
Validation and Interactivity of
Web API Documentation

Peter J. Danielsen
and Alan Jeffrey

Bell Labs
Alcatel-Lucent

Naperville, IL, USA

Abstract—Many Web APIs (by which we mean ones using
HTTP as the application protocol) do not publish a machine-
readable API description (in a language such as WADL or
WSDL) but only provide human-readable documentation, usually
in HTML. This documentation may be machine-generated, or
it may be hand-edited in which case there is the possibility of
errors being introduced into the API description. In this paper
we present a Web Interface Language (WIfL) vocabulary for API
documentation, which is intended to be embedded in HTML using
RDFa annotations. We present the semantics of WIfL, including
a formal presentation of inheritance and validation. We discuss
our WIfL tools, which include a dynamically generated console
for interacting with an API’s reference implementation, and a
validator which can check an API for internal consistency.

I. INTRODUCTION

In recent years, the number of web applications offering
Application Programming Interfaces (APIs) has increased dra-
matically. Figure 1 [1], shows the rapid growth in the number
of APIs listed in the ProgrammableWeb directory since 2005.
Figure 2 [2], breaks down the types of APIs in the directory
and shows that REST1 [3] is in the majority and is growing
faster than any other style.

When an application exposes its data through a web API,
it enables the creation of other applications that consume
the data. The API becomes more valuable as the number of
applications that use it increases. A key to converting potential
consumers to actual consumers is to make it easy for them to
learn the API and to try it. One way to do this is through
accurate, complete, interactive API documentation.

This paper focuses on improving web API documentation
in its most common format found on the web: HTML [4].
While other formats have been designed to document APIs
(such as WSDL [5] and WADL [6]), the majority of web
APIs today are documented in English prose, formatted in
HTML, and do not follow a convention for machine-readable
processing. We discuss embedding a machine-readable API
description in the HTML using RDFa [7], and two advanced
documentation features it enables: an interactive console and
document validation.

1ProgrammableWeb API styles are self-reported by the API owners, and
APIs reported as RESTful may not satisfy all of Fielding’s architectural
requirements. To avoid terminological arguments, we will use the phrase “web
API” to describe APIs which are using HTTP as an application protocol.

II. REQUIREMENTS

Looking at example API documents, such as the Twitter
API or the ProgrammableWeb API, we discover some features
of API descriptions in HTML.

Firstly, the authoring workflow for different APIs may be
quite different. Some APIs (such as Twitter’s) are machine
generated, and some (such as ProgrammableWeb’s) are hand-
crafted. The common artifact in both cases is the HTML
document itself, which motivates our interest in embedding
machine-readable API descriptions into the human-readable
HTML.

Secondly, the logical structure of the API does not neces-
sarily align with the structure of the API document. For ex-
ample, query parameters which are shared among all requests
(such as an apikey) may be described only once in an overview
section. Also, an API description is often split between many
different pages, for example one page per resource class,
together with an overview page. For this reason, we are
interested in hyperlinked API descriptions, which allow the
logical structure and document structure of an API description
to differ.

Thirdly, it is quite common for API documents to include
example client-server interactions, which are used to illustrate
idiomatic uses of the API. A 2010 study [4] found that
75% of the studied APIs provided example requests and
responses. Examples are often hand-crafted, and so are subject
to typographic error, and to becoming out-of-date as the API
specification changes.

These features lead us to our requirements: a machine-
readable API description format which can be embedded into
HTML, supports hyperlinking, and allows for specification and
validation of example dialogs.

III. MODEL

A. Vocabulary

In Figure 3 there is an example API, rendered in a
browser, together with its HTML source. This API shows some
characteristics which are common in API descriptions.

The API is described as a collection of resource classes,
in this case Store (the entire API), Products (the product
catalog) and Product (an individual product for sale). Each
resource class has an associated URI template [8], for example
the Product template is http://example.com/store/api/products/{id}.

Fig. 1. API Growth 2005-2012 Fig. 2. API Protocols & Styles

Fig. 3. Example API with WIfL annotations

URI templates can be expanded with a data binding to produce
a particular resource URI, for example expanding the Product
template with data binding { id: "123" } produces the URI
http://example.com/store/api/products/123.

Each resource class has associated requests, with a method
(GET, PUT, POST or DELETE), parameter descriptions (such
as the id parameter of Product), and representations. The
parameters are often typed (for example, id may be expected to
be a non-negative integer) and the representations often have a
schema (such as an XML Schema [9] or JSON Schema [10]).

