
Semantics for core Concurrent ML
using computation types

Alan Jeffrey

Abstract

This paper presents two typed higher-order concurrent functional pro-
gramming languages, based on Reppy’s Concurrent ML. The first is a simpli-
fied, monomorphic variant of CML, which allows reduction of terms of any
type. The second uses an explicit type constructor for computation, in the
style of Moggi’s monadic metalanguage. Each of these languages is given
an operational semantics, which can be used as the basis of bisimulation
equivalence. We show how Moggi’s translation of the call-by-value lambda-
calculus into the mondadic metalanguage can be extended to these concurrent
languages, and that this translation is correct up to weak bisimulation.

1 Introduction

Reppy’s (1991, 1992) Concurrent ML is an extension of New Jersey ML with
features for spawning threads, which can communicate by one-to-one synchronous
handshake in the style of Milner’s (1989) CCS.

There are (at least) two approaches to giving the operational semantics to CML.
The ‘functional language definition’ tradition (Milner, Tofte, and Harper 1990, for
example) is to define unlabelled reductions between entire programs, and to use
this semantics to prove properties such as type-safety. Reppy uses this approach to
give a reduction semantics to CML based on evaluation contexts

��� �
, for example

giving the semantics of if-expressions as:

�������
	���
���	��������������������! #" ���$��� ���%�&�'	���
(��	��(�#�������)�������* #"+���,���

The ‘concurrency semantics’ tradition (Milner 1989, for example) is to define la-
belled reductions between program fragments, and to use this semantics as the ba-
sis of equivalences (such as bisimulation) between program fragments. Ferreira,
Hennessy and Jeffrey (1995) use this approach to give a labelled transition system
semantics to CML including silent transitions - #" and value transitions .0/ �" , for
example giving the semantics of if-expressions as:

� .)1325436 # � #" �(7
���8�9	��(�#�:�;���)���*< - #" � 7(= �

� .�>@?BABCB6 B () D" ��7
�&���E	��(���'�F�������G< - #" � 7)= <

� H #" ��7
���8�9	������:�;�������I< H #" �&�J� 7 	������'���������*<

100

Semantics for core Concurrent ML using computation types 101

The resulting labelled transition system can be used as the basis of an equational
theory of CML expressions, using bisimulation as equivalence.

Unfortunately, there are some problems with this semantics:

� It is complex, due to having to allow expressions in any evaluation context
to reduce (for example requiring three rules for if-expressions rather than
Reppy’s two axiom schemas).

� It produces very long reductions, due to large numbers of ‘book-keeping’
steps (for example the long reduction in Table 9).

� The resulting equational theory does not have pleasant mathematical prop-
erties (for example neither

�
- nor � -conversion hold for the language).

In this paper we present a variant of CML using computation types. These provide
an explicit type constructor �����	� for computation, which means that the type sys-
tem can distinguish between expressions which can perform computation (those of
type
������
�) and those which are guaranteed to be in normal form (anything else).
Differentiating by type between expressions which can and cannot perform reduc-
tions makes the operational semantics much simpler, for example the much shorter
reduction in Table 16 and the simpler operational rules for if-expressions:

� ����������������������� !�#" - #" � � ���%$�� !�&�����'������� !�#" - #" "

Computation types were originally proposed by Moggi (1991) in a denotational
setting to provide models of non-trivial computation (such as CML communica-
tion) without losing pleasant mathematical properties (such as

�
- and � -reduction).

Moggi provided a translation from the call-by-value (-calculus into the language
with computation types, which we can adapt for CML and prove to be correct up
to weak bisimulation.

We can also use equational reasoning to transform inefficient programs (such
as the translation of the long reduction in Table 9) into efficient ones (such as the
short reduction in Table 16). We conjecture that such optimizations may make
languages with explicit computation types simpler to optimize.

In section 2 we present a cut-down version of the operational semantics for CML
presented in (Ferreira, Hennessy, and Jeffrey 1995), including a suitable definition
of bisimulation for CML programs.

In section 3 we present the variant of CML with explicit computation types, and
show that the resulting equational theory of bisimulation has better mathematical
properties than that of CML.

In section 4 we provide a translation from the first language into the second, and
show that it is correct up to bisimulation.

102 Jeffrey

2 Concurrent ML

In this section, we introduce a subset of Concurrent ML (CML), and provide a
labelled transition system semantics for it. This provides weak bisimulation as an
equivalence on programs.

