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Abstract

This paper presents an integrated core data and behaviour language for the new LOTOS standard. It is not in-

tended to be directly usable for specifications, but some additional syntax sugar can be defined to make it more usable
and compatible with existing specifications. The language is first-order, monomorphic, strongly typed and allows
subtyping. It supports concurrency, real-time, exception handling, pattern-matching and some imperative features.
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1 Introduction

The ISO formal language LOTOS [1, 6] is composed of a process algebra part (based on CCS [10] and CSP [4]) to

describe behaviours, and an algebraic language (ACT ONE [3]) to describe the abstract data types. This language is

mathematically well-defined and expressive: it allows the description of concurrency, nondeterminism, synchronous
and asynchronous communications. It supports various levels of abstraction and provides several specification styles.

Good tools exist to support specification, verification and code generation. Despite these positive features, this language
is currently under revision in ISO [11] because feedback from users has indicated that the usefulness of the language is

limited by certain characteristics relating both to technical capabilities and user-friendliness of the language.

Two main enhancements address datatypes and time. There is no notion of quantitative time in standard LOTOS,
which precludes any precise description of real-time systems. Furthermore, the LOTOS algebraic datatypes are not
user-friendly and suffer from several limitations such as the semi-decidability of equational specifications, the lack of
modularity and the inability to define partial operations.

For example, a simple router of packets containing a data field and an address field might be defined in standard
LOTOS:

process Router [in, left, right] : noexit : =
in?p: packet;

(
[getdest(p) = L] — left!getdata(p) ;Router [in, left, right]
[0 [getdest(p) = R] — right!getdata(p) ; Router [in, left, right]
)

endproc

This definition suffers from some problems of readability for non-LOTOS experts (for example the use of selection
predicates and choice rather than a case construct) but is quite understandable compared to the definition of the packet



datatype:

typePacket is
sorts
packet, dest
opns
mkpacket : dest,data — packet
getdest : packet — dest
getdata : packet — data
L : — dest
R : — dest
egnsforall p:packet, de:dest, da:data
ofsort packet mkpacket (getdest (p),getdata (p)) =p
ofsort dest getdest (mkpacket (de,da)) = de
ofsort data getdata (mkpacket (de,da)) — da
endtype

This can be compared with the equivalent process declaration in the core language presented here:

process Router Lin(packet) , left(data) ,right(data)] : exit (none) is
local
var p:packet
in
in(7p);
casep.deis
L — left(tp.da)
| R — right(!p.da)
endcase;
Router Lin, left, right]
endloc
endproc

with the corresponding data type declarations:

typedestisL | R endtype
type packet is (de = dest,da = data) endtype

Note that:
o The gates in the Router process are explicitly typed.
o We can use field projection to access the fields of the packet, rather than using hand-crafted selection functions.
o The scope of the variables de and da are made explicit by a local variable declaration.
e The case statement is made explicit, rather than implicit using selection predicates and choice.

We have moved the recursive call outside the case statement, avoiding the need to duplicate it.

o The definition of the “dest’ type as a union, and the ‘packet’ type as a record is made explicit, and much shorter.



The revised LOTOS language is a two-layer language. The higher layer is the user-level language, and addresses all
the concerns related to the user-friendliness and expressive power of the language. The lower layer is the core-level
language which we will present in this paper. The user-level language is mapped to the core-level language using a
combination of syntax sugar (described in this paper) and static semantics (to resolve issues such as overloading, and
not described in this paper).

The static and dynamic semantics of the core-level language is formally defined in this document. The static
semantics is based on judgements such as ¢ - E = exit (T) meaning ‘in context ¢ expression E has result type T’ for
example:

1= float,x = float, / = (float, float) — exit (float) - 1/x = exit (float)

means ‘in a context where 1 and x are floats, and / is a function from pairs of floats to floats, then the expression 1/x
has result type float’. The static semantics includes:

o User-definable record, union types, and recursive types.
e Subtyping (for example we could allow integers as a subtype of floats).

o Imperative write-once variables, with a static semantics which ensures that every variable is written before read,
and that shared variables cannot be used for communication between processes.

o Gates are explicitly typed (but we can use subtyping to provide the power of standard LOTOS untyped gates).

. .. . N . . . .
The dynamic semantics is based on judgements such as £ - E o g meaning ‘in environment £ expression E reduces

(with action a (N)) to E'’. For expressions, possible values of o are an exception X or a successful termination action
0. For example the expression 1/2 terminates with value 0.5:
F1/2%92 plock

and 1/0 raises the exception Div:
F1/0 Y9 plock
The dynamic semantics includes:
¢ Behaviours communicating on gates with other behaviours.

o Behaviours or expressions raising exceptions, which may be trapped by exception handlers.

o Behaviours with real-time semantics.

In fact, the semantics of expressions is given by treating expressions as a subclass of behaviours: expressions can only
perform exception or termination actions, and cannot communicate on gates, or have any real-time behaviour. Unifying
expressions and behaviours in this way allows for a much simpler and uniform semantics.

The language described in this paper is based on previous proposals for real-timed LOTOS [9] and LOTOS with
functional datatypes [8, 7]. Many of the language features, especially the imperative features, are based on the proposed
user-level language [5].

2 Basic concepts

2.1 Declarations

A specification in the core language is given as a sequence of declarations (future revisions will include a module
system to structure these declarations, but for the moment we will think of them as a sequence).

These declarations come in three flavours: type declarations, function declarations, and process declarations. In
the core language, all type and constructor identifiers must be unique—all treatment of overloading is left to the user
language.



Typedeclarations A type declaration is either a type synonym or a datatype declaration. A type synonym declares a
new type identifier for an existing type. For example we can declare a type ‘point” synonymous with a record of floats
as:

typepointis
(x=float, y = float)
endtype

and we can declare a recursive data type of integer lists as:

typeintlistis
nil
| cons(int, intlist)
endtype

Type synonyms can be used interchangably, for example the following declarations are the same:

type colpixel is
(pt=>point, col = colour)
endtype
type colpixel’ is
(pt=- (x=-float,y = float) , col = colour)
endtype

We can use colpixel and colpixel’ as the same type (for example any function expecting a colpixel will accept a
colpixel’). More succincltly, type equality is structural not by name.

Data type declarations define new types, listing all the constructors for that type. Since there can be more than one
constructor, we can define union types, for example:

typepduis
send (packet, bit) | ack(bit)
endtype

It is possible to define recursive data types, such as the datatype of lists above.
The core language does not provide a mechanism for defining parameterized types—this is left for the module
system.

Function declarations A function declaration defines a new function, which can be used in data expressions. For
example:

function reflect (?p:point) : pointis
(X=p.y,y=p.x)
endfun

The function parameters are given as a list of typed variables—in core E-LOTOS we always decorate binding occur-
rences of variables with 7. A function can have more than one input parameter, and can return a record of results, for



example (we will fill in the details later):

function partition (?x:int, 7xs:intlist) : (intlist, intlist) is
local
var less:intlist, gtr: intlist
init
less : = all of xs less than x;
gtr : = all of xs greater than x
in
(less, gtr)
endloc
endfun

This function can be called (for example):

function quicksort (?xs:intlist) is
casexsis
nil —
nil
| cons(?y,?ys) —
local
var |:intlist,g: intlist
init
(71,79) := partition (y,ys)
in
append (quicksort (1) ,cons (y, quicksort (g)))
endloc
endcase
endfun

This style of function is very common, so we provide some syntax sugar for it, using out parameters. For example, the
partition function could have been written:

function partition (in ?x:int, ?xs:intlist, out less: intlist, gtr: intlist) is
less : = all of xs less than x;
gtr := all of xs greater than x

endfun

and then used in quicksort as:
partition (y,ys, ?l,7g)
rather than:
(71,7g) := partition (y,ys)

It is possible to bind a variable to the entire argument list of a function—this is useful if the function is a wrapper to
other functions, for example:

function F (7all asint, intlist) : intlistis
F1 all;
F all

endfun



has the same semantics as:

function F (?x:int, ?xs:intlist) : intlistis
F1 (X,xs);
F, (x,xs)

endfun

By default, the whole argument list is bound to a special variable $argv, so we could have written:

function F (int, intlist) : intlistis
F, $argv;
F, $argv

endfun

Functions may raise exceptions (described below) which have to be declared, for example:

function hd (?xs:intlist) : intlistraises [Hd] is
casexsis
nil — raise Hd
| cons(?x,any) — x
endcase
endfun

When such a function is called, the Hd exception is instantiated, for example the following will raise the exception Foo:
hd (nil) [Fool

Most often, we use the same exception name as in the declaration:
hd (nil) [Hd]

This acts as a visual reminder that the hd function can raise the exception Hd.
Exceptions can be typed, for example:

function foo () raises [Foo(string)] is
raise Foo(""Hello world")
endfun

Any untyped exceptions are assumed to have type ().
Note that in the core language, function declarations are just syntax sugar for a subclass of process declaration.

Process declarations Process declarations in the core language are very similar to function declarations: they have
parameter lists, in and out parameters, result type (indicated with an exit annotation) and a list of typed exception
parameters.

However, there are two important differences between functions and processes: processes can have real-time be-
haviour, and they can communicate on gates. For example, a simple counter process is defined:

process Counter [up() ,down()] is
up; (down | | | Counter [up,down])
endproc

By default, gates have type (etc), which allows communication of arbitrary data, for compatibility with existing
LOTOS.
Process behaviours are discussed further in Section 2.4.



2.2 Typing

Type expressions We have already seen a number of type expressions, for example:

The data type intlist, and the type synonym point are both type identifiers.

The type (x=float,y=-float) is a record type with fields x and y.

The type (int, intlist) is a pair type: in fact this is syntax sugar for the record type ($1=int,$2 = intlist).

The type () is the trivial record with no fields.

Record types can be extensible, for example the type (name = string, etc) is a record type with at least one field, but
which can be extended to have others.
In addition to type identifiers and record types, we have two special types:

¢ The empty type none with no values, used to give the functionality of processes such as stop or Counter which
never terminate.

o The universal type any which is a supertype of every other type, used to give a type for gates which can commu-
nicate data of any type, for compatibility with existing LOTOS.

Subtyping The core language supports subtyping, for example we could have integers as a subtype of floats. The
built-in subtyping is on records: we allow a record type (etc) which is a supertype of any other record. For example,
the type (name =>string, etc) is a record with at least one field ‘name’ of type string. This record type can be extended
to many subtypes, for example (name = string,age = int,etc) or (name = string,age = int). Note the difference
between these last two types: the former can be extended with further fields, where the latter cannot.