Each request has associated responses, with possible status
codes (such as 200 OK or 404 Not Found), header parameters
and representations.

For example, the Product class has:

• URI template http://example.com/store/api/products/{id},
where the id parameter is mandatory, and

• a GET request, which has a 200 OK response, whose

payload has media type application/json, conforming to
the JSON schema example-schema.json#/product.

Expressed in the WIfL vocabulary, this is:

path = http://example.com/store/api/products/{id}

name = id
required = true

method = GET

status = 200

contentType = application/json
type = example-schema.json#/product

pathParam request

response

representation

Fig. 4. WIfL vocabulary

Fig. 5. Example API representation in WIfL

This graph can be embedded in the HTML description of the
API using RDFa annotations [7]. For example the description
of the JSON representation could be serialized as:

<p about="#Product_JSON">
The representation has media type
application/json
and should conform to our
schema.

</p>

The vocabulary for WIfL API descriptions is given in Figure 4.
The object diagram showing the RDF graph extracted from the
example API description is given in Figure 5.

As well as API descriptions, WIfL documents can contain
example client-server dialogs. For example, if a client sends:

GET /store/api/products/123 HTTP/1.1
Host: example.com

and the server responds:

200 OK
Content-Type: application/json
{ "name": "Instant Hole" }

then the dialog can be included in the HTML document by
including the RDF graph:

method = GET
uri = /store/api/products/123

status = 200
body = { "name": "Instant Hole" }

name = Host
value = example.com

name = Content-Type
value = application/json

exampleRequest exampleRespone

exampleHeader exampleHeader

To support such example dialogs, we provide the Example class
in Figure 4.

B. Inheritance

One problem with the basic WIfL model described in the
previous section is that it violates the DRY principle (Don’t
Repeat Yourself).

The first violation is in the URI templates, for example
there is a lot of repetition in our store example:

path = http://example.com/store/api

path = http://example.com/store/api/products

path = http://example.com/store/api/products/{id}

We reduce this in the same manner as WADL [6], by allowing
resource classes to have an optional parent. A child’s URI
template may be relative rather than absolute, and it is resolved
by its parent URI template. Since path parameters are given in
the URI template, children also inherit path parameters from
their parent. For example, the store resources are:

path = http://example.com/store/api

path = /products path = /{id}

parent

parent

To normalize a WIfL description which includes parent inher-
itance, we use a deduction rule:

• if p
parent−−−→ q

pathParam−−−−−−→ r then p
pathParam−−−−−−→ r.

We also define a relationship p
uriTemplate−−−−−−−→ u (where p is a

resource class and u is its URI template) as follows:

• if @q . p parent−−−→ q and p
path−−→ u

then p
uriTemplate−−−−−−−→ u, and

• if p
parent−−−→ q

uriTemplate−−−−−−−→ t and p
path−−→ u

then p
uriTemplate−−−−−−−→ tu.

Note that resolution of URI templates is just given by con-
catenation: if a resource’s parent has URI template t and the
resource has path u then the resource’s URI template is tu. We
do not attempt to perform URI resolution [11] on templates,
and indeed we suspect that no satisfactory2 algorithm for URI
template resolution exists.

The second violation is in the use of parameters, requests
and responses. For example, RDF supports hyperlinking, so
we can specify that every resource shares an apikey parameter,
but to do so the hyperlink has to be present explicitly in every
resource description:

2In that resolving the URI templates and then expanding should give the
same result as expanding the templates and then resolving the resulting URIs.

path = http://example.com/store/api

path = /products path = /{id}

name = apikey

parent

parent

queryParam

queryParam
queryParam

We also reduce this using a similar technique to WADL, by
allowing resource classes to have superclasses, from which
they inherit query parameters, header parameters, requests
and responses (but not the path or any path parameters). For
example, the store example is now further simplified:

path = http://example.com/store/api

path = /products path = /{id}

name = apikey

parent super

parent

super

queryParam

The deduction rules for inheritance from superclasses are:

• if p
super−−−→ q

headerParam−−−−−−−→ r then p headerParam−−−−−−−→ r,

• if p
super−−−→ q

queryParam−−−−−−→ r then p
queryParam−−−−−−→ r,

• if p
super−−−→ q

request−−−−→ r then p
request−−−−→ r, and

• if p
super−−−→ q

response−−−−−→ r then p
response−−−−−→ r.

