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Abstract: Concurrent ML is an extension of Standard ML
with Tecalculus-like primitives for multi-threaded program-
ming. CML has a reduction semantics, but to date there has
been no labelled transitions semantics provided for the en-
tire language. In this paper, we present a labelled transition
semantics for a fragment of CML called upwCML which in-
cludes features not covered before: dynamically generated
local channels and thread identifiers. We show that weak
bisimulation for ywCML is a congruence, and coincides with
barbed bisimulation congruence. We also provide a variant of
Sangiorgi’s normal bisimulation for pwCML, and show that
this too coincides with bisimulation.

Keywords: concurrency, higher-order functions, bisimula-
tion, local names

1 Introduction

Reppy’s [23] Concurrent ML is an extension of Standard ML
[25] with concurrency primitives based on Milner’s CCS [16]
and tecalculus [17, 18].

Reppy [23] and Berry, Milner and Turner [2] provided
CML with a reduction semantics, based on the SML language
definition [25]. This semantics allows proofs of many impor-
tant properties such as subject reduction, but does not directly
support a notion of program equivalence, which is important
for rewrites such as compiler optimizations.

Ferreira, Hennessy and Jeffrey [6] provided a labelled tran-
sition system semantics for a fragment of CML, and showed
that the resulting theory of bisimulation was a congruence,
and could therefore be used to justify equational rewriting.
The fragment of CML covered, however, was more restrictive
than Reppy’s reduction semantics, and in particular did not
treat two important features of the language: channel genera-
tion, and thread identifiers. In this paper, we show how these
features can be modelled using labelled transition semantics.

Channel generation is an important primitive of CML.: it
allows new communication channels to be created dynami-
cally, and for their scope to be controlled in the style of the
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1-calculus. Much of the power of CML rests on channel gen-
eration, for example it is used in Reppy’s coding of recursion
into Acy. Many languages, such as Fournet et al.’s join cal-
culus, [7, 9] Boudol’s blue calculus [4], Thomsen’s CHOCS
[30] and Sangiorgi’s higher-order Te-calculus [26] include en-
codings of the A-calculus using unique names. This paper
provides the first direct characterization of program equiva-
lence for the A-calculus together with Testyle concurrency.

The full language of CML contains thread identifiers. In
particular, the type for the spawn primitive which creates new
threads is given by

spawn : (unit— 0) — othread

That is, spawn takes an inactive thread and sets it running
concurrently with the new thread. The result of this command
is the identifier name of the new thread, which can then be
used to block waiting for another thread to terminate, using:

join : Othread >0

Calling joint causes the current thread to wait for t to termi-
nate with some value v, which is then returned.

Ferreira, Hennessy and Jeffrey’s treatment of CML ig-
nored thread identifiers entirely. Their type for thread spawn-
ing was simply:

spawn : (unit — unit) — unit

Thread identifiers have received less attention in the literature
than channels, largely because they can be easily expressed
in terms of channels. In this paper, we provide a semantics
for thread identifiers, partially because they do exist in con-
current ML, but also because they help simplify the Its se-
mantics. This use of thread identifiers is similar to the use of
function definitions in Fournet et al.’s join calculus, and ob-
ject pointers in Gordon and Hankin’s [11] concurrent object
calculus, but with the important difference that thread identi-
fiers can contain actively executing code rather than just func-
tions or objects. They can also be seen as a restricted form of
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Figure 2: Configuration type inference rules

Cardelli and Gordon’s [5] ambients, where the ambient tree
is flat and names are used linearly.

The authors made initial steps towards the current labelled
transition semantics for local names in [15]. We proposed
there a novel transition system which incorporated a notion
of privacy. We adopt the same technique for modelling local
names in the current setting; however, the proof techniques
for establishing congruence of bisimulation differ greatly. In
the previous paper we utilized a variant of a proof technique
known as Howe’s method [14, 10]. Unfortunately, this is not
available to us here and, instead we adapt Sangiorgi’s [26]
trigger semantics from the higher-order tcalculus. The ap-
proach we develop here generalizes the trigger encodings and
their corresponding correctness proofs to accommodate the
functional setting. This is achieved by a introducing a hierar-
chy of operational semantics based on type-order and estab-
lishing correctness throughout the hierarchy. We also make
use of a novel ‘bisimulation up to’ technique [27] based on
confluent reduction to simplify and structure the correctness
proofs.