This section is based on joint work with Ferreira and Hennessy, and is discussed
in more detail in (Ferreira, Hennessy, and Jeffrey 1995).

2.1 Syntax

Concurrent ML (CML) is an extension to New Jersey ML which allows for the
implementation of concurrent programs. Communication takes place along chan-
nels, and is a one-to-one handshake similar to Milner’s (1989) CCS. For example,
the process which transmits value � of type

�
along channel � and then returns the

canonical value ��� of type

��0��	

is:

�������	� �
���
���
In this paper, we are using a simplified notion of channel, where channels are
untyped, and so

���������
has type:

����������������� � ��� �������
��G��	

The process which accepts value � of type
�

along channel � and returns � is:

� �����	��	 � �
This has type:

� ����� ��	 � ���#� � � ���!�
The fragment of CML we are considering is monomorphic, which is why

�������
and � �����	��	 have to be type-indexed. We shall often elide these indices.

Evaluation proceeds as in ML, with left-to-right call-by-value evaluation, so a
process which accepts values � then " along channel � and returns the pair �#�$�
"��
is:

�%� �����	��	 ���&� �����	��	 ���
We can define the sequential composition of

�
and

�
to be a term which evaluates�

, discards the result, then evaluates
�

to be (for fresh '):

�)(�+* ����	 '-, � �&�:�

A thunked process can be forked off for concurrent evaluation using
�.� � / � , for

example the concurrent passing of � along � can be given:

�0� �	/ � � ��� '1, � ���#��� �
���
����� (� �����	��	 �

Semantics for core Concurrent ML using computation types 103

This spawns
������� �
���
��� off for concurrent execution, then evaluates � �����	��	 � .

These two processes can then communicate. In this paper, we are ignoring CML’s
threads so

�0� � / � has type:

�.� �	/ �1� �
��0�&	 ��� �������
��0�&	

CML does not provide a general ‘external choice’ operator such as CCS
�

. In-
stead, guarded choice is provided, and the type mechanism is used to ensure that
choice is only ever used on guarded computation. The type

� ���(�#��	
is used as the

type of guarded processes of type
�

, and CML allows for the creation of guarded
input and output:

	�� � �0���!�&		� ������� � � � �������
��G��	 ���(�#��	 �)���������(�#� ���#� � � ���!� ��������	

and for guarded sequential computation:

/ � � �1��� � ��������	$��� � ���	��� �����
� ��������	

For example the guarded process which inputs a value on � and outputs it on � is
given:

/ � � � � �)�����)���(� ��� ��� '-, � ������� �
� � ' ��� �#
��0��	 ���(�#��	
CML provides choice between guarded processes using

�#�����)���
. In CML this is

defined on lists, but for simplicity we shall give it only for pairs:

�#��������� ��� � ���(�#��	$� � ��������	 �����!� ���(����	

For example the guarded process which chooses between receiving a signal on �
or � is: ����������� � � �����)�����#� ��� �)���������(�#� � � � � ��������	

Guarded processes can be treated as any other process, using the function
�����&�

:

����� �-� � ���(�#��	 ��� �

For example, we can execute the above guarded process by saying:

����� � � �������)��� � � �����������#� ��� �)���������(�#� � ��� � �

In fact, � ����� ��	 and
���#���

are not primitives in CML, and are defined:

� �����	��	 � �����* ��� ' , � �����&� � �)���������(�.� ' ����#��� � �����* ��� ' , � �����&� � 	�� � �0���!��	 � ' �
This paper cannot provide a full introduction to CML, and the interested reader is
referred to Reppy’s papers (Reppy 1991; Reppy 1992) for further explanation.

The fragment of CML we will consider here is missing much of CML’s func-
tionality, notably polymorphism, guards and thread identifiers. It is similar to the

104 Jeffrey

fragment of CML considered in (Ferreira, Hennessy, and Jeffrey 1995) except that
for simplicity we do not consider the � � / � �G� command. We will call this subset
‘core � -free CML’, or ������� for short.

For simplicity, we will only use

��G��	

, � ����� , ����	 and
��� � � as base types, al-

though other types such as lists could easily be added.