We include a special none type, which has no values. The type none is the most specialised type, and any is the
most general type. Since a record type with a none field cannot have any values, we can identify it with none, for
example the pair type (none,int) has no values, so is equivalent to the type none. This means that the one-element
record type (none) is the most specialized record type, and (etc) is the most general.

For example, stop is a behaviour of type exit (none), meaning that it will never terminate. Since (none) is the
least general record type, we can use stop wherever a process of any record type is required.

Similarly, if G is a gate of type gate(etc) then we can communicate values of any type along G—this is the same
semantics as the existing untyped gates in standard LOTOS.

2.3 Data expressions

In contrast to standard LOTOS (which has a separation between processes and functions), the core language presented
here considers functions to be restricted forms of processes (with no communication or real-time capabilities). The
language of expressions is therefore very similar to the language of behaviours, and shares many features such as
pattern-matching, exception raising and handling, and imperative features.

Normal forms A normal form is a data expression which cannot be reduced any further. For example 1+ 1 is not in
normal form, but 2 is. A normal form is one of the following:

e A primitive constant, such as "Hello world" or 2, for one of the built-in types. We will not consider any of the
primitive constants further in this paper, and leave this until the standard libraries are to be defined.

e A variable, such as x or gtr.

e A record of normal forms, such as (x=1.5,y=—3.14), () or (5,nil()) (which is just syntax sugar for
($1=5,%2=nil(0))).

e A constructor applied to a normal form, such as nil() or cons(5,nil()).
We will let N range over normal forms, and (RN) range over record normal forms.

10



Pattern-matching The expression language includes a case operation, which allows branching depending on the
value of an expression, for example we can find the head of a list with:

casexsis
nil — raise Hd
| cons(?x,any) — x
endcase

This case operation consists of a value to branch on (in this case xs) together with a list of possibilities, given by
patterns. If the list is empty, then the first pattern will match, and the Hd exception will be raised. If the list is non-
empty, then the second pattern will match, x will be bound to the head of the list, and will then be returned as the
result.

Case expressions are evaluated by evaluating the expression to normal form, and then attempting to match the
resuling value against each pattern from top to bottom until a match is found. If the value does not match any pattern
(which cannot occur in the above example), a special Match exception is raised.

Note that cons(?x,any) is a structured pattern. At the highest level, we find the list constructor cons, built from a
record pattern that includes the elementary patterns ?x and any. For a list to match this pattern, it has to have the form
cons(hd,tl).

When a list matches the pattern cons(?x,any), the variable x is bound to the head of the list, for example producing
the substitution [x = hd]. Since substitutions have the same syntax as records, we will make a pun between record
normal forms and substitutions.

We also allow expressions in patterns, which are evaluated when the pattern is matched, and match any value equal
to the result. This is most often used to match against constants, for example:

casexis
10 — "zero"
| any — "nonzero"
endcase

Sometimes, it is useful to match against an expression, for example we can check to see if a list is a palindrome (using
a function which reverses a list) with:

casexsis
Ireverse(xs) — "palindrome"
| any — "nonpalindrome"
endcase

The main use of matching against expressions is in communication, as we shall see in Section 2.4.
Patterns can be explicitly typed, which is useful in the presence of subtyping. For example, if int is a subtype of
float, then we can construct a case statement to decide whether a value is an integer or not:

case x:float is
any:int— "integer"
| any — "noninteger"
endcase

Again, the main use for explicitly typed patterns is in communication.
A pattern is one of the following:

¢ A bound variable, for example 7x.

o A free expression for example !0 or !reverse (xs).

11



e The wildcard pattern any.

o A record pattern, for example (x= 7px,y=-7py), (), or (?x,any) (which is just syntax sugar for ($1=
7X,$2 = any)).

o An extensible record pattern, for example (x = ?px,etc), (etc), or (?x,etc) where etc is a pattern which
matches any other fields. Note the difference between (7x,any) and (?x,etc): the former will only match
tuples with two fields where the latter will match tuples with any (positive) number of fields.

¢ A record pattern with an asclause to bind part of the record, for example (7all as?x,etc) or (?x, 7all asetc).
e A constructor applied to a pattern, for example nil() or cons(?x, any)
o An explicitly typed pattern, for example ?y:int.

It is easy to define operators such as if-statements as syntax sugar on top of the case operator, for example the expres-
sion:

can be expanded to:

caseE is
true — E;
| any — Ep
endcase

Exceptions Expressions can raise exceptions, in order to signal an error of some kind, for example when we attempt
to take the head of an empty list:

function hd (?xs:intlist) : intlistraises [Hd] is
casexsis
nil — raise Hd
| cons(?x,any) — x
endcase
endfun

Exceptions either propogate to top level, or are trapped by an exception handler. For example we can declare a function:

function hd0 (?xs:intlist) : intlistis
trap
exception Hd is0 endexn
in
hd (xs) [Hd]
endtrap
endfun

Then hdO (cons(a,as)) returns a, and hd0 (nil) returns 0, since the Hd exception raised by hd is trapped by the
exception handler.

12



Exceptions can be typed, for example:

trap
exception Error (?code:int) is
case code is
10 — "minor error"
| 11— "major error"
| any — raise Unknown (code)
endcase
endexn
in

endtrap
We can declare more than one exception in a single trap operator, for example:
trap
exception Foo isE; endexn
exception Bar isE, endexn
in
E
endtrap
Note that Foo and Bar are only trapped in E, not in either E; or E,. So if E raises Foo or Bar, then it will be handled,

but if E; or E; raises Foo or Bar then it will not.
In addition, we can write a ‘handler’ for the successful termination of an expression, for example:

trap
exception ParseError is0 endexn
exit (7x:string) isstring2int (x) [ParseError] endexit
in
E
endtrap
This is useful in the case where we want any ParseError exception raised by E to be trapped, but not any ParseError
exception raised by the call to string2int. It is impossible to write this without the capability to handle successful
termination—of the two obvious ‘solutions’, one does not type-check:
string2int (
trap
exception ParseError is0 endexn
in
E
endtrap
) [ParseError]

and the other traps the ParseError exception raised by string2int:
trap
exception ParseError is0 endexn
in
string2int (E) [ParseError]
endtrap

13



The trap operator both declares and traps the exception—this means it is impossible for an exception to escape outside
its scope. This can be contrasted with a language such as SML where exception declaration and handling are separated,
so it is possible for exceptions to escape their scope:

local
exception Foo
in
raise Foo
end
Note that the only way in which an exception can be observed by its environment is by trapping it—it is impossible for
expressions to synchronize on exceptions.
Nondeterminism In the presence of exceptions, order of evaluation becomes important, for example depending on
the order of evaluation we can get different exceptions raised by the expression:
(raiseFoo,raise Baz)

The semantics given in this paper is nondeterministic: record expressions are evaluated in parallel, so in the above
example there is a race condition between the Foo and Baz exceptions. This means that the data expression language
is nondeterministic, for example a ‘coin tossing’ random boolean generator is:

trap

exception Foo (?b:bool) isb endexn
in

(raise Foo (true) ,raise Foo (false))
endtrap

Since the data expression language contains nondeterminism, we include an explicit nondeterministic expression any T
which nondeterministically generates a value of type T. For example the above coin tossing expression is equivalent to
any bool.

Imperativefeatures The data expression language is functional, but supports a language of record expressions which
mimics an imperative language with write-once variables. For example, the imperative expression:

?X :=0; ?y :="hello world";
is equivalent to the behaviour:

exit (x=-0,y="hello world")

The simplest imperative expression is an assignment P : = E, where P is an irrefutable pattern and E an expression, for
example:

?X :=4

Since there is an expression on the right of an assignment, we can assign non-trivial expressions to patterns, for example
a random number generator is:

?X :=any int
As we remarked earlier, we allow the use of out parameters as syntax sugar for assignment, for example:

partition (y,ys, ?l,7g)

14



is shorthand for:
(71,79) := partition (y,ys)

There is a sequential composition operator whose syntax is E; ; E». It is like the LOTOS enabling operator because it
combines two expressions, but it has a slightly different semantics: it does not perform an internal i action.

The local operator is used to restrict the scope of variables, with syntax local var LV in E endloc, where LV is a
list of typed variables. For example:

local

var x:int
in

?x:=E; XxX
endloc

has the same semantics as E xE (as long as E is deterministic). Optionally, some of the local variables can be initialized
with an init section, for example we could have written:

local

var x:int
init

?x:=E
in

X * X
endloc

An iteration (or loop) operator is included in the core language. This operator is justified in the core language for two
reasons:

o It was decided to include one in the user-level language.
o It allows recursive processes to be specified without using explicit process identifiers.

Loops with local variables can be declared—these local variables can be initialized, and should then be assigned to on
each iteration of the loop. A loop can be broken with a break command. For example, an imperative function to sum
a list of numbers can be defined:
function sum (?xs:intlist) : intis
loop(int)
var ys:intlist, total : int
init
?ys:=xs; 7total:=0
in
caseysis
nil — break (total)
| cons(?z,7zs) — 7total :=total +z; ?ys :=zs
endcase
endloop
endfun

This loop construct is defined in terms of a simpler unbreakable loop with syntax loop forever var LV init E; in E,.
The similarity to the syntax of local variables is not accidental, since (up to strong bisimulation) we have:

loop forever var LV init E; in E;
= local var LV init E; in loop forever var LV init E; in E;
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function partition (?x:int, 7xs:intlist) : (intlist, intlist) is
loop ((intlist, intlist) )
var less:intlist, gtr: intlist, rest: intlist

init
less : = nil; gtr :=nil; rest := xs
in
caserestis
nil —
break ((less,gtr))
| cons(?y,?ys) [y<x] —
7less :=cons(y,less); 7gtr := gtr; ?rest :=ys
| cons(?y,?ys) —
7less := less; 7gtr :=cons(y,gtr) ; ?rest :=ys
endcase
endloop
endfun

Figure 1: The imperative version of partition

The breakable loop is then defined using exception handling, for example the above loop is shorthand for:

trap
exception Inner (?x:int) isx endexn
in
loop forever
var ys:intlist, total : int
init
?ys:=xs; 7total:=0
in
caseysis
nil — raise Inner (total)
| cons(?z,7zs) — 7total :=total +z; ?ys :=zs
endcase
endloop
endtrap

We also allow named loops, so that you can break a loop other than the innermost one, for example:

loop fred in ...
loop janetin ...
if b then break fred ...