The remainder of the paper is organized as follows: in the
next section we present the fragment of CML which contains
the features of interest to us and define a type system, reduc-
tion semantics and notion of observational equivalence for
the language. In section 3 we describe our labelled transi-

tion system semantics and offer justification for our transi-
tion rules by demonstrating a contextuality result. Bisimu-
lation equivalence for our language is also presented here.
Section 4 is given over to establishing that bisimulation is a
congruence. We follow this up with a much simpler labelled
transition semantics for which bisimulation equivalence coin-
cides with the equivalence of Section 3. Finally we conclude
with some closing remarks about related and future work.

2 A corefragment of CML

We examine the language uvCML, which is a subset of
Reppy’s [23] concurrent functional language CML, given by
extending the simply-typed A-calculus with primitives for
thread creation and inter-thread communication. Threads can
communicate in two ways: by tecalculus-style synchronous
channels, or by waiting for a thread to terminate.

UvCML contains many of the features of Ferreira, Hen-
nessy and Jeffrey’s [6] HCML, but is missing the event type
and its associated functions. We believe that adding the event
type back into uywCML would pose few technical problems.

The grammar for ywCML types is obtained by extending
that for simply-typed lambda calculus with type constructors
for thread identifiers and channel identifiers. We assume a
grammar B for base types, including at least the unit type unit
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and the boolean type bool. The grammar of types is given:
0:=B|ox0|0—0|0chan|othread

Since we are using a call-by-value reduction semantics, we
need a grammar for values. We assume an infinite set of vari-
ables x and names n, and some base values b including at
least (), true and false. The grammar of pyCML values is
given:

vi=b|(vv)|Ax:0.t|n]|x

A thread letx; =eqin ---letXx, = eninv consists of a stack of
expressions e,...,en to be evaluated, followed by a return
value v. The grammar of uwCML threads is given:

t=v|letx=eint

An expression consists of the usual simply-typed A-calculus
with booleans, together with primitives for multi-threaded
computation:

e chan () creates a new channel identifier.

e send(c,V) sends value v along channel ¢ to a matching
expression recv ¢, which returns v.

e spawnV creates a new named thread, which executes v(),
and returns the thread identifier.

e joini blocks waiting for the thread with identifier i to
terminate with value v, which is then returned (this is
similar to Reppy’s [23] joinVal function).

The grammar of uywCML expressions is given:

ei= t|fstv|sndv|vv|ifvthentelset|v=V|

sendV | recvV | chanv | joinV | spawnV

The type inference rules for threads are given in Figure 1.
The type judgements are of the form:

MAFt:o

where T is the type context for free variables and A the type
context for free names.

In order to present the reduction semantics for ywCML it
will be useful to describe the configurations of evaluation:

C:=0|C||C|vn:0.C|n[t]
Let the thread names of a configuration be defined:
tn(0) = 0 tn(C1|C2) = tn(C1)Utn(Cy)
tn(nit])) = {n} tn(vn.C) = tn(C)\{n}

We require configurations to be linear in their use of thread
names: in any configuration C; || C;, the thread names of C;
and C, are disjoint, and in any configuration vn : othread.C,
n is a thread name of C.

As we can see, a configuration is simply a collection
of named threads running concurrently, with shared private
names.

We present the type inference rules for configurations in
Figure 2. Judgements are of the form:

A-C

There is an evident structural congruence on configurations
given in Figure 3 which should be familiar to readers from
the te-calculus [17].

Let the reduction relation C — C’ be the precongruence
which includes structural equivalence and the axioms in Fig-
ure 4. We have split the reduction rules into confluent rules

. . T
C —B> C' and one non-confluent communication rule C — C'.
Let = be the reflexive transitive closure of —.

2.1 Observational equivalence, ~°

We present a notion of observational equivalence for our lan-
guage following [13], which is a variant of the barbed bisim-
ulation equivalence proposed in [19]. The interested reader
can see [8] for a discussion regarding the two approaches.

A binary relation ® on configurations is contextual if it
satisfies:

Ci1® C; implies Vc.c[Ci] R c[Cy]

R is barbed if it satisfies:
CirC

implies  Vn.Cq |, iffCy {n
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Figure 4: Axioms for reduction precongruence C — C'

where:
Cln

R is reduction closed if it satisfies:

iff 3C'.C = nltrue]||C’

C, X C, C, X C,
can be completed l H

R
Ci CL—GC

and a similar symmetric condition.

