Allegories of Circuits

Carolyn Brown Alan Jeffrey
carolynb@cogs.susx.ac.uk alanje@cogs.susx.ac.uk

School of Cognitive and Computing Sciences
University of Sussex, Falmer, Brighton BN1 9QH, UK
Copyright (©) 1993 Carolyn Brown and Alan Jeffrey
Alan Jeffrey is funded by SERC project GR/H 16537

Abstract

This paper presents three paradigms for circuit design, and investigates the
relationships between them. These paradigms are syntactic (based on Freyd
and Scedrov’s unitary pre-tabular allegories (upas)), pictorial (based on the net
list model of circuit connectivity), and relational (based on Sheeran’s relational
model of circuit design RUBY). We show that net lists over a given signature
3 constitute the free upa on Y. Qur proof demonstrates that nets and upas
are equally expressive, and that nets provide a normal form for both upas and
pictures. We use Freyd and Scedrov’s representation theorem for upas to show
that our relational interpretations constitute a sound and complete class of
models for the upa axioms. Thus we can reason about circuits using either
the upa axioms, pictures or relations. By considering garbage collection, we
show that there is no faithful representation of nets in Rel: we conjecture that
a semantics for nets which takes garbage collection into account is faithfully
representable in Rel.

1 Introduction

Relational languages such as Sheeran’s circuit design language RUBY [6] are used to
derive hardware circuits from abstract specifications of their behaviour. Freyd and
Scedrov [3] have recently introduced allegories, which generalise the notion of sets and
relations in the same sense that categories generalise the notion of sets and functions.
In [1], Brown and Hutton showed how allegories could be used to reason about a
pictorial representation of RUBY programs. In this paper, we develop the mathemat-
ical notions used in [1], and give sketch proofs of expressiveness, normalisation and
completeness. Our results provide new methods of formal reasoning about relational
programs.

We define a syntax for hardware circuit design, based on unitary pretabular alle-
gories, which are allegories with a certain product structure. We also give a categorical
presentation of the net list model of circuit connectivity. We prove these equivalent
by showing that, given a signature ¥ of basic circuit components, the net lists over

idy = idy (f;9)° = g%f° [fn(gnhk) = (fng)nh
feo=f f f [ilgnh) = (f;9)0 f;(gnh)N(f;h)
fng = gnf (fng)e = gnf (fignh = (fi990hn(f0(h9°)59

Table 1: Axioms for an allegory

f N TX,Y = f (fstggy; fStX7y) N ldX = ldX
fstgy;sndxy = Txy (snd§yjsndxy)Nidy = idy
(fstx,y; fstg(y) N (sndxy;snd%y) = idxey

Table 2: Additional axioms for a upa

Y constitute the free unitary pretabular allegory on Y. Our proof develops a normal
form for both pictures and net lists, and expressiveness results for our allegorical syn-
tax, for pictures and for net lists. Finally, we show that relational interpretations in
the style of RUBY constitute a sound and complete class of models for our axioms.

These results enable us to reason about circuits using either the upa axioms,
pictures or relations.

2 Allegories as a syntax for circuits

We now recall Freyd and Scedrov’s [3] definition of allegory, which underlies our
equational theory of circuit design.

Definition. An allegory is a category equipped with:

e a morphism f°:Y — X for each morphism f: X — Y.
e a morphism fNg: X — Y for each pair of morphisms f,g: X — Y.

satisfying the equations in Table 1. a

Example. The category Rel of sets and relations is an allegory with (—)° given by
relational converse and N by intersection. O

A morphism f: X — Y in an allegory is entire iff (f; f°) Nidx = idx, is simple iff
(fe; f)nidx = (f°; f), and is a map iff it is entire and simple.

Definition. Morphisms f and g with common source X are jointly monic iff (f; f°)N
(9;9°) =idx. Twomaps g : Z— X and h : Z—Y tlabulate a morphism f : X =Y if ¢
and h are jointly monic and f = ¢°; h. An allegory is pretabular iff for every morphism
f: X =Y we can find a tabulated morphism ¢ : X — Y such that fng = f. O

Example. Let f: X — Y in Rel. Then
o fisentireiff Vo.3y . (z,y) € f

e [is simple iff whenever (z,y) € f and (z,z) € f we have y = z.