As an example of the imperative features, an imperative definition of quicksort partitioning is given in Figure 1. It can
be compared with the functional definition given in Figure 2.
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function partition (?x:int, 7xs:intlist) : (intlist, intlist) is
casexsis
nil —
(nil, niD)
| cons(?y,?ys) —
local
var less:intlist, gtr: intlist
init
(7less,?gtr) := partition (X,ys)
in
if x>y
then (cons(y, less), gtr)
else (less, cons(y,gtr))
endif
endloc
endcase
endfun

Figure 2: The functional version of partition

Static semantics The static semantics for expressions is given by translating them into the behaviour language de-
scribed below. For expressions which do not assign to variables, the typing is given by judgements:

CFE=exit (T)

meaning ‘in context ¢, expression E has result type T’. The context ¢ gives the type for each of the free identifiers
used in E, for example we can deduce:

X=>int, *= (int,int) — exit (int) F X*X= exit (int)

meaning ‘in a context where x is an integer and = is a function from pairs of integers to integers, then x* X returns an
integer’.
Expressions which assign to variables but do not return a result have typing given by judgements:

CFEz it Vi=T,...,Vin=T)

meaning ‘in context ¢, expression E assigns to variables V; through to V, the types T, through to T,’. For example we
can deduce:

2=int F ?X:=2= exit (x=int)

meaning ‘in a context where 2 is an integer, then ?x:=2 assigns an integer to the variable x’.
Expressions which both assign to variables and return a result have typing given by judgements:

CFE=eit (T,Vi=Te,...,Va=>Th)
which combines the above two semantics. For example:
2=int, x= (int,int) — exit (int) F ?x:=2; X*xX= exit (int,x=int)

meaning ‘in a context where 2 is an integer and = is a function from pairs of integers to integers, then ?x:=2; x* X
assigns an integer to the variable x and returns an integer’.

Note that x is not free in the expression ?x:=2; xx*x since it is bound by the assignment statement. This is reflected
in the type judgement above, which does not require x to be in the context.
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Dynamic semantics The dynamic semantics of data expressions is defined by the translation into behaviour expres-
sions. There are two ways in which a data expression can have observable behaviour: either it terminates successfully,
or it raises an exception.

Expressions which terminate successfully with a value have dynamic semantics given by judgements:

g
meaning ‘in environment £, the expression E returns normal form N and then behaves like E’’. As it happens, E’ will
always be an expression with no behaviour, since an expression cannot do anything after terminating, but we use this
notation for symmetry with the case of exception raising. The context gives the bindings of function identifiers, and
other similar static information required at run-time. For example:

F 25222 plock
maning ‘the expression 2 x 2 returns the value 4 and then has no observable behaviour’.
Expressions which terminate successfully having assigned values to variables have dynamic semantics given by
judgements:

O(Vi=>Np,...,Vh=Np)
Z"E 1 1 n n EI

meaning ‘in context £, the expression E assigns normal forms N; through to N, to variables V; through to V,,’. For
example:

Fo7x:=2 S(x=2) block

meaning ‘the expression ?x:=2 terminates, having assigned the value 2 to the variable x, and then has no observable
behaviour’.
Expressions which both assign to variables and return a result have dynamic semantics given by judgements:

O(N,Vi=Ny,....,Vh=Np)
E+E Il

combining the two semantics, for example:

O(4,x=2)
-—

B o?X:=2; XxX block

Similarly, the semantics of exceptions is given by judgements:

r+E XD E
For example:
raiseX (1) X2 plock

The semantics is defined formally in Section 14.

2.4 Behaviour expressions

Some knowledge of LOTOS is assumed in this paper. However, for completeness, we provide the syntax of Basic
LOTOS (i.e. LOTOS without datatypes) together with some brief explanations.

B:=stop|exit|M[G*] |G;B|i;B|B [ B|BIL[G*]|B|hideG*inB|B>»B|B[>B
The semantics is as follows:

o Deadlock: stop is an inactive behaviour.
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o Termination: exit is a behaviour that terminates successfully. It performs an action on gate & and then deadlocks.
e Process instantiation: M[G] instantiates the previously delared process definition with parametersé.

o Action-prefix: G;B is a behaviour that first performs action G and then behaves like B.

o Internal action-prefix: i;B is a behaviour that first performs the internal action i and then behaves like BB.

o External choice: B, [] By is a process that can behave either like By or like B, depending on the environment.
o Parallelism: By | [G1l B, is the parallel composition of B; and B, with synchronisation on the gates in G.

o Abstraction: hide G * in B hides in behaviour B all the actions from the set G, i.e. it renames them intoi.

e Enabling: By » By is the sequential composition of B; and B, i.e. B, can start when By has terminated success-
fully.

o Disabling: B, [> B, allows B, to disable B; provided B; has not terminated successfully.
The main differences between this language and the core language that we have designed are as follows:

o Actions are particular behaviours and the two forms of sequential composition (action-prefix and enabling) are
unified.

o New features are added such as pattern-matching, exceptions, assignment, time and other operators (e.g. an
explicit renaming operator).

The behaviour language can be seen as an extension of the data language with communication between parallel pro-
cesses and real-time features.

Communication Behaviours can communicate on gates. The simplest communicating process is one which syn-
chronizes on a gate G: this is just written G. Such synchronizations can then be sequentially composed, for example a
behaviour which alternates between in and out actions is:

loop forever in
in; out
endloop

Behaviours can also send or receive data on gates, for example a one-place integer buffer is:

loop forever

var x:int
in

in(?x); out(!'x)
endloop

Here the variable x is bound by the communication on the in gate, and is free in the communication on the out gate.
The resulting behaviour copies integers from the in gate to the out gate.
When synchronizing on a gate, you can specify any pattern to synchronize on, for example:

G(age= '28,name = 7na,address = (number = 7no, street= !"Acacia Ave",€tc))

will synchronize on any person aged 28 living in Acacia Avenue, and will bind the variables na and no appropriately.
This use of patterns in communications is the main reason for allowing 7 and ! in patterns.
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You can also specify a selection predicate specifying whether a synchronization should be allowed, for example to
select anyone in their 20s living on Acaica Avenue, you might say:

G(age = 7a, name = 7na,address = (number = 7no, street= !"Acacia Ave",€tc))
[20 < aandalsoa < 29]

Gate parameters are given in process declarations, for example:

process Buffer [inint) ,out(int)] : exit (none) is
loop forever
var x:int
in
in(?x); out('x)
endloop
endproc

Gates may be typed: by default each gate has type (etc), so can communicate data of any type, for example:

process OverloadingExample [overloaded] (!x:int, !y:bool) is
overloaded(?x:int) ;
overloaded(?y:bool)

endproc

The first communication on the overloaded gate has to be of type integer, and the second has to be of type boolean.
We can use as patterns to match against all or some of a record. This is particularly useful when the record is
extensible, for example we can write a simple router capable of handling any type of data as:

process Router [in(de = dest, etc) , left,right] : exit (none) is
local
var destination: dest, data: (etc)
in
in(de = 7destination, 7data as etc) ;
case destination is
L — left!data
| R — right!data
endcase;
Router Lin, left, right]
endloc
endproc

Concurrency Concurrent behaviours can synchronize on their communications. For example, two behaviours which
are forced to synchronize on all communictions are:

G (address = (number=>?no, street=> !"Acacia Ave",€tC),€tC)
|| G(age=>'28,name = 7na,address = any)

Since the two behaviours are forced to synchronize on the gate G, this has the same semantics as:

G(age= '28,name = 7na,address = (number = 7no, street= !"Acacia Ave",€tc))
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Data may be communicated in both direcions in a synchronization, for example:

G(age = 128,name = 7na, etc) ; B;
|| G(age=7a,name=-!"Fred",€tc);B,

has the same semantics as:

G(age= '28,name = !"Fred",€tcC) ;
(7na:="Fred"; B;) || (7a:=28; By)

Parallel behaviours have to synchronize on termination, for example the following will terminate immediately, after
setting variables x and y:

x:=1]]y:=2
Two behaviours which have no synchronizations at all (apart from synchronizing on termination) are:

overloaded(7x:int)
| 1| overloaded(?y:bool)

This will communicate twice on the overloaded gate: once inputting an integer, and once inputting a boolean, but the
order is unspecified. Once both inputs have happened, the process can terminate. This process has the same semantics
as:

overloaded(7x:int) ; overloaded(?y:bool)
[1 overloaded(?y:bool); overloaded(?x:int)

Note that the variables bound by concurrent processes are all the variables bound by the components, and that (since
variables are write-once) there is no possibility of communication by shared variables.

Time Behaviours have real-time capabilities, given by three constructs:
o atime type, with addition and comparisons on times,
e a wait operator, to introduce delays, and
e an extended communication opertor, which is sensitive to delay.

The time datatype is a total order with addition. We shall let d range over values of type time.
The delay operator is just written wait(d) which delays by time d and then terminates. For example a behaviour
which communicates on gate G every time unit is:

loop forever in
G;
wait(1)
endloop

We can delay by an arbitrary time expression wait (E ), for example:

loop forever
var x:time
in
G(?x);
wait(x)
endloop
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Since time expressions may be nondeterministic, we have a simple way to write a nondeterministic delay:
loop forever in
G;
wait(any time)
endloop

Communications can be made sensitive to time by adding a @P annotation, which matches the pattern P to the time at
which the communication happens (measured from when the communication was enabled). For example:

G(?x:int)e?t[t < 3]

is a behaviour that agrees to accept an integer value (to be bound to variable x), provided that less than 3 time units
have passed, whereas:

G(?x:int)e!'3

is similar, but the action can only occur at time 3, because the pattern variable has been replaced by a pattern value !3.
This behaviour has the same semantics as:

local
var t:time
in
G(7x:int)e?t[t = 3]
endloc

The time features are directly inspired by ET-LOTOS [9] but are adapted it to fit with other new paradigms of the
language, such as:

e action is a behaviour,
o sequential composition does not generate an i action,
o the presence of pattern-matching,
o the presence of exception raising and handling.
Urgency An important concept is urgency: a behaviour is urgent if it cannot delay—for example if there is a compu-

tation which must be performed immediately. For example, sequential composition is urgent—once the first behaviour
terminates, control is immediatly passed to the second without delay. For example, consider the process:

loop forever in
loop forever in tick endloop [> wait(1);
loop forever in tock endloop [> wait(1)
endloop

This will perform any number of ‘tick” actions during the first time interval, then at time 1 control is handed over, and
any number of ‘tock’ actions is performed until time 2, and so on. Each of the hand-over is urgent, so we know it is
impossible for a ‘tick’ action to happen in an even time interval, or a ‘tock’ action to happen in an odd time interval.