Then, barbed equivalence, ~ is defined to be the largest
reduction-closed barbed contextual relation.

It is routine to show that barbed equivalence is a congru-
ence, since we have required it to be contextual.

Barbed equivalence is a natural definition for a
bisimulation-like equivalence, but it is very difficult to rea-
son about, since its definition includes a quantification over
all contexts. In the remainder of this paper, we shall present a
labelled transition system semantics for ywCML and a coin-
ductive presentation of barbed equivalence based on this.

3 Operational semanticsand bisimulation
equivalence

We make our first steps towards characterizing barbed equiv-
alence using a labelled transition system semantics. We adopt

the approach we advocated in [15] by designing a semantics
such that:

e Bisimulation can be defined in the standard way (fol-
lowing Gordon [10] and Bernstein’s [1] approach to
bisimulation for higher-order languages, rather than the
higher-order bisimulation used by Thomsen [30] and
Ferreira, Hennessy and Jeffrey [6]).

e Labels are contextual in the sense that each labelled
transition represents a small program fragment which
induces an appropriate reduction. This notion of con-
textual label has been investigated in depth by Sewell
[28].

Our labelled transition system is defined as a relation be-
tween well-typed configurations. The rules are presented in
Figure 5. In addition to these transitions with labels ranged
over by y, we include both (3- and t-reductions of the previous
section.

Let a range over y, T and [ transitions. We define

a o a
C—=ClasC= — =C'andC ==C'asC=C'

whenaisfortandC O(:> C’ otherwise.
The labels used take various forms, many are prepended

with an identifier, for example, ™ This signifies which
named thread we are currently investigating. Some are fol-

. o fstn' . .
lowed by another identifier, for example, DR indicates
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Figure 5: Labelled transition system semantics

that we take the first component of the pair located at thread
named n and place it in a new thread named n’. The thread
under examination is unaffected by the test which obviates
the need for copying transitions to allow repeated testing,
c.f. [15]. The transitions for modelling the communication
primitives are not addressed using a thread identifier because
the origin of a communication is not an observable property
in this language. Similarly, the transition labelled join sim-
ply allocates a value to the named thread, irrespective of any
term under investigation. It should be clear that such transi-
tions are necessary in order to distinguish, say,

n[letx =joinn’intrue] % n[letx=joinn’infalse].

However, it is not observable in this language whether a
thread is currently waiting on another to terminate. This
bears similarity to the situation of the asynchronous T&
calculus [3, 12] and the transitions we use are akin to those
for input receptivity [12]. The use of the free name context
allows us to model the static scoping discipline present in
CML. The transition rules we use are those of [15] and the
side-conditions in the two rules for inferring transitions under
vn. contexts ensure privacy and freshness respectively.

We can now prove subject reduction for uwCML, for both
the reduction semantics and the Its semantics.

Proposition 3.1 (Subject Reduction)
(i) TAFCandC —C'then A C'.

(i) fAFCand (AFC) — (A’ FC’) then A'HC'

We now make good on our claim that the labelled transi-
tions presented above actually correspond to small, reduction
inducing, contexts of the language. Barbs play an important
role here as we use them to establish whether a context has
successfully induced a reduction. We list below the actual
contexts used for each label. We write C$ to mean the con-
text corresponding to the label y used on a term with free
names in A with a barb indicating success at a special fresh
location I.

Ck, = Ib=joinn]

ct, = I[n'=joinn]

cl,, = I(joinn) &A]

Chiew = lljoinn;true] || n'[fst (joinn)]
CAqw = lfjoinn;true]||n'[snd (joinn)]
Coaur = l[joinn;true] || n'[joinnv]
CrAecv(nv) = I[send (n,v);true]

[[joinn’; true] || n'[recv n]
iy = Iltrue] N[V
where we use obvious syntax sugar such as n ¢ A.
Proposition 3.2 (Contextuality)
0] If(AI—C) (A,A'HC
then At-C||C = Ak Iftrue] || vA'.C'



(ii) IC2||C = I[trug] ||C’
then (AFC) == (A, A FC")
and ' B=va c”,

A type-indexed relation % is a family of relations ®a on
typed configurations A+ C. We will often write AECy1 % C,
whenever (AFCy) ®a (AF Cy).