D il it Y it

Definition. An allegory is unitary iff it has:

e an object U such that f = fNidy for any f: U — U.
e an entire morphism uyx : X — U for each object X.

A unitary pretabular allegory homomorphism F : A — A’ is a functor such that:

F(fe) = (Ff)y F(fng) = FfN' Fyg
F(U) = U/ F(UX) = u/FX

UPA is the category of unitary pretabular allegories (upas) and upa homomor-
phisms. a

Proposition 1 Given f,g : X — Y, we define f Cxy g iff fNg = f. Then
(A(X,Y),Cxy) is a partial order with meet N and top Txy = ux;uy .

Definition. An allegory has local products iff it is unitary and has for each pair of
objects X and Y:

e an object X ® Y

e morphisms fstxy : X @Y — X and sndxy : X @Y — Y which tabulate T xy.O
Example. Rel has local products, given by X @ Y &' (x,y) |z € X and y € Y}
and the usual projection functions fstxy : (z,y) — x and sndxy : (z,y) — y. Rel
has unit 1, the singleton set, and is pretabular. In fact, any arrow R : X — Y in Rel
is tabulated by the projections from {(z,y) | R y}. a

Proposition 2 An allegory is unitary pretabular iff it has local products.

Proposition 2 allows us to extend the axioms of Table 1 to provide an axiomatisation
of equality of arrows in a upa. The additional axioms are given in Table 2.

A circuit evidently defines a relation between its input values (the values carried
on its source wires) and its output values (the values carried on its target wires). Any
two points on the same wire are constrained to carry equal values, while components
impose more complex constraints on the values carried by their input and output
wires. We view the discrete components of a circuit as arrows in a upa whose objects
are types and build complex circuits from the basic components using the operations
of a upa. Intuitively, these operations are those of relational algebra augmented with
parallel composition and projection. We show in Section 5 that any finite circuit can
be built from basic components using the upa operations, and in Section 6 that the
upa axioms are sound and complete with respect to the interpretation of circuits as
relations.

Arrows in a upa, regarded as terms built up using the upa operations, have a
natural representation (made precise in [1]) as pictures in which boxes represent
generating relations (the circuit components) and lines indicate wiring connections.

'We follow the circuit design convention of indicating intersecting wires with blobs ‘e’.

- A Ml VLA L s Aty e i ALY A S A Y A e

i

fig idx fe fng ux Istxy sndxy

Note that, whatever value is input to ux, no value will be output. The input wire is
dangling in the sense that it is not connected either to another external connector or
to a component.

If f:W— X and ¢g:Y — Z then the parallel composition of the circuits f and
g 1s given by the derived operation of local product, f @ ¢ : WRY - X ® Z def
(fstwy; f;fstk z) N (sndwy; g;sndk ;) and has picture:

T w

Two useful derived operations on wires are forkx : X — (X ® X), and swapyy :

(X®Y)— (Y ®X), which are pictured thus:

<%]

forkx def fstk x Nsnd% x swapx y def (fstx,y; snd%X) N (sndx y; fst%X)

The picture below shows how to build a circuit to add two 2-bit binary numbers by
combining two circuits which add single bit binary numbers. This picture represents

the allegory morphism 2add : Y @ VY @ VY @Y @ X =Y ®Y ® X, given by
2add ¥ (idy ®@ swapyy ® idy @ idy); (idy ® idy @ add); (add @ idy)

where Y is the type of booleans and X is the type of the carry bit.

add

D

- PP ek L U R At VA W P M i A ALaied)y AR gy VALY A L A RS L A A
template for building a 2n-bit adder from two n bit adders.

The picture of this circuit is much easier to read than the syntactic term. In
Section 4 we represent pictures categorically as nets, and in Section 5 we show that
reasoning with terms is sound and complete for nets.

We remark that pictures provide an elegant proof that UPA is isomorphic to
DCB, the category of discrete cartesian bicategories (dcbs) [2] and structure-pre-
serving functors. We define the structure of a dcb in terms of the structure of a upa,
and conversely. The proof that these assignments are mutually inverse is facilitated
by our pictorial representation: for example, the term obtained by translating f ® ¢ :

X®Y —-W® Z into a dcb and back is:

forkxy; (((idx @ uy); px; f; phys (idw ® u%))
@ (swapx y; (idy @ ux); py; g; p%; (idz @ uiy); (swapy 7)°)); forkyy, ,

The picture of this term given below makes clear why the term equals f ® g, since
the shape of wires is unimportant and the dangling wires can be removed without

affecting the relation defined by the circuit:

/O

[]

=

3 Signatures

We now give a semantics for circuits as allegories generated by typed components
from a signature.