In the core language, the urgent actions are:

o Internal (i) actions, whether written explicitly or caused by hiding.

o Exception raising (X) actions.
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e Termination () actions.
All of these actions happen immediately, for example it is impossible for the G action to be delayed in the behaviour:
i ; (G [exit) ; raiseX

However, there is one exception to the urgency of these actions: it is possible for a termination to be delayed by a
parallel behaviour. For example the following behaviour will terminate at time 2:

wait(1) ; exit | | wait(2) ; exit

The urgent semantics of exceptions given here is basically the same as the ‘signals’ model of Timed CSP [2].

Hiding The syntax for hiding is like in existing LOTOS, except that the (declared) gates are typed. For example in:

hidemid (int) in
Buffer [in,mid] | | Buffer [mid,out]
endhide

a new mid gate is declared, which can communicate integers, and is then replaced by internal i actions. This operator
preserves the property of urgency of all i, and allows the modelling of urgency on hidden synchronization. This means
that on can express that a synchronization should occur as soon as made possible by all the processes involved. For
example the behaviour:

hideG in
wait(1); G; B,
|| wait(2); G; By
endhide

has the same semantics as:
wait(2);i;
hideG in
By 1By
endhide

The hidden G occurs after 2 time units, which is as soon as both processes can perform G.
The behaviour:
hideG in
Gert[t>3]; B
endhide

has the same semantics as:
wait(3); ?7t:=3; i;
hide G in B endhide

Again the earliest possible time for G to occur is after 3 time units.
The behaviour:
hideG in
Gert[t>3]; B
endhide
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has two possible semantics depending on whether the type time is discrete or dense. If time is a synonym for natural
number (discrete time), the behaviour has the same semantics as:

wait(4); ?7t:=4; i;
hide G in B endhide

because 4 is the smallest natural number strictly greater than 3. On the other hand, if time is a synonym for rational
number (dense time), the behaviour has the same semantics as:

wait(3) ; block

The reason why this process timestops after 3 time units without even performing the hidden G is because there is no
smallest rational (or earliest time) strictly greater than 3.

Having to hide synchronizations to make them occur as soon as possible is sometimes criticized, because there
are cases where one would like to still observe those gates. The problem here lies in the interpretation of the word
‘observation’. Observing requires interaction, and interaction may lead to interference. Clearly, we would like to show
the interaction to the environment without allowing it to interfere. There is a nice solution to this problem. It suffices
to raise an exception (signal) immediately after the occurrence of the hidden interaction as follows. Consider two
processes, Producer and Consumer, that want to synchronise on the sync event as soon as they are both ready to do so.
We add a special monitoring process that synchronizes with them and sends a signal just after sync occurred:

Producer := wait(any time); sync; Producer
Consumer := sync; wait(any time); Consumer
Monitoring := sync; signal yes ; Monitoring
System := hidesync in (Producer | | Consumer | | Monitoring)

The signal operator is the same as raise except that it allows computation to carry on after the exception has been
raised: raise X is shorthand for signal X; block.

Timenondeterminism In our model, time is nondeterministic. This means that there are behaviours that do not age
in a predictive manner, because they can possibly reach different states after aging of a well-defined time. Consider the
following example:

(7x :=true [] 7x :=false); wait(2)

After one unit of time has passed, this process will either be:
?X :=true; wait(1)

or:
?X := false; wait(1)

This time nondeterminism is unavoidable if we want to have sequential composition not introduce an i action.
Actually, this nondeterminism has some advantages. It gives us for free a way to express nondeterministic delays
that do not rely on internal actions. The next example better illustrates this point—after a delay, the behaviour:

wait(any time)
will have become:
wait(d)

for some d.
There are two shortcomings for having time to be nondeterministic:
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e The hiding rule expressing urgency on hidden actions is more complex, as would be any inference rule with an
negative premise. Hopefully, this is the only negative premise of the language.

e B; [1 By isnotequal to x := any bool; if x then B; else By, because, in the latter, time resolves the choice. The
latter expression is very very close to a nondeterministic choice, but is only equivalent to it after some arbitrarily
small (but non zero) delay. Indeed, after a zero delay, the choice is not resolved (yet).

An alternative semantics would be to introduce explicit B-reductions to indicate where time nondeterminism has
happened—this would make the semantics for time simpler, but at the cost of introducing another form of reduction.
This is left for further work.

Renaming An explicit renaming operator is introduced in the language. It allows one to rename observable actions
into observable actions, or exceptions into exceptions.

Renaming an observable action into another observable action may be much more powerful than one might think
at first, because it allows one to do more than just renaming gate names. For example, it can be used to change the
structure of events occurring at a gate (adding or removing attributes), or to merge or split gates.

The simplest form of renaming just renames one gate to another:

rename

gateG (x=>7i:int) isG'(x= !i)endgate
in

B
endren

Note the syntactic similarity between renaming and function declaration or exception trapping. This form of renaming
is so common that we provide a shorthand for it:

rename

G (x=int) isG'
in

B
endren

We can remove a field from a gate:

rename

G (x=7i:int,y=-any:bool) isG' (i)
in

B
endren

We can add a field to a gate:

rename

G (Xx="7i:int) isG'(x='i,y= 'true)
in

B
endren
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We can merge two gates G’ and G” into a single gate G:

rename
G' (x=>7i:int) isG(x='i,y = 'true)
G" (x=>7i:int) isG(x=1i,y= 'false)

in
B

endren

We can rename exceptions in a similar way.

Static semantics The static semantics for behaviour expressions is very similar to that of data expressions, and is
given by judgements:

cFB=exit V=T)
For example:

G=gateany (G(?x:int) ||| G(?y:bool))=exit (x=int,y=>bool)

Dynamic semantics The dynamic semantics of data expressions is given by two kinds of reduction:

e Successful termination z + E 2R g/,
o Exception raising £ + E *&Y g/,

The dynamic semantics of behaviour expressions extends this with three new kinds of judgement:

o Internal actions = + B -2 B'.

o Communication % B ©®Y g,

. Delayzr—BidlB’.

For example (up to strong bisimulation):
i G(?);wait(t) -2 G(7t);wait(t)
€3 2t.=3; wait(3)
B2 2t:=3; wait(1)
D 2t:=3; wait(0)

5(t=3
= block

The urgency of internal, exception and terminatin actions is given by the properties:

o No behaviour B can offer both 10, and ﬂ.

. X (RN e(d
o No behaviour B can offer both %Y and &2

. (RN d
o No behaviour B can offer both °®¥ ang &%
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For example:

2t:=3 °29 plock
but:

?t:=3 ?ﬂ

However, in order to get the correct synchronization semantics for termination, we have to allow terminated processes
to age when placed in a parallel context. Consider the following example:

?t:=3 | | wait(2);?y:=true
We would like this to have semantics (up to strong bisimulation):

2t:=3 | | wait(2) ;?7y:=true &, 2t:=3 | | wait(1);?y:=true
y y
£ 7t:=3 | | wait(0);?y:=true
6(t=>3,_y=>>true) block

In order to achieve this, we allow terminated processes to age in a parallel composition. The alternative would be to
treat o actions (and sequential composition) in the same way as gates (and hiding), but this would have introduced
many negative premises into the semantics (for example sequential composition and exception handling), which we
have tried to avoid. The semantics presented here only uses negative premises in the semantics of hiding.

3 Overview

3.1 Syntax
The terminals of the abstract syntax are:
identifier domain meaning abbreviation
Var variable identifier Vv
Typ type identifier S
Con constructor identifier Cc
Proc process identifier I
Gat gate identifier G
Exc exception identifier X
In addition, we define the following non-terminals as syntax sugar:
symbol domain meaning abbreviation  sugar for
Fun function identifier F M
The non-terminals are:
symbol domain meaning abbreviation
SCon special constant K
Decl declaration D
TyExp type expression T
RTyExp record type expression RT
Val value expression N
Rval record value expression RN
Pat pattern P
RPat record pattern RP
RVar record of variables RV
Behav behaviour expression B
BMatch behaviour match BM
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In addition, we define the following non-terminals as syntax sugar:

symbol domain meaning abbreviation  sugar for
LocVar local variables Lv RV :RT
InPar in parameters IP RP:RT
Exp expression E B
RExp record expression RE B
EMatch expression match EM BM

In the grammars, non-primitive constructs (which are defined in terms of syntactic sugar for primitives) are marked
with a “x’. These grammars omit any end-keywords, which should be included in the concrete grammar.

3.2 Static semantics

The static semantics is given by a series of judgements, such as ¢ I B=-exit(RT) meaning ‘in context ¢, behaviour
B has result type (RT )’. The context gives the bindings for any free identifiers, and is given by the grammar:

c = V=T variable  (C¢l)
| S=type type  (Cc2)
| S=T type equivalence  (C.3)
| C=(RT)—S constructor  (Cc4)
| M= [(gate(RT))*1(RT) [(exn(RT))*] — exit(T) process identifer  (C¢5)
| G=gate(RT) gate  (Cc6)
| X=exn(RT) exception  (C.7)
| trivial  (Cc8)
| ¢,c disjointunion  (C.9)

where each identifer only has one binding.

We shall write ¢1; ¢, for context over-riding (with all the bindings of ¢, and any bindings from ¢, not overridden
by ¢2).

Note that the grammar for record types overlaps with that of contexts. Whenever RT does not contain any occur-
rences of etc, we shall allow RT to range over contexts (for example in the type rule for sequential composition in
Section 12.11).

3.3 Dynamic semantics

. Lo . . 3(RN L. . .
The dynamic semantics is given by a series of judgements, such as £ B RN gy meaning ‘in environment £, behaviour

B terminates with result (RN)’. The environment gives the bindings for free identifers, and is given by the grammar:

£ = S=T type equivalence  (Ecl)
| C=(RT)—S constructor  (Ec2)
| M=ALG(RT))*I(RP:RT)[(X(RT))*1—B process identifer  (Ec3)
| trivial  (Ec4)
| £, disjointunion  (Ec5)

Note that environments have to carry type information. This is because LOTOS relies on run-time typing for much of
its semantics, for example the semantics of the nondeterministic expression any T depends on the type rules for T.
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The semantics for expressions with free variables uses substitution to replace free variables with values. The
grammar for substitutions is given by:

o = V=N singleton  (ocl)
| trivial  (0c2)
| 0,0 disjointunion  (0¢3)

where each variable is only bound once. We write B[o] for B with all free variables replaced by values given by o with
the usual a-conversion to avoid binding free variables.

Note that the grammar for substitutions is the same as the grammar for record values RN, so we will use them
interchangably (for example in the dynamic semantics of sequential composition in Section 12.11.

3.4 Syntax sugar

Many of the constructs in the core language are defined as syntax sugar, for example if-statements are defined as syntax
sugar for case-statement.
In this paper, we do not give the semantics for terms defined by syntax sugar.