A simulation is a type-indexed relation on configurations
R such that the following diagram can be completed:

(BFC1) <% (AFC)  (BFC1) <% (AFCy)

a as al aﬂ

(' FCl) (O'FCl) <5 (AFCY)

A bisimulation is a simulation whose inverse is also a simu-
lation. Let = denote the largest bisimulation between config-
urations.

We must allow a certain amount of weakening in the name
context in order for bisimulation to be sound. This can be
expressed as an open extension. That is:

AECi~°C, iff AN ECy~C,forall fresh A

On closed expressions (including values and threads) we can
define bisimulation to be given by placing the expression in
a configuration:

AFe;~ey:0 iff A,n:othreadFnler] = nley]

For open expressions, we define the open extension as usual,
by substituting through with appropriately typed values (al-
lowing ourselves to introduce new names while doing so):

X:0,AFe;=°e:0
iff AN Fe[V/X]~eyv/x] forall AN VG

We will now make some observations about B-reduction
which will prove useful in the remainder of the paper. It is
not too hard to see that the reductions we identified as being
[B-reductions are in fact confluent. They are not only conflu-
ent with respect to other reductions, but in fact with respect
to labelled transitions:

Proposition 3.3 The follow diagram can be completed:

B B

(AFC) -5 (AFC')  (AFC) > (AFC')
(Xl as (Xl (Xl
(AI }_C”) (AI }_C”) E (AI I_C”I)

orC'=C"ifaisp.

This observation now allows us to state a proof principle
which we utilize heavily, namely weak bisimulation up to
[B-reduction. We say that a type-indexed relation % is a sim-

ulation up to (g*,z) if we can complete the diagram:

(AFCl) <S5 (AFCy)  (BAFCl) ~—2 v (AFCy)

a as O(l dﬂ
B

(@' k¢ ') <25 (e

As before we say that £ is a bisimulation up to (—B>*,z) if

both ® and its inverse are simulations up to (—B>*,z). The
proof principle we appeal to is

Proposition 3.4 If % is a bisimulation up to (—B>*,z) then
~R ~ is a bisimulation.

Proof: We use the fact that %  is a bisimulation up to (—B>*, ~)
and confluence of B-reduction, Proposition 3.3, to show that
we can complete the diagram:

(BFC) < (AFCy))  (AFC) ~2 v (AFCy)

aﬂ as aﬂ aﬂ

B,
(&' FCl) ey 22X ey

Given this it is straightforward to demonstrate that ~® = is

a bisimulation by, again using confluence, observing that —B>*
is contained in =. m|

We will now show that bisimulation for uywCML coincides
with barbed congruence. Soundness follows immediately
once we have that bisimulation is a congruence: this is the
subject of the next section.

Proposition 3.5 AEC ~°C’ implies AEC&PC’

Proof: It is easy to show that = is barbed and reduction-
closed, and Theorem 4.7 shows that =° is a congruence.
Hence, ~° implies ~P. O

Completeness is a simple corollary of contextuality, Proposi-
tion 3.2.

Proposition 3.6 AEC ~PC’ implies AEC ~°C’

Proof: (Outline) We aim to show that ~P° is a bisimula-
tion up to (=,~). Suppose that C; ~° C, and suppose that

Cy g, C;. Choose some | ¢ C1,0. We note by Propo-
sition 3.2, that C, || C; = I[true] || C; and use the fact that



~P is a congruence, reduction closed and barbed to es-
tablish that C, || C2 = I[true] || C; for some C; such that
I[true] || C} ~P I[true] || C}. It is easy to show from here that
C} ~PC} as | ¢ C},C} and use Proposition 3.2 again to see

a .
that C;, == ~ C). More care must be taken in the case
where o is n.vn” but a similar argument can be applied. We
then use Proposition 3.4 to conclude. O

4 Congruence properties of bisimulation

We are left with the task of showing that bisimulation is
a congruence. This is a notoriously difficult problem, and
proof techniques which work in the presence of both higher-
order features and unique names are limited [21, 22].