Having defined inheritance for a resource, we extend this
to requests. We cannot, however, just define a relationship
r

uriTemplate−−−−−−−→ u when r is a request, since the same request
may be shared among many resources. For example we could
have specified that multiple resources can return an HTML
representation:

method = GET status = 200

contentType = text/html

request

request

response

representation

In this case, the GET request has no single URI template,
but instead must be given a context resource. We will write
p � q

uriTemplate−−−−−−−→ u whenever, in resource context p, request
q has URI template u, and similarly for the other inherited
properties. For all the other properties, the definition is quite
simple:

• if p
queryParam−−−−−−→ r or q

queryParam−−−−−−→ r

then p � q
queryParam−−−−−−→ r,

• if p headerParam−−−−−−−→ r or q headerParam−−−−−−−→ r

then p � q headerParam−−−−−−−→ r,

• if p
pathParam−−−−−−→ r or q

pathParam−−−−−−→ r

then p � q
pathParam−−−−−−→ r, and

• if p
response−−−−−→ r or q

response−−−−−→ r
then p � q

response−−−−−→ r.

For the derived URI template, the rule is slightly more com-
plex, since there is special syntax for query parameters in the
URI template RFC [8]):

• if p
uriTemplate−−−−−−−→ u

and {k | p � q queryParam−−−−−−→ · name−−−→ k} = {k1, . . . , kn}
then p � q

uriTemplate−−−−−−−→ u{?k1, . . . ,kn}.

For example, in the context of the Product resource class
(with deduced query parameter named apikey and deduced
URI template http://example.com/store/api/products/{id}),
the GET method has the deduced URI template
http://example.com/store/api/products/{id}{?apikey}.

C. Validity

Our primary motivation for including WIfL annotations in
API documentation is to support validation of documents, and
in particular to validate example dialogs.

A document is valid whenever, for every example x we can
find a resource class r such that x is an instance of r (which we
write � x : r). In our definition of validity, we shall assume that
each type t mentioned in the API description has a matching
set of possible values JtK (for example if t is an XML schema
type, then JtK is the set of all valid XML documents of that
type). We will also make use of URI template expansion, and
write u[σ] for the URI given by expanding URI template u
with data binding σ.

For any example x and resource class r, we define � x : r
whenever:

• if x
exampleRequest−−−−−−−−−→ y and x

exampleResponse−−−−−−−−−−→ z

then there exists r
request−−−−→ q and r � q

response−−−−−→ p
such that r � y : q and � z : p.

For any example request x, resource class r and request class
q, we define r � x : q whenever there exists a data binding σ
such that:

• r � q
uriTemplate−−−−−−−→ t and x uri−→ u

and x
exampleHeader−−−−−−−−→ h and Host

name←−−− h value−−−→ v
and t[σ] = http://v/u,

• q
method−−−−→ m and x method−−−−→ m,

• if r � q
pathParam−−−−−−→ p or r � q

queryParam−−−−−−→ p

and k name←−−− p type−−→ t and (k, v) ∈ σ
then v ∈ JtK,

• if r � q
pathParam−−−−−−→ p or r � q

queryParam−−−−−−→ p

and k name←−−− p fixed−−→ true and (k, v) ∈ σ
then p default−−−−→ v,

• if r � q
pathParam−−−−−−→ p or r � q

queryParam−−−−−−→ p

and k name←−−− p required−−−−→ true then (k, v) ∈ σ,

• if r � q headerParam−−−−−−−→ p and k name←−−− p type−−→ t,
and x

exampleHeader−−−−−−−−→ h and k name←−−− h value−−−→ v,
then v ∈ JtK,

• if r � q headerParam−−−−−−−→ p and k name←−−− p fixed−−→ true,
and x

exampleHeader−−−−−−−−→ h and k name←−−− h value−−−→ v,
then p default−−−−→ v,

• if r � q headerParam−−−−−−−→ p and k name←−−− p required−−−−→ true,
then x

exampleHeader−−−−−−−−→ h and k name←−−− h value−−−→ v, and

• if x
body−−−→ v

then x
exampleHeader−−−−−−−−→ h and Content-Type

name←−−− h value−−−→ c

and r � q
representation−−−−−−−−→ p and c

contentType←−−−−−−− p type−−→ t
and v ∈ JtK.