4 Declarations

41 Overview

Syntax
D 1= typeSisT type synonym  (Dcl)
| typeSisC[(RT)] (I C[(RT)H])* type declaration  (D¢2)
| process [L[[G[(RT)](,G[(RTI)*]I] [CIP)] [: exit(T)] process declaration  (D¢3)

[raises[[[X[(RT)](,X[(RT)])*]1] isB

* | process M [[[G[(RT)](,G[(RT)]))*]17] ([in IP] [out LV])  process with infout parameters  (Dc4)
[raises[[[X[(RT)](,X[(RT)])*]1] isB

*| function F [(IP)][: T] function declaration  (D¢5)
[raises [[[X[(RT)](,X[(RT)])*]1] isE

*| function F ([in IP] [out LV]) function with in/out parameters ~ (D6)
[raises [[[X[(RT)](,X[(RT)])*]1] isE

| DD declaration sequence  (D¢7)

| empty declaration  (D¢8)

Static semantics

cFD= ('

Dynamic semantics

ZFD=£'

Syntax sugar The function decalarations are synonymous with the equivalent process declaration.
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4.2 Type synonym
Syntax

typeSisT

Static semantics

C FT=type
CF(typeSisT)= (S=typgS=T)

Dynamic semantics

Z F (typeSisT)=(S=T)

4.3 Type declaration
Syntax
type SisC[(RT)] (I C[(RT)])*

The default constructor argument type is ().

Static semantics

CH(RT) =>type --- CF(RTy) =type
C F (typeSisCi(RT1) | -+ | Ch(RTy)) = (S=type C1= (RTy) —S,...,Ch= (RTy) —9)

Dynamic semantics

£+ (typeSisCi(RTy) | -+ | Ch(RTy) )= (C1= (RT1) —S,...,Ch= (RTy) — )

4.4 Process declaration
Syntax
process M [[[G[(RT)](,G[(RTH])*]I] [(IP)] [: exit(T)] [raises[[[X[(RT)](,X[(RT)])*]1] isB

The default gate list is [1, the default gate type is (etc), the default in pararameter is (), the default result type is
exit(none), the default exception list is [1 and the default exception type is ().
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Static semantics

CkH(RT) =type --- CF (RTp) =type
¢ F (RT) =type
ck (RT{)=>type --- cF (RT,)=type

cF((RP)= (RT))= (RT")
¢,Gy=>gate(RTy),...,Gn= gate(RTy),
RT', Xy = exn(RT{),..., Xn = exn(RT,) F B= exit(T)
C F(process [G1(RTy), ...,Gm(RTn)] (RP:RT)
: exit(T) raises [Xl(RTl’) s Xn(RTD] isB)
= (M= [gate(RTy), ...,gate(RTm)I1(RT)
[exn(RT), ...,exn(RTH1 — exit(T))

Dynamic semantics

£ I (process M [G(RT)] (RP:RT) : exit (T) raises [X(RT/)] isB)
= (M=A[G(RT)] (RP:RT) [X(RT")]—B)

4.5 Process declaration with in/out parameters
Syntax
process M [[[G[(RT)](,G[(RT)])*]1] ([in IP] [out LV]) [raises [[[X[(RT)](,X[(RT)])*]1] isB

The default gate list is [1, the default gate type is (etc), the default in parameter list is in (), the default out parameter
list is out (), the default exception list is [1 and the default exception type is ().

Syntax sugar
process M [G(RT)]
process M [G(RT)] (IP) : exit((RT))
(inIPout RV:RT) | ar raises [X (RT")] is
raises [X (RT)1is | — local var RV :RT
B init B

inexit((RV))

4.6 Function declaration
Syntax
function F [(IP)] [: T] [raises [[[X[(RT)](,X[(RT)])*]1] isE
The defaultin pararameter is (), the default result type is none, the default exception listis [1 and the default exception

typeis ().

Syntax sugar

functionF (IP) : T processF (IP) : exit(T)
raises [X (RT)1is | & raises [X(RT)1 is

E E
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4.7 Function declaration with in/out parameters

Syntax

function F ([in IP] [out LV]) [raises [[[X[(RT)](,X[(RT)])*]1] isE

Syntax sugar  The default in parameter list is in (), the default out parameter list is out (), the default exception list

is [] and the default exception type is ().

def

raises [X (RT)1 is
E

( function F (in IP out RV :RT) )

5 Typeexpressions

5.1 Overview

Syntax
T == S
| (RT)
| none
| any

Static semantics
cFT=type
cFTCT

Subtyping is a preorder:

CFTCT

CFTCT  crT'CT
CFTCT”

function F (IP) : (RT)
raises [X (RT)1 is
local var RV :RT
init E
in (RV)

Wewritte T=T/for TC T'and T' T T. We will write:

CHFTiUT=T CcHFTINT,=T

whenever (up to =) Ty and T, have a least upper bound (respectively greatest lower bound) T.

Dynamic semantics

EFTCT

In each case, the judgements are the same as for the static semantics, so we omit them.
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5.2 Type identifier
Syntax
S

Static semantics

Cc,S=typet S=type
C,S=TFS=T

5.3 Record type
Syntax
(RT)

Static semantics

¢ FRT = record
¢ F (RT) =type

¢ FRT CRT
CF(RT)C (RTH

5.4 Empty type
Syntax

none

Static semantics
¢ F none=-type

ckFnoneC T

¢ Fnone= (V = none,RT)

5.5 Universal type
Syntax

any
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Static semantics

cFany=

type

cFTCany

6 Record typeexpressions

6.1 Overview

Syntax

RT

I

Static semantics

V=T singleton (RT.1)
etc universal record (RT¢2)

trivial (RTc3)
RT,RT disjointunion (RTc4)
T(,T)* tuple (RT¢5)

¢ FRT = record

¢ FRT CRT'

Subtyping is a preorder:

CFRTLCRT
CFRTCRT' cERT'CRT”

CFRTCRT”

We write RT = RT' for RT C RT' and RT' C RT.

Dynamic semantics

£ I RT CRT'

In each case, the judgements are the same as for the static semantics, so we omit them.

6.2 Singleton record

Syntax
V=T
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Static semantics
c FT=type
CcF(V=T)=record
cHTCT
CEFV=T)C(V=T)

6.3 Universal record
Syntax
etc

Static semantics
C - etc=record

CFRT Cetc

6.4 Empty record
Syntax

0

Static semantics

¢ F()=record

6.5 Record disjoint union
Syntax
RT,RT

Static semantics

¢ +RTy = record ¢ F RT,=record [RT1 and RT,
¢ FRT1,RT, = record

CHFRTLCRT, CHRT,CRT
C FRTy,RT, C RT{,RT}

have disjoint fields]

C F RT]_, RT2 = RTz, RT]_

¢ F (RT1,RT,),RT3 = RTy, (RT,,RT3)

CF(,RT =RT
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6.6 Tuple
Syntax
TGLT)

Syntax sugar

T, T 81Ty, .., 80T,

7 Valueexpressions

Syntax
N = K
| V
| (RN)
| CI[N]

Static semantics
CEN=T

CFN=T
ckTCT
CEN=T!

Dynamic semantics
EEN=T

EFEN=T
EFTCT
EZFN=T!

primitive constant
variables

record values
constructor application

In each case, the judgements are the same as for the static semantics, so we omit them.

7.1 Primitive constants
Syntax
K

(Ncl)
(Ne2)
(Ne3)
(Nc4)

Static semantics In this paper we will not discuss the static semantics of primitives—this is left to the design of the

standard libraries.
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7.2 Variables
Syntax
\Y;

Static semantics

CN=>THEV=T

7.3 Record values
Syntax
(RN)

Static semantics

C FRN=RT
¢+ (RN) = (RT)

7.4 Constructor application
Syntax
CN]

The default argument is ().

Static semantics

CFC=((RT)—YS)
CEFN=(RT)
CcFCN=S

8 Record value expressions

Syntax
RN = V=N
|
| RN,RN
*[ NGN)*
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Static semantics
Cc FRN=RT

¢ FRN=RT
¢ FRT CRT
C FRN=RT’

Dynamic semantics
EFRN=RT

E£FRN=RT
£+ RT CRT'
£ - RN=RT’

In each case, the judgements are the same as for the static semantics, so we omit them.

8.1 Singleton record
Syntax
V=N

Static semantics

CFN=T
CFV=N)=V=T)

8.2 Empty record
Syntax

0

Static semantics
cEO=0

8.3 Record disjoint union
Syntax
RN, RN

Static semantics

CFRN1=RTy ¢ FRN>=RT; [RN; and RN; have disjoint fields]
¢ FRN1,RN2= RTy,RT>

38



8.4 Tuple

Syntax
NGN)*

Syntax sugar

Np, ... ,Np&'$1=Ng, ..., $n=N,

9 Patterns
Syntax
P := (RP)

| any
| 2V
| 1E
| CIP]
| P:T

Static semantics

CcH(P=T)= (RT)

Dynamic semantics
£ (P=N)= (RN)

£ F (P=N)=fail

9.1 Expression pattern

Syntax
IE

Static semantics

C FE=exit(T)
CFUE=T)=0
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Dynamic semantics

cPEXE g
ZF(E=N)=0

SN

£ F ('E=N)=falil

e EVE
Z F ('E=N)=falil

9.2 Variable binding
Syntax
7V

Static semantics

CF(V=T)=>NV=T)

Dynamic semantics

£F(?V=N)= (V=N)

9.3 Record pattern
Syntax
(RP)

Static semantics
¢+ (RP=RT')= (RT)
(RP) = (RT")) = (RT)

CF(
cF(RP= (V=any))= (RT)
¢ F ((RP) =any)=-(RT)

These rules require that if (RT) C T then either T = (RT’) and RT T RT' or T = any.

Dynamic semantics

£+ (RP=RN’)= (RN) [N = (RN")]
ZF(RP)=N)= RN

£ (RP=RN) = fail iy _ g1y
£ F ((RP) = N) = fail

[N # (RN")]

£ F ((RP) = N) = fall
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9.4 Constructor application
Syntax

C [P]
The default pattern is ().