The integer values are given by the grammar:

� � � *
	�	�	
� ��� ����� � ��	�	�	

The channel values are given by the grammar:

� � � * � � � ��	�	�	

The values are given by the grammar:

� � � *)��
���� � � ������� � � � � �#� ���)��� '-, ��� '-, � ��� '
The expressions are given by the grammar:

� � � * � ���������&���9	�������� �������:��� � � � � � �����#	 '-, � ���E�������

Finally, the basic functions are given by the grammar:

� � � * �G��	���������� � ����� ��
������������)� � �G� �*��		����� �����)����� ����#�����)�������0� �	/ ��������� � � / � � ����������� �

������� is a typed language, with a type system given by the grammar:

� � � *
��G��	�� � ���������&��	�� ��� � ��� � � � � � ��� � � � ��������	

The type judgements for expressions are given as judgements !#" � � �
, where

! ranges over contexts of the form '�$ � � $�%�&�&�&'% '�(� � (. The type system is in
Tables 1 and 2.

We can define syntactic sugar for ������� definitions, writing
��� '-, � � for� ���*) , ��� '-, � � when

)
is not free in

�
, using pattern-matching on pairs as short-

hand for projections, and using � � �* as shorthand for recursive function declaration.
For example, a one-place buffer can be defined:

������� � � �#� � � � �#� � � ��� �
�������	� � ' �) � � � �* �������	� � �&��� � ���#����� �) � � ����� ��	 � ' � � � ' �) � ���

2.2 Operational semantics

The semantics we will use here is based on the ‘semantics of concurrency’ tradi-
tion: we extend the programming language with enough syntactic constructs that
it is possible to give a transition system semantics between program fragments.

Semantics for core Concurrent ML using computation types 105

!�" � � �
!�" ��� � � � � � � " � � !�" � � � ����� !�" � � � ! " < � �

!�" ���E�E	������:�;�������*< � �
!�" � � � !�" � � �
!�" � � � � � � � � � !�" � � � ! % ' � � " � � �

! " ����	 '-, � ��� � � �
!�" � � � ���
� !�" � � �

!�" ��� � � ! % ' � � " ' � � ! " ' � �
! %) � � " ' � � � ' �*)��

!�")��
���� � ����� !�" � � ������� � ����� !�" � �)����	 ! " � ���#� � �

!�" �#� ��
��G��	 ! % ' � � ��� � %) � � " � � �
!�" � ��� '-, ���) , � � � � ���	�

Table 1: Types for �
����� expressions

�0��	 � � � � " �
����� � � � � " �

� ��� � �&��	��E����	8"+�&��	
��
(� � �&��	��E����	8"+�&��	
��� � � �&��	��E����	8" � �����)� � �G� �*��		� � �#� � �$� � "
��G��	 ���(����	

� �����)����� � � �#� � �E" � ��������	
����������� � � ���(����	$� � ���(�#��	E" � ���(�#��	
�0� �	/ � �
��0��	 ���
��0�&	E"
��0��	
�����&� � � ���(����	E" �
/ � � � � � ���(����	$��� � ���
��� " � ���(�#��	
�����(��� �
��0��	E" � ��������	

Table 2: Types for �
����� basic functions

A comparison of this semantics with Reppy’s (1992) reduction semantics is given
in (Ferreira, Hennessy, and Jeffrey 1995).

The semantics we provide has four transitions: reduction (�), returning a value
(� �), input on a channel (

��� '), and output on a channel (
��� �).

A transition
� - #" � 7

represents a single-step reduction, for example1:

�&�:)��
���	������ �:������� � - #" �
1In this example, and in others, we have ‘garbage collected’ some empty processes by treat-

ing � as an associative operation with left unit � . These equivalences are correct up to strong
bisimulation.

106 Jeffrey

We will often write
� *�� �07

for
� - #" 	�	�	 - #" ��7

, for example:

���
	���
���	������ � ����� � % � �0� ������� � *�� �

A transition
� .G/ #" ��7

represents a process returning a value � , for example:

� . � �" �

We will often write
� �*�� �(7

for
� *�� � #" ��7

, for example:

�&�:)��
��!	��(�#� � ����� � % ���0� ���)��� � . �*����

In this case the computation is sequential, so the remaining computation after re-
turning the value ‘

�
’ is the empty computation ‘

�
’. CML allows processes to

spawn threads which can continue after their parent has terminated, so there are
cases when the remaining computation is non-trivial, such as:

