. Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

[13] E. Moggi. Notions of computation and monads. Inform. and
Comput., 93:55–92, 1991.

[14] A. M. Pitts and I. D. B. Stark. Observable properties of
higher order functions that dynamically create local names,
or: What’s new? In Proc. MFCS 93, pages 122–141.
Springer-Verlag, 1993. LNCS 711.

[15] A. M. Pitts and I. D. B. Stark. On the observable prop-
erties of higher order functions that dynamically create lo-
cal names (preliminary report). In Workshop on State in
Programming Languages, Copenhagen, 1993, pages 31–45.
ACM SIGPLAN, 1993. Yale Univ. Dept. Computer Science
Technical Report YALEU/DCS/RR-968.

[16] A. M. Pitts and I. D. B. Stark. Operational reasoning for
functions with local state. In A. D. Gordon and A. M. Pitts,
editors, Higher Order Operational Techniques in Semantics,
Publications of the Newton Institute, pages 227–273. Cam-
bridge University Press, 1998.

[17] J. Reppy. Higher-Order Concurrency. Ph.D thesis, Cornell
Univ., 1992.

[18] D. Sangiorgi. Expressing Mobility in Process Algebras: First-
order and Higher-order Paradigms. Ph.D thesis, LFCS, Ed-
inburgh Univ., 1992.

[19] D. Sangiorgi and R. Milner. Techniques of ‘weak bisimula-
tion up to’. In Proc. CONCUR 92. Springer Verlag, 1992.
LNCS 630.

[20] P. Sewell. From rewrite rules to bisimulation congruences. In
Proc. CONCUR ’98, volume 1466 of LNCS, pages 269–284.
Springer-Verlag, 1998.

[21] I. Stark. Names and Higher-Order Functions. PhD thesis,
University of Cambridge, December 1994. Also published
as Technical Report 363, University of Cambridge Computer
Laboratory.

[22] A. Wright and M. Felleisen. A syntactic approach to type
soundness. Technical report TR91-160, Dept. of Comp. Sci.,
Rice Univ., 1991.

9