Static semantics

cFC=(RT)—S
cHFSCT
cF(P=(RT))=(RT)
CH(ECP=T)=(RT"H

Dynamic semantics

£+ (P= (RN))= (RN") [N =C(RN)]
£F(CP=N)= RN

£k (P= RN))=fail y _ c(rny)
£+ (CP=N)=fail

£+ (C PiN)zfail[Nic:N]
9.5 Explicit typing
Syntax

P:T

Static semantics

C FT=type
cHFTCT
CFP=T)=(RT)
CHP:T=T)=(RT)

Dynamic semantics

EFN=T
£ (P=N)= (RN)
£+ (P:T=N)=(RN)

EZEN=T

£ F (P=N)=fail

£ (P:T =N)=fail
EZEN=T'

£+ TNT = none
£k (P:T=N)=fail

These rules require:
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1. noneto have no elements, and

2. aseparability condition: if £ - N=>anyand £+ T = typethenE-N=Tor£+-N=T’and £+ TN T'=none

9.6 Wildcard
Syntax

any

Static semantics

ckh(any=T)=0

Dynamic semantics

E£F (any=N)= 0

10 Record patterns

Syntax
RP = V=P singleton (RP:1)
| etc wildcard (RP:2)
| PasRP record match (RP¢3)
| trivial (RP¢4)
| RP,RP disjointunion (RP¢5)
x| P(,P)* tuple (RP.6)

with the restriction that etc can occur at most once in any record pattern (this is to bar ambiguous patterns such as
(?x asetc,?y asetc)).

Static semantics

¢ F(RP=RT)=> (RT")

Dynamic semantics

£+ (RP=RN)= (RN')

£ F (RP=-RN) = fail

10.1 Singleton record pattern
Syntax
V=P
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Static semantics
CFP=T)=(RT)

CF(V=P)=(V=T))=(RT)

Dynamic semantics

£ (P=N)= (RN)

ZF((V=P)=(V=N))= (RN)
£ F (P=N)=fail
£ ((V=P)=(V=N))=fail

10.2 Record wildcard
Syntax

etc

Static semantics

CF(etc=RT)= ()

Dynamic semantics

ZF (etc=RN)= 0

10.3 Empty record pattern
Syntax

0

Static semantics

cH(O=0)=0

Dynamic semantics

ZE(0=0)=0

10.4 Record match
Syntax
P asRP
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Static semantics
cF((P=(RT))=(RTy)

¢ F(RP=RT)= (RTp) [RT, and RT, have disjoint fields]
C F(PasRP=RT)= (RT1,RT,)

Dynamic semantics
£+ (P=(RN))= (RNy)

£+ (RP=RN)= (RN)
£+ (P asRP=RN)=- (RN1,RN)

10.5 Record disjoint union

Syntax
RP,RP

Static semantics

¢ F(RP=RTy) = (RTy) ¢ F (RP2=RTp) = (RTp) [RT{ and RT; have disjoint fields]

¢ F (RP1,RP,=RTy,RT,) = (RT{,RTj)

Dynamic semantics
Z F (RPp = RN;p) = (RNp) Z F (RP, = RNp) = (RNJ)
RP1,RP, = RN1,RN2) = (RN7,RN5)

EH(
£ + (RP1 = RN;) = fail

£ F (RP1, RP, = RNy, RN,) = fail
EH(

EH(

RP, = RNz) = fail
RP;,RP, = RNy, RNy) = fail

10.6 Tuple
Syntax
P(,P)*

Syntax sugar

def

Pi,...,Ph=%1=P,...,$n=P,

11 Recordsof variables

Syntax
RV 1= V=V
|
| RV,RV
x| V(V)*
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Static semantics
CcF(RV=RT)=(RT"

cF(RV=RT)= (RT")
¢ FRT'=RT"
CFRV=RT)= (TN

Dynamic semantics
£+ (RV=RT)= (RT")

In each case, the judgements are the same as for the static semantics, so we omit them.

11.1 Singleton record variable
Syntax
V=V

Static semantics

cH((V=V)=(V=>T)=> VW =T)

11.2 Empty record variables
Syntax

0

Static semantics

cEO=0)=0

11.3 Record disjoint union
Syntax
RV,RV

Static semantics

¢ F (RV1=RTy) = (RT}) ¢ F (RV2=RT2) = (RT;) [RT; and RT, have disjoint fields]
C F (RV1,RVo = RTq,RT2) = (RTJ,RT2)
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11.4 Tuple
Syntax
V(,V)*

Syntax sugar

Vi, Ve E 1=V, .80V,

12 Behaviour expressions

12.1 Overview

Syntax

B =

G [P] [eP] [[E]] [start(N)]

i[O]

exit[(RN)]

exit(any T)

signal X [E]

stop

block

wait(E)

P:=E

B;B

B[>B

BIIB

B IL[G(,G)*]1I B

B[I1B

choice P [after (N)] [1 B

trap (exception X[(IP)]isB)* [exit [P]isB]in B
caseE[:T]isBM

local var LV [initB] in B

hide G[(RT)](,G[(RT)])*in B
rename (G[(IP)]isG [P] | X[(IP)]isX [E])*inB
N LG G) 1] [E] [LIX(,X)*]1]

loop forever [var LV] [init B] in B
BIIIB

exit(RE)

raiseX E

if E then B [elseB]

N [[[G(,G)*]1] (RE,RP) [L[[X(,X)*]1]
loop [X] [(T)] [var LV] [init B] in B
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*| break [X][(E)] breaking iteration (B¢29)

Static semantics
¢ FB=exit(RT)

C FB=exit(RT)
¢ FRT CRT/
Cc FB=exit(RT")

Untimed dynamic semantics
W g
pr=ald ar=G|[X]|i

Timed dynamic semantics

r+B2p

We shall write £ - B ”('ﬂ\l—@d) B’ when either:

. sz”ﬂ) B'andd =0, or

ezrB e prandzrp " p

Requirements on the time domain:
1. The only closed normal forms of type time are the special constants ranged over by d.
2. The time domain is a commutative cancellative monoid + with unit 0.
3. The order given by d; < d, iff 3d . d; +d = d5 is a total order.
Since time is a commutative cancellative monoid, it satisfies the properties:
di+dy=dy+d; ifdi+d=d,+dthend; =d; di+ (d2+d3) = (dy+dp) +ds3 d+0=d=0+d
We assume a type bool declared:

type bool istrue | false

12.2 Action

Syntax
G [P] [eP] [[E]] [start(N)]

Default values are (), eany, [true] and start(0) respectively.
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Static semantics

¢ FG=gate (RT)

cF(PL= (RT))= (RTy)

C F (Py=time)= (RT2)
C;RT1,RTo F E = exit(bool)

¢ F N=time i [RTy and RT have disjoint fields]
CcFGPyeP, [E] start(N) = exit(RT,RT»)

Untimed dynamic semantics

£+ (P1= (RN))= (RNy)
£ F (P,=d)= (RN2)

£  E[RNy, RNo] " E/

£GPy P, [E] start(d) ©Y exit(RNy, RN,)

Timed dynamic semantics

T 0< d’
£+ G Py eP, [E] start(d) lee P, @P, [E] start(d+d") [ ]

12.3 Internal action
Syntax

i[O]

Static semantics
Cc Hi() = exit()

Untimed dynamic semantics

£Hi0) 1% exit()

Timed dynamic semantics None.

12.4 Termination
Syntax
exit [(RN)]

The default termination value is ().
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Static semantics

Cc FRN=RT
¢ Fexit(RN) = exit(RT)

Untimed dynamic semantics

£ F exit(RN) °2Y) plock

Timed dynamic semantics None.

12.5 Nondeterministic termination

Syntax
exit(any T)

Static semantics

Cc FT=type
C Fexit(any T) = exit(T)

Untimed dynamic semantics
EEN=T
. 3(N)
£ F exit(any T) — block

Timed dynamic semantics None.

12.6 Signalling

Syntax
signal X [E]
The default expression is ().

Static semantics
C FE=exit((RT))
C FX=exn(RT)
¢ Fsignal X E = exit()

Untimed dynamic semantics

O((RN
£+ E OBV B

£ - signal X E XY exit ()

X'(RN
erFE &Y Er

£k signal X E XLRY) signal X E’



Timed dynamic semantics None.

12.7 Inaction
Syntax

stop

Static semantics

C - stop=-exit(none)

Untimed dynamic semantics None.

Timed dynamic semantics

0<d
zkstopﬂstop[ ]

12.8 Time block
Syntax
block

Static semantics

¢ F block = exit (none)

Untimed dynamic semantics None.

Timed dynamic semantics None.

12.9 Delay
Syntax
wait (E)

Static semantics

C F E = exit(time)
¢ Fwait (E) = exit()
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Untimed dynamic semantics

+EX%E
£ F wait (E) 22 block

e+E XN Er
£ F wait (E) 2N wait (E)

Timed dynamic semantics

- E O
£ + wait (E) =% wait (d")

[0<d]

12.10 Assignment
Syntax
P:=E

The pattern must be irrefutable.

Static semantics
C FE=exit(T)
cFH(P=T)=(RT)
CFP:=E=exit(RT)

Untimed dynamic semantics

+E g
zbP:=E & p.-F

z+EXN g
£ (P=N)= (RN)
£+ P :=E %™ plock

Timed dynamic semantics None.

12.11 Sequential composition
Syntax
B;B

Static semantics
C FB1= exit(RTy)

C;RT1 F By = exit(RTp) [RT1 and RT, have disjoint fields]
ck Bl ; BZZ>eX|t(RT1,RT2)
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Untimed dynamic semantics

RN
z+B VB,

a(RN
£+By; B, VB ; B,
O(RNyp)
£+B; — B}

Z I Bo[RNy] * 2% BY,

£+ By ; By 2 exit(RNy) ; Bl

O(RNyp)
£ B o gy

£ b By[RNy °&%
EFB;; By

1
B
5(RN7,RNp)

—

block

Timed dynamic semantics

£+ B, 2By
£FBy; B Y% B, ;B

5(RN1@d1)
—

T+ By B,

e(dy) o,
£ - Bo[RNy] “2 B,
£ F By ; B, (1t

exit(RNy) ; B)

12.12 Disabling

Syntax
B[>B

Static semantics
C FBy=exit(RT) C F By=exit(RT)

¢ FB1 [>By=exit(RT)

Untimed dynamic semantics

RN
z+B; N By

£+ By [>B; ™Y B, [>B;

O(RN
z+B W g

£ F By [>B, X By

£+ By " B
£+ By [> B " B,




Timed dynamic semantics

d d
£+B 208 B, YR,

£+ By [>B 20 B, [> B,

12.13 Synchronization

Syntax
BIIB

Static semantics

€ F By = exit(RT) € I Bo= exit(RTp) [RT1 and RT, have disjoint fields]

C FB1 || Bo= exit(RT1,RT2)

Untimed dynamic semantics
£+ BB,
£FBy 1B, ~L B, |1B;