For any example response x and response class q, we define
� x : q whenever:

• q
status−−−→ s and x status−−−→ s,

• if q headerParam−−−−−−−→ p and k name←−−− p type−−→ t,
and y

exampleHeader−−−−−−−−→ h and k name←−−− h value−−−→ v,
then v ∈ JtK,

• if r � q headerParam−−−−−−−→ p and k name←−−− p fixed−−→ true,
and x

exampleHeader−−−−−−−−→ h and k name←−−− h value−−−→ v,
then p default−−−−→ v,

• if q headerParam−−−−−−−→ p and k name←−−− p required−−−−→ true,
then x

exampleHeader−−−−−−−−→ h and k name←−−− h value−−−→ v.

• if x
body−−−→ v

then x
exampleHeader−−−−−−−−→ h and Content-Type

name←−−− h value−−−→ c

and q
representation−−−−−−−−→ p and c

contentType←−−−−−−− p type−−→ t
and v ∈ JtK.

This completes the formal specification of WIfL.

IV. IMPLEMENTATION

A. URI Template Matching

In validation, we are given a URI u, a URI template t, and
we need to find a data binding σ such that t[σ] = u. That is,
we need to match u against t.

We would also like to be able to perform lookup on an API
(that is, given a URI, find the resource class it matches) and
check for overlap (that is, are there distinct resources with a
common URI they both match). Both of these problems can
be solved using nondeterministic finite automata (NFAs) to
represent URI templates.

Gregorio [12] (one of the authors of the URI Template
RFC [8]) has said that matching was not considered to be a
use case in the design of URI templates:

URI Templates are for expansion and not parsing, so
the use case of trying to figure out which value goes
with which variable is not a supported use case.

In particular, there are many URI templates which match
ambiguously, for example the URI template {a,b,c} can match
the URI 1,2 in many different ways such as the data binding
{a=1,b=2} or the data binding {a=1,c=2}. For this reason, we use
nondeterministic automata (rather than deterministic ones) to
implement URI templates.

Fig. 6. WIfL console

Moreover, URI templates use a copying semantics for
repeated variables, for instance the URI template {a}/{a} will
match the URI 1/1 but not the URI 1/2. Recognizing repeated
strings is the canonical language which cannot be recognized
by an NFA. For this reason, we do not implement the entire
URI template language, but restrict ourselves to URI templates
with no repeated variables.

We also make a technical restriction to only treating data
bindings with values or arrays, not with associative arrays, for
example our implementation will not match {?a*} against ?b=1.

The implementation of NFAs is standard, but (to track
the variable assignments) we attach a partial function to each
transition, and to each accepting state, which we term its
action. Given an accepting run:

q0
a1−→ q1

a2−→ · · · an−−→ qn

where each qi has a transition action fi and qn has an acceptor
action gn then the resulting value is:

f1(f2(· · · fn(gn({}), an) · · · , a2), a1)

For example, the URI template {x} generates a one state
automaton:

q0
a−→ q0

whose accepting action is the function:

function(σ){if(!σ.x){σ.x = []; returnσ; }}

and whose transition action is the function:

function(σ, a){σ.x.unshift(a); returnσ; }

Running this automaton on the string a1, . . . , an generates the
expected data binding {x : [a1, . . . , an]}.

We also associate each action with an inverse action, which
allows us to implement URI template expansion on the same

NFA as we built to perform URI template matching. Given a
value σ we search for an accepting run:

q0
a1−→ q1

a2−→ · · · an−−→ qn

such that the result of:

g−1
n (f−1

n (· · · f−1
2 (f−1

1 (σ, a1), a2) · · · , an)) = {}

For example in the URI Template {x}, the inverse of the
accepting function is:

function(σ){if(!σ.x == []){deleteσ.x; returnσ; }}

and the inverse of the transition action is the function:

function(σ, a){if(σ.x[0] == a){σ.x.shift(); returnσ; }

Running the inverted automaton on the data binding {x :
[a1, . . . , an]} generates the string a1, . . . , an as expected.

Assuming that each fi and gi has an appropriate inverse, it
is routine to check that expansion is the inverse of matching,
and to implement both of these using backtracking recursive
functions.

Using these NFAs, it is straightforward to implement URI
template matching and expansion. We can also implement
lookup, as follows:

• For each resource class r, build the NFA for its URI
template t, then remove its transition actions and
replace its accepting action with one that returns r.
The resulting NFA will match URIs which match t,
and will return value r.

• Take the set of all such NFAs and determinize them to
produce a deterministic finite-state automaton (DFA).
(This is possible because the NFAs do not have
transition actions, otherwise we would have a problem
since transducers cannot always be determinized [13]).
The resulting DFA will match URIs which match any
ti, and will return value ri.

Moreover, having built the DFA for the lookup function, it is
is straightforward to check to see if any resource classes have
overlapping URI templates: just check to see if any accepting
state in the DFA has more than one return value.