A viable approach to tackling this problem in languages
with sufficient power is to represent higher-order computa-
tion by first-order means. Indeed, Sangiorgi demonstrates
in his thesis [26] that higher-order T-calculus can be en-
coded, fully abstractly, in the first-order Te-calculus by means
of reference passing—this transformation is described in two
stages, the first of which is technically known as a trigger en-
coding and recasts higher-order tecalculus in a sublanguage
of itself in which only canonical higher-order values, or trig-
gers, are passed.

We adopt a similar approach here but, owing to the func-
tional nature of the language we find that our encoding to be
more complicated than that of the higher-order Tr-calculus.
The thrust of the current work is to demonstrate a novel ap-
proach to proving a fully abstract trigger encoding which can
be used to prove congruence of bisimulation in higher-order
languages.

Rather than compositionally translating our higher-order
language into a simpler language, we describe an alternative
operational semantics which implements this trigger passing.
The intention is that there is a direct proof of congruence of
bisimulation equivalence on this alternative operational se-
mantics, and correctness between the two semantics yields
congruence on the original. Correctness between the two se-
mantics can be stated quite tightly as:

[CTw~ [Clo

where [C]|, is understood to be the interpretation of C using
the original semantics and [[C]o the triggered semantics.

In fact, to relieve the difficulty of proving correctness we
aim to use an induction on the order of the type of C. This
leads us to defining a hierarchy of semantics, indexed by type
order. In [[C]|n, terms of type higher than n are passed directly,
and terms of lower type are trigger-encoded. We can then
regard [[CJl, as the ‘limit’ of the semantics [[C]lo, [C]1,-- .-
Our proof that bisimulation is a congruence is then broken
into three parts:

1. Prove that bisimulation is a congruence for [-] o.
2. Prove that if Vi. [C]lo & [C']i then [C]lo ~ [C']w-
3. Prove that [[CJ}; = [C]li+1-

From these three properties, it is easy to prove that bisimula-
tion is a congruence for [[-] », Which is, by definition, exactly
our original semantics for y/wCML.

Note that this proof relies on a well-founded order on
types, and so will not work in the presence of general recur-
sive types. This is not as limiting as might first be thought,
since ochan and othread are considered to be order 0 no
matter the order of g, and so we can deal with any recursive
type as long as the recursive type variable is beneath a - chan
or -thread. This is a similar situation as for most imperative
languages, which restrict recursive types to those including
pointers. Also note that this restriction is weak enough to in-
clude all of the Tecalculus sorts, such as the type puX . X chan
which describes monomorphic 1-calculus channels.

We will now present the triggered semantics and show the
three required properties.

4.1 Trigger Semanticsfor uwCML

In order to describe these semantics concisely it will be help-
ful to introduce a mild language extension. There is no ex-
plicit recursion function definitions in the core language we
presented above as such terms can be programmed up us-
ing the thread synchronization primitives (c.f. coding the Y-
combinator using general references). We introduce a repli-
cated reception primitive, which can indeed be coded using
recursive functions. Let us write xrecv n to represent this new
expression. There is an associated reduction rule for this new
expression which behaves as a recv expression but spawns a
new thread of evaluation. This is defined as

ni[letx; =send (n,v)inty]|| nz[letX; = *recvninty]

_>
vh n1[|etX1:()int1] |n2[letx2 :Vintz]H
3 ns[letxp = xrecvninty]
Of course, there is an obvious corresponding transition rule
for replicated reception also. The following pieces of nota-
tion will be convenient. Let T4 denote the term

AX.letr =chan()insend(a,(x,r));recvr

The trigger call T4 is used to substitute through terms in place
of functions. When the trigger call is applied to an argument,
the trigger simply sends the argument off to the actual func-
tion (on channel a). It must also wait for the resulting value
given by the application on a freshly created private channel.



Complementary to this is the resource at a, written a < f,
where we use f to range over A-abstractions. This is defined
to be a replicated receive command:

letX1,X2 = *recvainletz= f xjinsend (x2,2)

which can continually receive arguments to f, along with a
reply channel. It then applies f to the argument and sends the
result back along the reply channel.