£+ By 1% B,
£+By |1B; -5 By | B,

£+B VB z+B, Vg,
G(RN
£+By 1B, XX B || B,

z+B " EV gy

£hBy 1B, B 1B,

X (RN
£k By XY B,

£rB 1B, X By |18,

8(RNyp) O(RNy)
THB —F B kB —2 B,

6(RN1,RN>)
E£FBy 1By == B)IIB,

Timed dynamic semantics
£FB %08, £rB,X%B,

£hBy 1B 2% B 11B,

RN d+d’
B8, 2N g g, D py

T 0<d
£+ By |1 By " exit(RN) [ B, [0<d]

d+d’ (RN
£rB U 4B, Mg

7 0<d
£+ By 1B % B, [ exit(RN) [0<d]
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12.14 Concurrency
Syntax
B IL[G(,G)*]11B

Static semantics

¢ F By = exit(RTy) ¢ FBy=exit(RTy)

CHGi=gateRT)) -~ ¢ Gn=gate(RTy) rT, and RT, have disjoint fields]
CcFB1 1[Gy, ...,Gh] | Bo= exit(RT{,RTy)

Untimed dynamic semantics

£+ B "™ B [ag G

z+B; 116118, W B 11118,

B "V B) [ag Gl

£+ By 11611 B, Y By 1[G11 B,

crB, W 2rB, g,

£+ By 1[G B, "X B [[G]1 B,
5(RNy) 5(RN,)

£+ By 1611 B, R g | [G1) B,

Timed dynamic semantics

£+B 2B B, Y08,

£+ By 11611 B, 2% B [[G11 B,

dl
£+B, "R g g,

£+ By 1G]] B, *U*% exit(RN) 1 [G11 B,

[0<d

d+d’ O(RN
B "B B, YRGBy

= , - 0<d
£+ By 1G] B, ¥ ¢ B 1G]] exit(RN)[ <d]
12.15 Choice
Syntax
BI[1B

Static semantics

C FBy=exit(RT) C F By=exit(RT)
¢ F By [1 Bo= exit(RT)
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Untimed dynamic semantics
B " B

£+ By [1B,"%Y By

£+ B "N B
£+ By [1B8,"% B,

Timed dynamic semantics

€(d) e(d)

£+ By [1B, 2% B [1 B,

12.16 Choice over values

Syntax
choice P [after (N)] [1 B
The default value is after (0).

Static semantics
C F(P=any)=(RT)
C FN=time
C;RT FB=exit(RT')
¢ + choice P after (N) [1 B=exit(RT')

Untimed dynamic semantics

Z F (N = any)
£ (P=N)= (RN)

% + BRN] G g
£ - choice P after(d) [1 B aRND g

Note: this semantics is the only place where the timed semantics is used in the untimed semantics, thus breaking the
stratification which is useful in proving the semantics well-defined.
Timed dynamic semantics

VN.((£FN=-anyand £ - (P=N)= (RN)) implies B[RN] e(d+d") )
£ I choice P after (d) [1 B %2 choiceP after (d+d') [1 B

[0 < d

Note: in the presence of time nondeterminism, this operator does not behave as a generalization of []. For example:
(choice any after (0) [1 7y :=any bool; G(!y) 2D, (choiceany after (1) [1 7y :=any bool; G(!y)

For these reasons, this semantics is highly undesirable, and it may be better to replace:
choice?x:T [1B

by
local var x: T init?x :=any T inB
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12.17 Trap

Syntax
trap (exception X [(IP)]isB)* [exit [P]isB]inB

The default input parameter is () and the default exit pattern is ().

Static semantics

CH(RT) =type --- CF (RTy) =type
CcFH(RPL=RT))= (RT{) --- CF(RP,=RTy)= (RT)
C;RT/FBy=exit(RT) --- (;RT,FBy=exit(RT)

C;X1=>exn(RTy),..., Xh = exn(RT,) F B= exit(RT)

C F (trap exception X1 (RP;:RT1) isB;
.. exception X, (RP,:RTy) isBp in B)

= exit(RT)
CH(RTY) =type --- CF (RTy) =type
cF(RP=RT;)= (RT)) --- CF(RP,=RT,)= (RT))
C;RT{FB;=e&xit(RT) --- (;RTyFBy=exit(RT)

C;X1=exn(RTy), ..., Xy =>exn(RT,) + B= exit(RT')
ck((P=(RT)H)=(RT"
C;RT"+ B'= exit(RT)

C F (trap exception X1 (RP;:RTy) isB;
.. exception Xn (RP,:RTy) isBnexit PisB’ in B)
= exit(RT)

Untimed dynamic semantics Here [i ranges over X and exit (which we consider to be equal to &).

z " g
£+ (trap il (RP:RT) isB in B) "2 (trap i (RP :RT) isBin B) el
P LN i (RN) B!
£ ((RP) = (RN)) = (RN")
z iR ED gy
£k (trap i (RP:RT) isBinB) "2 B!
Timed dynamic semantics
B2 p
b (trap i (RP:RT) isBinB) % (trap ft (RP:RT) isBin B')
NG
Z F ((RP)) = (RN)) = (RN")
z I Bi[RN'] 2 B!
8(d+d)

£ | (trap fi (RP:RT) isBinB) "=’ B}
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12.18 Case
Syntax
caseE[:T]isBM
The default type is the principal type of E (note this requires static information).

The match is required to be exhaustive. If it is not, a default any — raise Match clause is added.

Static semantics
C FE=exit(T)

CF(BM=T)=exit(RT)
crFcaseE: T isBM=>exit(RT)

Untimed dynamic semantics

z+EXN g
- (BM=N)"p
£k caseE:T isBM "EYV B

X (RN
£ +E XY Er
X (RN)

ZFcaseE:TisBM ==’ caseE':T isBM

Timed dynamic semantics

O(N
z+E N E
e(d)

£+ (BM=N)Z2B
£ caseE:T isBM £ B

12.19 Variable declaration
Syntax
local var LV [init B] in B

The default initialization section is init exit.

Static semantics

¢ F (RV =RT) = (RT1,RTy)
¢ FB1 = exit(RTy)
C;RTy By = exit(RT,,RT')
¢ Flocal var RV :RT init By in Bo = exit(RT')

57



Untimed dynamic semantics

RN
z+B VB,

£ Flocal var RV :RT init By in By AN |ocal var RV :RT init B} inB;
£+ B W
a(RNy)

£ I Bo[RN “ ™ B,
% - local var RV :RT init By in B, "2’ local var RV :RT init exit(RNy) in B,

O(RN
£ B o gy

z b Bo[RNy] 2 By

£ F (RNg,RN») = (RT¢,RT»)
£+ (RV =RT) = (RT1,RT,)

£ Flocal var RV :RT init By in By 8RN hlock

Timed dynamic semantics

z+B, 2B,
£ Flocal var RV :RT initB,in B, N local var RV :RT init B in B,

5(RN1@d1)
—

EFB; B}
S(dz) '
£ F By[RN1] —= B,
£ Flocal var RV :RT init By in By

8(d1+d2)
-

local var RV :RT init exit(RNy) in B,

12.20 Gate hiding
Syntax
hide G[(RT)](,G[(RT)])* inB

The default gate type is (etc).

Static semantics

CH(RT) =type --- ¢+ (RTy) =type
C;Gy = gate(RTy),...,Gy= gate(RT,) F B= exit(RT)

¢ FhideG;1(RTy), ---,Gn(RTy) in B=exit(RT)

Untimed dynamic semantics

B2 pr .

e ra— agG
£ I hide G (RT) in B 28 hideG(RT)inB’[ 0l
£+ B8 pr

£ F (RN) = (RT})
£+ hideG(RT) in B~ hide G(RT) in B/
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Timed dynamic semantics
z F B “Y B’ refusing G(RT)

£ F hide G(RT) in B' &% hide G(RT) in B’

where z B &% g/ refusing G(RT) if we can find a path {By | 0 < d’ < d} such that:
¢ B=Bpand BIIBd.

dll
o EF Bdl 8(—2 Bdl+dll.

e Thereisno £ + (RN) = (RT;) and d’ < d such that £ By GLRN) B

Note: this more complex definition of hiding is required in the presence of time nondeterminism.

12.21 Renaming
Syntax
rename (G [(IP)]isG [P] | X [(IP)]is[signal] X [E])*inB

The default gate input parameter is (etc), the default gate pattern is !$argv, the default exception input parameter is
(), and the default exception value is $argv.

Static semantics

CFH(RT) =>type --- CF (RTy) =>type
cF(RPL=RT))= (RT{) --- ¢ (RPh=RTy)= (RT{)
CRT/FG Pi=exit O --- C;RTy G Pn=exit O
cF (RT{)=>type --- cF (RT})=type
cF(RP,=RT))= (RT{") --- cF (RP4=RT})= (RT/")
C;RT{" Fsignal X{ E1=>exit () --- ¢;RTy" Fsignal X} Ep = exit ()
C;Gy1=>gate (RTy),...,Gn= gate (RTp),
X1=>exn (RT)),...,Xn=exn (RT,) - B=exit(RT)
C F (rename
Gl(RP]_:RTl) ISGIJ_ Pl
Gm(RPy:RTy) isGh, Py
X1(RP;:RT]) issignal X Eg -
Xm (RP}:RT,) issignal X}, E,
in B) = exit(RT)

Untimed dynamic semantics

£+ B"NY g

£ I (renamefl (RP:RT) isB in B)"™Y (renamefi (RP:RT) isB in B')[Wm
£+ pHEY g

£ (((RP) : (RT))) = (RN)) = (RN')

z F Bi[RN] "B B

£ I (renamefl (RP:RT) isBin B)"%) (renamefl (RP:RT) isB in B
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Timed dynamic semantics

zrB2p
£ + (renamefi (RP:RT) isB in B) % (renamefl (RP:RT) isE in B

12.22 Process instantiation
Syntax
M LG, G)* 1] [E] [L[X(,X)*]]]

The default gate and exception lists are the empty list [1, and the default argument is ().

Static semantics
¢ F M= [gate(RTy), ...,gate(RTn)I1(RT') [exn(RT), ...,exn(RT,)]1 — exit(RT)

cFGy=>gate(RT;) -+ CFGp=gate(RTy)
C FE=exit((RT")
ckFXi=exn(RT{) -+ CFXn=exn(RT)

CcFMNI[Gy,...,Gnl E [Xg,...,Xs] = exit(RT)

Untimed dynamic semantics
£+ N=AL[G' (RT)I(RP:RT) [X'(RT)]1 —B
£ I- (rename G/ (RT) isG X' (RT") isX in case E: (RT) is (RP) — B) "%V p
£Fn[G1E X1 "EY g

Timed dynamic semantics
£+ MN=A[G'(RT)I(RP:RT)[X'(RT")]1—B
£ F (rename G'(RT) isG X'(RT') isX in case E: (RT) is (RP) — B) %% g/
£+ N[GE [X]1 %Y

12.23 Iteration
Syntax
loop forever [var LV] [init B] in B

The default local variables are var () and the default initialization is init exit.