Definition. A signature ¥ is a 4-tuple (Sorty, Compy,, sourcey, targety,) where:

e Sorty 1s a set of sorts.
o Compy is a set of components.
e sourcey and targety are functions from Compy to finite lists of Sorty.

We shall write ¢ : ¢ — 7 in X iff sourcex(c) = ¢ and targety(c) = 7. 0

Each signature ¥ provides certain “building blocks” for circuits: Sorty gives the types
of the wires in the circuit, Compy, gives the components used in the circuit (each of
which may be used many times) and sourcey and targety, give respectively the input
and output types of these components.

Example. The signature ¥, has sorts 1,....n and no components. 3, can be
regarded as a list of n distinct wires.
Given ¢ : 01...0, — Omt1 ... Omin, the signature ¥, has sorts 1,...,m + n and
component ¢. Thus ¥, lists n +m wires and indicates where each wire connects to c.
The signature ¥,qq for one-bit adders has one sort Bool, and one component
add : Bool ® Bool ® Bool — Bool ® Bool. Thus ¥,4q indicates that a one-bit adder

has three boolean inputs and two boolean outputs.

- A Vel pg it AL Rl s Wi AV i AL Vv v ALY A e e il L e = zada
with nine sorts 1...9, and two componentsa : 1®2®4—6®9and b: 9R3®5—TRS.
Thus ¥9,4a describes a circuit containing two components wired together with nine
wires as shown on page 2. We use nine sorts because each wire drawn in the picture
plays a distinct role: the template does not identify any two of the wires depicted. D

Definition. A signature morphism F : Y — ¥/ assigns:

e asort Floin ¥/ to each sort ¢ in X.
e a component Fe: Fd — F7 in ¥/ to each component ¢ : ¢ — 7 in X.

Sig is the category of signatures and signature morphisms. a

Example. Given sorts oy ...0, from X, the signature morphism L,, ,, : %, — ¥
which maps ¢ to o; is called a labelling. A labelling assigns a role to each wire in a
list. The degree of information given by a labelling may vary: L,, may be a type, or
a type and a generic position in the circuit (for example, the carry bit input to an
adder), or a type and a particular position in the circuit (for example, the carry bit
input to the leftmost adder).

Given ¢: 01...0, — Opmit ... Opypn in Xt

e the morphism M, : ¥. — ¥ maps i to o;, and ¢ to c.

o the labelling S. : ¥,, — ¥. maps ¢ to o;.

e the labelling 7. : ¥,, — ¥, maps ¢ to 0,,4;.

M, assigns an appropriate type to each wire connected to the component c.

For example, the circuit which builds a two-bit adder from two one-bit adders is
the signature morphism Mjaqq : Y2244 — 2ada Wwhich maps each sort to Bool and each
component to add. The signature ¥j,4q expresses the connectivity of the circuit in
terms of uninterpreted wire positions and component positions, while My,4q assigns a
meaning to each wire and each component in terms of sorts and components available
in the signature ¥,44. O

It is straightforward to prove the following proposition.

Proposition 3 Sig has finite coproducts and coequalisers, and hence pushouts.

Definition. A Y-allegory is a upa with:

e an object X, for each sort o in .
e a morphism f. : X,, ® ---® X,,, = X, ® --- ® X, for each component ¢ :

01...0pm —T1...T, 1N 2.

A Y-allegory morphism F': A — A’ is an allegory morphism such that:
F(Xo) =X, F(f) =1
Let ¥ Alleg be the category of Y-allegories with Y-allegory morphisms. O

Example. The free ¥-allegory, Free(Y) has:

e objects finite lists over Sorty

e morphisms generated by Compy, together with fstxy,sndxy and ux for each
pair of objects X and Y, subject to the equivalence - e = f if e and f are equal
under the equivalence generated by the equivalence of Tables 1 and 2. a

- - NS AT

Net lists are a model of circuit connectivity, and are used in circuit extraction [4] and
simulation [5]. A net list consists of

a list of elements, a list of wires, a list of input wires and a list of output wires,

e an assignment of components to elements, and sorts to wires,

o connectivity information saying which wires are connected to which elements,
and

e geometric information giving the size and position of each element.