These are the two basic components of the triggered se-
mantics. We use them to define a notion of type-indexed
substitution. Recall that the order of a type O(0) is de-
fined by induction such that O(o;1) < O(o; — 02) and
O(othread) = O(ochan) = 0 and the type-order of a term
O(t) is the order of the terms type. Let the level i substitution
[v/x]i be defined by:

Clb/xJi = Clb/x]
Cln/xli = Ch/¥
Cllvi,v2) /Xl = (Cl(x1,%2) /X)) [va /xali[v2/%al
_ Clf/x]ifO(f) <iorf=r14
CLT /X { va,n. (Clta/x] || n[a<= f]) otherwise

¢From the definition of level i substitution, we can now define
the level i trigger semantics [[-]; by replacing the B-reduction
rule for let expressions with

nfletx=vint] = n[tjv/xi]

and leaving all other rules unchanged.
We now state some useful lemmas concerning the trigger
protocol semantics.

Lemma4.1 Any reductions which are instances of the fol-
lowing are confluent -reductions:

vr.(n[letx=recvrint] || n’[letx’ =send (r,v)int'])
B

vr. (n[letx=vint] || n'[letX' = () int’])
and

vn. (C || ny[letxs =send (n,v)ints] || nz[letxo = *recvninty])
B

vnnz. (

providing C does not contain a recv n expression.

—

n3[letx2 = *recvnintz] || n2[|etX2 :Vintz]

C||n1[letx1:()int1]|| >

The first of these is observes that channels which are used lin-
early have unique points of communication and hence give
confluent communication. This is used for the return part
of the trigger protocol. The latter is slightly more involved

and relies upon a side-condition that the sending participant
cannot communicate with any party other than the replicated
input. We use this property when beginning each trigger
protocol communication and can maintain it as an invariant
throughout testing.

Lemma4.2 [C[v/X]il = [C[v/X]i+1]i for all i’ > i.

This essentially states that, for substitutions of functions of
type order i the trigger protocol correctly implements the
substitution. In order to see this we show that the relation
{C|v/X]i,C[v/X]i+1} is a bisimulation up to (—B>*,z). The
difficulty here is seen in the case in which v is a function
of order i+ 1, being applied to some argument in C. On the
right hand side we have a standard substitution and a stan-
dard B-reduction. Whereas on the left hand side we see a
triggered substitution, and, by virtue of the argument being
of type < i+ 1, a standard [-reduction. It is crucial that no
nested trigger substitution is incurred here and we can use
the power of the up to technique to finish by appealing to the
next lemma, which establishes correctness of the return end
of the protocol.

Lemma4.3

[C|lvn'r.(nletx=recvrinty] || n'[letz=t;insend (r,2)])]i
~ [C| nletx =ty inty]]i

Again, this lemma is proved using a bisimulation up to

(5

,R).

Proposition 44 (i) If [CJo =~ [C'Ti
[Cllo ~ [C']w.

(ii) [CJi ~ [C]i1 for all i.

for all i then

Proof: For Part (i) we construct a bisimulation:
R = {([Co, [C"]w) | 3i.¥i" >i.[CJlo ~ [C'Tr}

Part (ii) is easy to show using a bisimulation up to (=, ~) and
Lemma 4.2 with i’ instantiated to i and i+ 1. O

Corollary 4.5 [CJo ~ [C], for all C.

4.2 Congruence

We have described how, in order to verify congruence of
bisimulation equivalence for the standard semantics, it is suf-
ficient to verify congruence of bisimulation equivalence for
the completely triggered, level 0, semantics. We show this
NOw.

Proposition 4.6 For all contexts A,A' - ¢ of appropriate
type



() IFAE[Ci]lo =° [C2]o then AN E [c[Ci]lo = [c[C2]llo
(i) IfI;AF [er]lo =° [e2]lo then A, A" E [cle1]]o = [c[e2]]o

Proof: This can now be proved fairly directly using our
bisimulation up to technique. The level 0 semantics ensure
that the only substitution which occurs is for base values,
names and triggers. Bisimulation on these values is just syn-
tactic identity so any problems with substitutivity (in the pres-
ence of static scoping) which arise in [10, 15] are avoided.
|

Given this we can draw upon the results of Corollary 4.5 and
the above Proposition to obtain:

Theorem 4.7 Bisimulation equivalence is a congruence.