There is complexity in this automaton-based approach to
URI templates, but it has some advantages over straightforward
recursive descent parsing:

• The matching and expansion functions are guaranteed
to be inverses.

• Once the DFA has been constructed, the lookup func-
tion runs in linear time in the length of the URI.

• We can detect overlapping URI templates.

B. Interactive Console

Figure 6 shows a screenshot of the WIfL console. This
allows a reader of an API document to quickly create HTTP
requests to interact with the API’s reference implementation.
A reader can read an example dialog, click on it, and open
up an console which they can use to interact with the API’s
reference implementation.

The console is implemented as a JavaScript library, using
the jQuery [14] framework and the Green Turtle [15] RDFa
processing engine.

• The console first extracts RDFa from the page, and
follows the WIfL hyperlinks. It keeps extracting RDFa
from the downloaded HTML until it has resolved all
of the WIfL hyperlinks.

• It then converts the resolved RDFa into a JavaScript
model of WIfL, and constructs NFA representations
of the URI templates, as discussed in the previous
section.

• When an example is selected, the URI is extracted
from the example, and the lookup function is used
to find the appropriate resource and request from the
API description. The console form is built with the
parameters given in the API description, and pre-
populated with the parameter values given in the
example dialog.

• When the form’s action is selected, an appropriate
XMLHttpRequest is created, and the request and re-
sponse displayed in the console.

This console allows readers to interact quickly with an API’s
reference implementation, which would otherwise require a
command-line use of curl or wget.

C. Validator

Figure 7 shows a screenshot of the WIfL validator.

The main audience for the validator is the team writing
the API documentation, and it allows them to test their
documentation for internal consistency. The screenshot shows
that an invalid interaction has been highlighted: the request
claims to have content type application/json, but the body is
actually application/x-www-form-urlencoded.

As well as benefiting the technical writing team, readers
of the API documentation benefit from the validator. Readers
can use the validator in the interactive console, to check to
see if their expectations about data validity are matched by
the console. The screenshot shows an error message given by
invalid user input: the XML payload does not match the XML
schema.

The validator implements the specification given in Sec-
tion III-C. It uses the same WIfL model as the console, and
uses the JSON Schema library [16] and the libxml XML
Schema library [17], ported to JavaScript [18] using the
emscripten [19] LLVM bytecode interpreter. Since xmllint can
take a few seconds to validate a document, it is run in a
background thread using a web worker [20].

As well as running in a browser context, the validator can
be run in headless mode inside node.js. This allows reports on
validity to be generated during documentation builds.

V. RELATED WORK

The most common languages for web API description are
WADL [6] and WSDL [5]. These (especially WADL) have a
similar API model to WIfL, but they are serialized as XML
rather than being embedded in HTML. Other XML formats
include REST Chart [21] and RIDDL [22]. Generating and
maintaining a WADL or WSDL file as well as human-readable
documentation can be difficult, especially for a technical
writing team.

A previous attempt at embedding API descriptions in
HTML was the poshformat (Plain Old Semantic HTML)
hRESTs [23] (HTML for RESTful Services). Its model was
very similar to the WSDL 1.1 model of SOAP-based web ser-
vices, and adapted features of the RDFa-based SA-REST [24]
(Semantic Annotations for REST). The hRESTs microformat
requires the HTML document structure to match the logical
structure of the API description, which is in conflict with our
hyperlinking requirement. There is no console or validator for
hRESTs.

The closest relative to our WIfL console is the Apigee API
Console [25]. The main differences between our approaches
is that Apigee uses WADL/XML rather than WIfl/RDFa, and
that Apigee requires the API WADL to be uploaded to their
servers, rather than embedding the console as JavaScript in any
HTML page. Apigee does not support API example validation.

VI. CONCLUSIONS

Embedding machine-readable information in an API’s
HTML documentation expands its utility as a learning vehicle
beyond passive reading. One addition is an interactive con-
sole, dynamically generated from the embedded description,
which allows the human reader to experiment with the API
from within the documentation. Another is a validation tool,
which verifies that examples in the documentation really are
exemplary of and conformant with the API.