We regard elements and wires as respectively the components and sorts of a signature
YA, and the assignment as a signature morphism from ¥, to A. These considerations
lead to the following definition of a ¥-net, which abstracts away from the geometric
information contained in a net list.

Definition. A Y-net A:oq...0, — 71 ...7, is a 4-tuple (X5, My, Sa, Th) where ¥y
is a finite signature, Sy and T, are labellings, and:

X
R
Zm&EA
\A@
)y
is a diagram in Sig. |

We can evidently view the ¥-net A as a multi-graph with an edge for each sort
in ¥4 and a vertex My(c) for each component ¢ in ¥;. A Y-net expresses circuit
connectivity using names whereas a picture makes connectivity explicit: thus a given
Y-net represents many pictures. Every picture determines a ¥-net uniquely up to the
equivalence ~ defined below.

Example. The ¥ ,34-net which builds a two-bit adder from two one-bit adders is
(X2adds Maada, L12345, Lers). The picture on page 2 is a picture representing the multi-
graph Y,44. O

Let STy be the labelling given by:

Ly..m

ST
Lm—}—l...m—}-nl \\\A JSA

EHT EA

L X =i JIeS D ppieb st £ e £ S it o Ittt et 4 § R & T i

Y
\SA SA/

commutes. We write A C A’ iff there is a morphism F : A — A" and A ~ A" iff
ACAN CA.If A~ A" we say that A is bihomomorphic to A’.

We shall now show that ¥-nets form the arrows of a ¥-allegory. This allows us to
combine nets using the upa operations, and to prove a close correspondence between
nets and pictures of circuits.

We first construct the composition and meet of two nets using pushouts in Sig
(which exist by Proposition 3).

Given nets A and A’ such that the diagram on the left commutes, we define the
net A; A’ by the pushout on the right:

Y Y
SA\ SA SA;A’
T T
RELLEG ;) S5
sA,\ sA,J
Ta My Ta M)
Yg——2n l—’EA'—’EA)

WY
MA/
by

Given nets A and A’ such that the diagram on the left commutes, we define the net
A N A’ by the pushout on the right:

STA STA
m+n m+n
ST A
STA/ STA/J ATX
My
EA’—’EAOA’
Man

M

b

Givenod =o0y...0,,, T=T1...Tp, and ¢ : & — 7, define:

A (S, My, Ty, Sy)

-~ T \=my*HoyHl..mHy 1. m)
usg € (Sw, Ls, Ly, Le)
fstzz = (Zmsns Loz L1mgn, L1om)
Sﬂda,%‘ = (Zm—}—n; Laf‘, Ll...m+n7 Lm—}—l...m-l—n)
Ae ¥ (2, M,S..T,)

Proposition 4 Let Net(X) be the category where

e objects are finite vectors of sorts,
e morphisms from & to T are nels A : 6 — T (considered up to ~) such that
Sas My = Lz and Th; My = Lz, and

o composition and identities are those defined above.

Net(X) is a X-allegory, with the upa structure defined above.

5 Nets are free

In this section, we sketch the proof that Net(X) is isomorphic to Free(X). Note that,
since Free(X) is the initial ¥-allegory, there is a unique X-allegory morphism:

v : Free(¥) — Net(Y)
In this section, we define a Y-allegory morphism:

A Net(X) — Free(Y)
and show that v and A form an iso.

Definition. A pre-net Il over ¥ is a pair (X1, Mp) where Xy is a finite signature and
My : ¥ — Y a signature morphism. A pre-net morphism F : 11 — Il is a signature
morphism £ : ¥ — Y such that My = F'; M. O

A pre-net can be thought of as a net in which input and output have not been specified.
Each prenet Il with sorts {o1,...0,} determines an object 3(11) of Free(X¥), via

() = Mpoy @ -+ - ® Mno,,.