5 Normal bisimulation

So far we have shown that bisimulation equivalence coin-
cides with barbed equivalence. The motivation for providing
such a characterisation lies in the need to alleviate the quan-
tification over all contexts present in the definition of barbed
equivalence. We achieve this to an extent by reducing con-
texts to labelled transitions. However, despite being a neater
coinductive equivalence, the definition of bisimulation equiv-
alence now quantifies over all transitions. We must question
whether this is truly a lighter quantification. One measure we
proposed in [15] to answer such a question was to demand
that labels be applicative. That is to say, whenever a label
contains an arbitrary value, the type of that value should be
strictly less than the thread being tested. Our labelled transi-
tion system defined above is certainly not applicative in this
sense. In particular, the join(v).n labels have no such restric-
tion and grant powerful testing abilities. In order to rectify
this shortcoming of bisimulation we provide a cut-down Its
semantics which do have applicative labels for which bisim-
ulation equivalence coincides with the original. This new se-
mantics is closely related to normal bisimulation of Sangiorgi
[26], in which a beautifully simple characterisation of bisim-
ulation for higher-order 1-calculus is achieved by restricting
test values to be either names or trigger calls alone. We adopt
the same approach here by defining canonical values to be
those of the form

Ve i=Db| (Ve,Ve) | Ta| N | X

Now, the canonical, or normal semantics for configurations
is given by the Its rules in Figures 4, 5 with all values in
the transition labels restricted to be canonical. Write [C] 5 to
signify the canonical semantics with level 0 substitutions. If
we can show that bisimulation equivalence is a congruence
on configurations for these semantics it is then a simple step
to show

Theorem 5.1 AEC = C'ifand only if AF [C]§ = [C']§

which justifies the claim that our bisimulation is a simple
characterisation of barbed equivalence.

This does however oblige us to show congruence for the
canonical semantics.

Proposition 5.2 If A E [Cy]§ =~ [[C2]§ then for all contexts
AN+ ¢ we have A, A" E [c[CT§ = [c[C]T§

Proof: (Outline) There are two operators which must pre-
serve bisimulation equivalence, that is name abstraction and
parallel. The former is straightforward but the latter requires
some work. We cannot present the full details of this here
but try to indicate how one proceeds. For the remainder all
configurations are to be understood using the canonical, level
0 semantics. Define:

® 2= {(Vk.C1||C,Vk.C; ||C) | A,k E C1 ~ Cyp}

and show that % is a bisimulation. In order simplify this we
use an up to technique involving strong bisimulation equiva-

lence [16, 20]. In fact we show that £ is a bisimulation up to

(—B>*~,z) where ~ denotes strong bisimulation. The reader

is invited to check that this is a valid proof technique because

confluence implies commutativity of E)* and ~.

We must check the bisimulation closure property. This is
straightforward for all cases save for those consisting of an
interaction between C; and C, in particular, communication
between these configurations and join synchronizations. For
instance, supposing C; had a join-call to some thread ng inC
and C had a value v at that thread. The resulting state after
some B-reductions would have Cq with a trigger call substi-
tuted through for the join-call and the resource for v in paral-
lel with C. We can simulate this reduction on C; alone using
a join(Ta) . np transition. The configuration C, must match
this to a bisimilar state. The property below guarantees, up
to strong bisimulation, that this transition simulates the inter-
action of Cy and C sufficiently well:

C|Ing[f]|lvn.n[a<= f] ~ C||no[ta] || vn.n[a <« f]

The remaining cases are analyzed in a similar manner but
are quite complicated. The full details highlight the role of
the trigger semantics well and will appear in a forthcoming
technical report. O

6 Concluding remarks

We have developed an operational account of program equiv-
alence for a fragment of concurrent ML which features
higher-order functions, concurrency primitives and statically-
scoped local names. The bisimulation equivalence, and



in particular that for the canonical semantics provide a
lightweight characterisation of barbed equivalence in this set-
ting. This is the first such treatment for a language containing
all of these features.

The proof techniques employed here owe much to San-
giorgi [26] and we consider the hierarchical approach to trig-
ger correctness a useful generalization of Sangiorgi’s method
to the functional setting. Indeed such techniques could be
employed in any functional language sufficiently expressive
to encode the trigger passing mechanism. We have also iden-
tified a useful *bisimulation up to’ technique based on con-
fluent reduction.

There is a striking relationship between location based mo-
bile agent languages in the sense of [5, 24, 29] and the thread
identifiers. It could be fruitful to adapt the techniques used
here to such a setting. In particular, trigger encodings could
address the issues of migrating processes and scope in much
the same way they help us achieve congruence here.
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