Static semantics

¢ F(RV =RT)= (RT1,RTy)
C By = exit(RTy)
C;RT1 F By = exit(RT1,RT2)
¢ Floop forever var RV :RT init By in B, = exit(none)
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Untimed dynamic semantics

£ + local var RV :RT init By in (loop forever var RV :RT init B, in By) LN B

£ + loop forever var RV :RT init By in By LN B

Timed dynamic semantics
£ + local var RV :RT init By in (loop forever var RV :RT init B, in By) 2D g

£ + loop forever var RV :RT init By in By L CH

12.24 Interleaving

Syntax
BIIIB
Syntax sugar

def

Bill1B2 =Bl 1B

12.25 Termination
Syntax
exit(RE)

Syntax sugar

def

exit(RE) = RE

12.26 Raising exception
Syntax

raiseX E

Syntax sugar

raiseX E d:efsignal X E; block

12.27 If-then-else
Syntax
if E then B [ese B]

The default else clause is exit.

Syntax sugar

if E then B, lse B, &' case E : bool istrue — B, | false — B>
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12.28 Process instantiation with in/out parameters
Syntax
M [L[G(,G)*]1] (RE,RP) [[[X(,X)*]]]

The default gate and exception lists are the empty list [].
Syntax sugar

(N [6] (RE,RP) [X1)% ( trap exit (?x) is(RP) :=x )

inM [G] (RE) [X]
12.29 Breakable iteration
Syntax

loop [X] [(T)] [var LV] [initB]inB

The default exception name is inner, the default local variable declaration is var (), and the default initalization is
init exit.

Syntax sugar
trap
loop X exception X isexit
var LV | ¢ | inloop forever
init By - var LV
in B- init B,
in B,
trap
loop X (T) exception X (7x:T) isexit (x)
var LV ¢ef | inloop forever
init By - var LV
in B- init B,
in B-

12.30 Breaking iteration
Syntax
break [X] [(E)]

The default exception name is inner.

Syntax sugar

def

break X (E) =raiseX (E)

break X & raise X
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13 Behaviour pattern-matching

13.1 Overview

Syntax
BM = PI[E]—B
| BMIBM

Static semantics
CF(BM=T)=exit(RT)

Dynamic semantics

Z F (BM=N) = fail
k(BM=N)* B

an=H|€

13.2 Single match

Syntax
P[[E]]—B

The default selection predicate is [true].

Static semantics
CF(P=T)=(RT)
C;RT F E = exit(bool)
C;RT FB= exit(RT')

crH((PIE]l -B)=T)=exit(RT")

Dynamic semantics
£ F (P=N)=fail

£k ((P [E] — B)=N)=fail

£ (P=N)= (RN)
I E[RN] 214 Er

£k ((P [E] — B)=N)=fail

£ (P=N)= (RN)
£+ E[RN]BY B/

£ F ((P [E] — B)=N)=fail

£ (P=N)=(RN)

£ F E[RN] °

£ - B[RN] &Y g

£+ ((PE] —B)=N)"® g
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13.3 Multiple match
Syntax
BM | BM

Static semantics

CH(BM=>T)=exit(RT) ¢ F (BMy=T)=>exit(RT)
C F((BM1 [ BMy) = T) = exit(RT)

Dynamic semantics

BM; = N) ¥ g

(BM11BM) =N)*E2 B
BM;=-N) = fail

BM,=N) *®Y B

BM; IBM,) = N) 5 B
M1 =-N) = fail

M= N) = fail
BM;|BM;) = N) = fail

Tk
Tk
Tk
Tk
Tk
Tk

EF
EF

[ws v v IR

—_— |~~~ |~~~ |~

—

14 Expressions

14.1 Overview

Syntax
E *::= block
x| P:=E
x| EE

*| trap (exception X [(IP)]isE)* [exit [(P)]iSE]IinE
*| local var LV [initE]inE

*| rename (X[(IP)]isX [E]))*inE

*| loop forever [var LV] [initE]in E

x| raiseX E

*| caseE[:T]isEM

*| if E then E [elseE]

time block

assignment

sequential composition
trap

variable declaration
renaming

iteration

raising exception

case

if-then-else

(Ec1)
(Ec2)
(Ec3)
(Ec4)
(Ec5)
(Ec6)
(Ec7)
(Ec8)
(Ec9)
(Ec10)

x| FIENOX(X)")

* | F (RE,RP) [[[X(,X)*]1]

* | loop [X][(T)] [var LV] [initE]inE
x| break [X] [(E)]

x| N

x| anyT
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*| (RE)

*| CIE]

*| EandalsoE
x| EoreseE

x| E=E
x| E<>E
x| E.V
x| E:T

Syntax sugar  Note that this entire syntactic category is syntax sugar.

record expression (E.17)
constructor application (E;18)
conjunction (E¢19)
disjunction (E20)

equality (Ec21)

inequality (Ec22)

select field (Ec23)

explicit typing (Ec24)

We translate each expression of type T into a behaviour of type exit(T ), maintaining the invariant that each expres-
sion is only capable of performing termination (d) or exception (X) transitions, and not internal (i), gate (G) or delay

(€) transitions.

Most of the translations are straightforward, since they are the same as the behaviour parts. We only give the

non-trivial translations here.

14.2 Value

Syntax
N

Syntax sugar

def

N = exit(N)

14.3 Nondeterministic termination
Syntax

any T
Syntax sugar

any T £ exit(any T)

14.4 Record expression
Syntax
(RE)

Syntax sugar

def

(RE) =trap exit ?x is (x) inRE
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14.5 Constructor application
Syntax

C[E]
The default argument is ().

Syntax sugar

CE £ caseE is?x — Cx

14.6 Conjunction
Syntax

E andalso E

Syntax sugar

E; andalso E, &' if E; then E, dse false

14.7 Disjunction
Syntax
E ordseE

Syntax sugar

E; ordse E; Lhif E; then true eseE,

14.8 Equality
Syntax
E=E

Syntax sugar

E,= Ezd:efcase(El,Ez) is(?x,?y) — casexis'y — true | any — false

14.9 Inequality
Syntax
E<E

Syntax sugar

E1 <> E» &if E; = E, then false else true
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14.10 Field select
Syntax
E.V

Syntax sugar

def

E .V =caseEis(V = 7X,€c) —Xx

14.11 Explicit typing
Syntax
E:T

Syntax sugar

E:T % caseE:Tis?x — x

15 Record expressions
15.1 Syntax

RE x:= V=E

* |
x| RE,RE
x| E(E)

15.2 Syntax sugar

Note that this entire syntactic category is syntax sugar.
Each record expression of type RT is translated into a behaviour of type exit (RT).

15.3 Singleton record
Syntax
V=E

Syntax sugar

def

V=E=7V:=E

154 Empty record
Syntax

0

singletor(RE:1)
trivia[RE2)
disjoint unio(RE¢3)
tupléRE:4)



Syntax sugar
() ¥ exit

15.5 Record disjoint union

Syntax
RE,RE

Syntax sugar

def

RE;,RE, ' RE; | | IRE,

15.6 Record tuple

Syntax
EGE)

Syntax sugar

def

Ei,...,En=%1=E4,...,5n=E,

16 Expression pattern-matching

16.1 Overview
Syntax

EM xi= P[E]I—E
x| EMIEM

Syntax sugar  Note that this entire syntactic category is syntax sugar.

Expression pattern-matches trivially translate into behaviour pattern-matches.

17 In parameters

17.1 Overview

Syntax
IP xi= V=[P:]T
x| €ec
x| PaslP
*|
x| IP,IP

x| [P:T(IP:T)*

with the restriction that etc can occur at most once.
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Syntax sugar  Note that this entire syntactic category is syntax sugar.
Each parameter list is translated to a typed record pattern of the form $argv asRP : RT

17.2 Singleton parameter list
Syntax

V=[P:]T
The default pattern is any.

Syntax sugar

def

(V=P:T)=8%argvas(V=P) : (V=T)

17.3 Wildcard
Syntax

etc
Syntax sugar

etc £ $argv asetc : etc
17.4 Record match
Syntax

PaslP
Syntax sugar

P as$argv asRP : RT £ $argv asP asRP : RT
9

17.5 Trivial parameter list
Syntax

9)
Syntax sugar
()= sargvas() : ()

17.6 Parameter list disjoint union
Syntax
IP,IP
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Syntax sugar

(($argv asRPy : RTy), ($argv asRP; : RT1)) = ($argv asRPy,RP;

17.7 Tuple parameter list
Syntax

[P:]T([P:]T)*
The default pattern is any.

Syntax sugar

(Pr:Ty, .., Po:Tn) & ($1=Py: Ty, ..., $n=Py:Ty)

18 Local variables

18.1 Overview
Syntax
LV %= V=V:T
* |
x| LV,LV
x| VT V:T)*

Syntax sugar  Note that this entire syntactic category is syntax sugar.

: RT]_, RTz)

Each local variable list is translated into a typed variable list of the form RV :RT.

18.2 Singleton variable list
Syntax
V=VeT

Syntax sugar

def

V=VETH)E V=2V (V=T)

18.3 Trivial variable list
Syntax

9)
Syntax sugar

0%0:0
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18.4 Variable list disjoint union
Syntax
LV,LV

Syntax sugar

((RV]_ H RT]_), (RVZ H RTz)) d:(Ef (RV]_, RV2 H RT]_, RTz)

18.5 Tuple variable list
Syntax
V:T(V:T)*

Syntax sugar

(Vi:To, Vo Tn) & ($1=Va Ty, ., 80 =Vo: Ty)

19 Further work

There are a number of features still missing from the language, some of which might be added into the core language:

e We may wish to add a ‘parallel composition over values’ operator in the same style as the current ‘choice over
values’ operator.

¢ There have been requests for the ability to form n-out-of-m communication channels as well as the current n-out-
of-n channels.

¢ An additional suspend/resume operator has been requested.
¢ The ability to rename a gate or exception to more than one other gate would be useful.
o Support for write-many variables would be useful.

e The ability to call functions declared with named parameters, using positional arguments. (At the moment
functions are either declared with positional or named arguments, and the two styles cannot be mixed).

We need to check a number of semantic properties for the language, for example: principal typing, type safety, stratifi-
cation, and bisimulation as a congruence.
The relationship between the core language and the user-level language needs to be clarified.
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