B(II) is the bus comprising the wires of 11.
Each prenet morphism F : Il — II" determines a morphism #(F) : 3(11) — B(1I')
in Free(Y), via
m(F) = (ithgms jthm

Floi)=1;
where II" has sorts 71, ...7, and tth,, ,, :o1...0,— 0;is the tth projection function.

Pictures of the terms #(F') have no components and connect each input wire to
precisely one output wire. For example:

.
d

Yy Viliiiah VL " \1 / o t}LU v l\/llll& Vil 111U LU R U FY o1 Uil L ¥Y 11 o) N1 o244 Lulilaa AT
: I
bus of wires of 1I'.

Fach pre-net I determines a morphism #(II) : (II) — S(II) in Free(X), via

7(I) is pictured:

W(Lgl)c’HMHcle(Lﬁ)

(Lo Ve e (L)

7(1l) is obtained by composing all components of II in parallel. For each ¢, we use
the wiring interfaces 7(Lg,) and n(Lz) to obtain the appropriate inputs and ouputs
to component Mrc;.

Definition. We define A to be the identity on objects and to map the morphism
A: 6 — 7in Net(X) to

m(Sa);m(Xa, MA);7(Th)° 2 A(F) — A(T)
where:

SA : (Em,SA,MA) — (EA,MA)
Th: (X0, Ta; Mp) — (X4, My)

are pre-net morphismes. O

A(A) is pictured:

7(Sh) W(Lgl)oHMAcle(Lﬁ) 7(Th)°

(Lo Va7

Proposition 5 makes precise our intuition that #(II) is the normal form of the pre-net
IT and A(A) the normal form of the net A. The proof of this proposition includes
a proof of the expressiveness of nets (every term is provably equal to a term in the
image of \), the expressiveness of terms (every net is bihomomorphic to a net in the
image of v) and of normalisation (equal nets have equal images under \).

Proposition 5

1. If A C A then B A(A) T A(A).
2. Fe=Xuve) for any e.
3. A~v(AA) for any A.

4. A and v are YX-allegory morphisms.

Thus A and v form a ¥-allegory isomorphism.

- R RELe Ly 2o L et i v et it e AL A Y e e

First, define a upa term to be standard iff it is given by:
en=cl|idx | e;fstxy | e;sndxy | forkx;e|e®e|e®

We prove by induction on the structure of a upa term ¢ that there is a standard s
such that F ¢ = s. This proof uses the identities:

e f = stk giforkxez; (e @ f° @ sndx z); (forky @ idz);sndy,z
Fenf = forkx;(e® f);forksy

Second, we show by induction on e that if e is standard then F e = A(v e). The only
difficult case is when e = forkyx; f. Let:

F Euf - Euforkx;uf

be the signature morphism given by the pushout diagram for the composition v forkx; v f.
Diagram chasing shows that F': v f — vforky; v f is a net morphism. Then we show:

Fforks; n(S, ¢); = 7S, forksw £); T(F)°
Flgnh)(F) = (g;=(F)) N (h;w(F))
By equational reasoning, we show that:
F forks; f = A(v(forks; f))

The other cases are simpler. a

6 Relations

Our model of circuit design is closely related to Sheeran’s [6] relational model RUBY.
In this section we show that Sheeran’s relational interpretation is sound and complete
for the axioms of a upa. This result shows that we can reason about equality of RUBY
programs using the upa axioms, and that these axioms suffice to prove the equality
of any two programs which compute the same relation.

Definition. Let Rel be the allegory of sets and relations. A Y-interpretation p
assigns:

e aset p(o) to each sort o in X.
e a relation p(c) : p(o1) X -+ X p(o,) — p(71) X --+ X p(7,) to each component
C:01...0pm —T1...Tp 1N 2.

We write [—]) for the homomorphic extension of p to Y-nets. O

Theorem 6 There is a faithful representation (that is, a faithful morphism in UPA)
from Free(X) to Rel” where J indexes the endomorphisms of U in Free(Y).

Proof. Follows from the following results of [3]. Free(X) is fully and faithfully repre-
sentable in its tabular reflection Tab(Free(X)), which is the category of relations of a
regular category C. The endomorphisms of U in Free(X) are precisely the subobjects
of the terminal object 1 in Tab(Free(X)), and so by Freyd and Scedrov’s proof of the
Henkin-Lubkin theorem, there is a collectively faithful family {7} : C—Set | j € J}.
By regularity, Rel(Map(Tab(Free(X)))) ~ Tab(Free(X)), and so we can find a collec-
tively faithful family {F} : Free(¥) — Rel | j € J}. O

4 ML VAL LA Ay VA = sV) e Al e s i WA s A Ve AL 0 e A VAL R AR

that e = fiff [e], = [f], for all X-interpretations p.