Such tools provide benefits to several distinct groups of
users: external developers (those wishing to learn an API
for use in their applications), technical writers (those who
document an API), and internal developers (those who imple-
ment the application that exposes an API). External developers

Fig. 7. WIfL validator

use the console to instantly explore the API as they read
its documentation. Technical writers validate their examples
as they create them using a browser, well before a working
implementation of the API exists, and they use the validation
tool during the documentation build process for quality as-
surance. An internal developer, working in a code-first style
with JAX-RS [26] or in a contract-first style with WADL, may
dynamically generate an HTML document (e.g. using XSLT)
with a console to test their implementation as they develop it.

Finally, the addition of API descriptions to HTML, which
is already being visited by web crawlers, enables the discovery
of APIs and their details that may not be otherwise available
in the online API directories of today.

REFERENCES

[1] A. Duvander, “8,000 APIs: Rise of the enterprise,” 2012,
http://blog.programmableweb.com/2012/11/26/8000-apis-rise-of-
the-enterprise/.

[2] J. Musser, “Open APIs, what’s hot, what’s not,” 2012,
http://www.slideshare.net/jmusser/j-musser-apishotnotgluecon2012.

[3] R. T. Fielding, “Architectural styles and the de-
sign of network-based software architectures,” 2000,
http://www.ics.uci.edu/f̃ielding/pubs/dissertation/rest_arch_style.htm.

[4] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web
APIs on the world wide web,” in Proc. European Conf. Web Services,
2010, pp. 107 –114.

[5] “Web services description language (WSDL) version 2.0
part 1: Core language,” W3C Recommendation, 2013,
http://www.w3.org/TR/wsdl20/.

[6] M. Hadley, “Web application description language,” W3C Member
Submission, 2009, http://www.w3.org/Submission/wadl/.

[7] B. Adida, M. Birbeck, S. McCarron, and I. Herman, “RDFa core 1.1,”
W3C Recommendation, 2012, http://www.w3.org/TR/rdfa-core/.

[8] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, and D. Orchard,
“Uri template,” IETF RFC 6570, 2012.

[9] D. C. Fallside and P. Walmsley, “XML schema part 0: Primer second
edition,” W3C Recommendation, 2004.

[10] F. Galiegue and K. Zyp, “JSON schema: core definitions and termi-
nology,” IETF Internet Draft, 2013, http://tools.ietf.org/html/draft-zyp-
json-schema.

[11] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource iden-
tifier (URI): Generic syntax,” IETF RFC 3986, 2005.

[12] J. Gregorio, “URI templates: comma-separated
variable lists,” W3C URI Mailing List, 2011,
http://lists.w3.org/Archives/Public/uri/2011Aug/0024.html.

[13] M. Lothaire, Applied Combinatorics on Words. Cambridge University
Press, 2005.

[14] J. Resig et al., “jquery,” http://jquery.com/.
[15] A. Milowski, “Green-turtle: An implementation of the RDFa 1.1 API

for browsers,” http://code.google.com/p/green-turtle/.
[16] K. Zyp et al., “JSON Schema specifications, reference schemas, and a

CommonJS implementation,” https://github.com/kriszyp/json-schema.
[17] “The XML C parser and toolkit of Gnome,” http://www.xmlsoft.org/.
[18] A. Zakai, “Port of libxml to JavaScript using Emscripten,”

https://github.com/kripken/xml.js.
[19] A. Zakai et al., “Emscripten: An LLVM-to-JavaScript compiler,”

https://github.com/kripken/emscripten.
[20] I. Hickson, “Web workers,” W3C Candidate Recommendation, 2012,

http://www.w3.org/TR/workers/.
[21] L. Li and W. Chou, “Design and describe REST API without violating

REST: A Petri net based approach,” in Proc. Int. Conf. Web Services,
2011, pp. 508–515.

[22] J. Mangler, P. P. Beran, and E. Schikuta, “On the origin of services
using RIDDL for description, evolution and composition of RESTful
services,” in Proc. Int. Conf. Cluster, Cloud and Grid Computing, 2010,
pp. 505 –508.

[23] J. Kopecky, K. Gomadam, and T. Vitvar, “hRESTs: An HTML micro-
format for describing RESTful web services,” in Proc. Int. Conf. Web
Intelligence and Intelligent Agent Technology, 2008, pp. 619–625.

[24] A. P. Sheth, K. Gomadam, and J. Lathem, “SA-REST: Semantically
interoperable and easier-to-use services and mashups,” IEEE Internet
Computing, vol. 11, no. 6, pp. 91–94, 2007.

[25] Apigee Corp., “What’s an API console?”
http://apigee.com/docs/enterprise/content/whats-api-console.

[26] “Java API for RESTful services (JAX-RS),” JSR 339, http://jax-rs-
spec.java.net.