Proposition 7 e = f iff for all E-interpretations p we have [e], = [[],.

Proof. Soundness (=) is immediate as Rel is a upa. Completeness (<) follows
from Theorem 6. We have a collectively faithful family {F; | j € J}, and F; must

be the homomorphic extension of a X-interpretation p;. Thus if Vp. [e] , = [f], then
Vi€ J. Fje=F;f, sot e= fsince {F;|j € .J} is collectively faithful. O

We now consider why we cannot represent Free(X) faithfully in Rel. Consider the
following net lists of type U/ — U in the signature ¥4 with three components ¢, d, e :

U—-U:

Ao Ay Al

For any distinct a,b € {c,d, e}, there is a ¥ 4.-interpretation which maps a to () and b

to id, and so a@ and b must be distinguished in Free(¥ 4.). However, any ¥.4.-allegory

morphism F' : Free(X.4.) — Rel identifies at least two of these net lists, since the unit

1 of Rel has precisely two endomorphisms () and id;. Hence F' cannot be faithful.
Any net containing an isolated net, such as ¢ in:

/]

i

has a subnet u%; g;uy. The term u%; g; uy is an endomorphism on U.
In a Y-interpretation p where [[g]]p # () the subnet u$;¢g;uy can be regarded as
garbage and its removal garbage collection. Garbage collection does not alter the

relation denoted by a circuit.
In a ¥-interpretation p where [[g]]p = () we regard the subnet ¢ as a short-circuil.
For example, interpreting — as boolean negation, id N— is a short circuit, with picture:

If a circuit f contains a short-circuit then [[f]]p = (), and so short circuits of the form

u%; g; uy cannot be garbage collected, even though they are isolated from the rest of
the circuit.

The relational semantics of a net depends on which of its isolated subnets can be
garbage collected, which is determined precisely by which endomorphisms of U can
be garbage collected. This is why there is no faithful representation of Free(¥) in
Rel.

7 Future work

This paper has shown how three different approaches to circuit design can be inte-
grated. Some open problems remain.

e Aty e A LV Pl L A AL AL AL e ey A AL By e vl ioe s, 4 AU VL A AL

is needed in order to prove equivalences such as:

A

There is an obvious definition of a set of ¥-equations F, from which we can define the
notion of (¥, K)-allegory, and the free (X, F)-allegory Free(¥, F/). However, there is
no obvious notion of (¥, F)-net homomorphism such that £ = A(A) C A(A') iff there
is a homomorphism F' : A’ — A.

In Section 6, we showed that there was no faithful representation of Free(X) in
Rel, due to the semantics of isolated subnets. We conjecture that a semantics for
nets which takes garbage collection into account is faithfully representable in Rel.

The issues of simulation, bisimulation, refinement and substitution of nets for
components merit further investigation.

Acknowledgements

We thank Graham Hutton for his contribution to the initial development of this work
and Edmund Robinson and Paul Taylor for useful comments and criticisms. Peter
Freyd developed many of the notions of this paper independently, and we greatly
appreciate his comments.

References

[1] Carolyn Brown and Graham Hutton. Categories, allegories and circuit design. To

appear in Proc. LICS, 1994.

[2] Aurelio Carboni and Bob Walters. Cartesian bicategories 1. J. Pure and Applied
Algebra, 49:11-32, 1987.

[3] Peter J. Freyd and Andre Scedrov. Categories, Allegories. North-Holland, 1990.

[4] Randall L. Geiger, Phillip E. Allen, and Noel R. Strader. VLSI Design Techniques
for Analog and Digital Circuits. McGraw Hill, 1990.

[5] Steven M. Rubin. Computer Aids for VLSI Design. Addison Wesley, 1987.

[6] Mary Sheeran. Describing and reasoning about circuits using relations. In

J. Tucker et al., editors, Proc. Workshop in Theoretical Aspects of VLSI, 1986.