�0� �	/ � � ��� �#��, � ���#��� �
��� � �	� . ���* *	� ������� �
��� � � = �

Here ‘
=
’ represents the parallel composition of two processes, with the rightmost

process being the main thread of computation, for example:

�0� �	/ � � ��� �#�), � ���#��� �
��� � �	� (� �����	��	 � *�� ������� �
��� � � = � ����� ��	 �
A transition

�
	��� 5 " � 7
represents an input on channel

�
, where

� 7
has a free

variable ' , for example:
� �����	��	 � ? ���*
� '

Similarly, a transition
�
�� / �" ��7

represents an output of value � on channel
�

, for
example: ���#��� �
��� � � ? � �*�� ���
Input and output transitions can be synchronized to produce reductions, for exam-
ple: ������� �
��� � � = � �����	��	 � *�� �#� = �

In ������� there are no normal forms for pairs—such a normal form is needed for
the operational semantics, so we will extend the language of values with pairs� � %#"
� . This allows pairs of values to be communicated, for example since:

� � � � � � .������ �����* *�*�*	� �

we have: ������� �
� � � � � ��� ����� � ����� ��� �* *�*�*!� ���
and so we have the communication:

���#��� � � ��� � � ��� ��� = � ��� �%� ����� ��	 � � *�� ��� = � ��� � ��� % � �

Semantics for core Concurrent ML using computation types 107

So far we have only considered first-order processes, but CML is a higher-order
language which can communicate values of any type, for example since:

������� .:CB6�� �*�*�* � �

we have: ������� �
� � ������� � � � CB6�� �*�*�* � �#�
and so we have the higher-order communication:

������� �
� � ���#��� � = � ����� ��	 � �
��� � � *�� ��� = ���#��� �
��� � �
CML also allows communications of events, so we need to extend the language in
a similar fashion to Reppy (1992) to include values of event type. These values are
of the form

� <I���
where

<I�
is a CCS-style guarded sum, for example:
	�� � �0���!��	 �
��� � � *�� � � � ����)���������(� � *�� � � � ��������)��� �)� � �0� �*��	 �
��� � � � �)���������(� ��� *�� � � � ��� � � �

/ � � � � �)�����)���(� ��� ��� '-, � � � *�� � � � � ��� '1, � �	�

This syntax is based on Reppy’s, and is slightly different from that normally asso-
ciated with process calculi, for example:

� we write � � �
� � � rather than � � � � � � , and

� we write � � � ��� '-, � � rather than � � ' & � .

By extending the syntax of ������� expressions to include guarded expressions, we
get a particularly simple semantics for

����� �
as just removing the outermost level

of
� �

, for example:
������� �
��� � �*�� �����&� � 	�� � �0���!��	 �
��� � ���*�� �����&� � � � ���*�� � � �

? � � #" �#�
In summary, we give the operational semantics for �
����� by first extending it to
�������
� by adding expressions:

� � � *
	�	�	
��� = ��� <I�

adding values:
� � � *
	�	�	
� � � %�� � � � <I���

and adding guarded expressions:
<I� � � * � � � � ��� � � � � � <I��� <I��� <�� � �

108 Jeffrey

!�" � � � ! " � � �
!�" � = � � � !�" � � �

! " � � � ! " " � �
!�" � � %#"
� � � � � !�" � � �

!�" � ��� � � ��������	
!�" � ���#� � � !�" " � �

!�" � � � " ��
��G��	 !�" � ����� � �
!�" � � � � �

!�" <�� $ � � !�" <I��� � �
!�" <�� $ � <I��� � � ! " <I� � � ! " � � � ���
�

! " <I� � � � �

Table 3: Types for �
����� � expressions

� H #" ��7
��� H #" ��� 7

� H #" ��7
���8�9	������:�;�������I< H #" �&�J� 7 	������'���������*<

� H #" ��7
� � � � � H #" � � 7 � � �

� H #" ��7
���#	 '-, � ��� � H #" ����	 '-, � 7 ��� �� H #" ��7

��� H #" � 7 �
� H #" ��7

� = � H #" � 7 = �
� � #" ��7

� = � � #" � = � 7

Table 4: CML operational semantics: static rules

The typing for ������� � extends that of �
����� with the rules in Table 3.
The extended language ������� � has a semantics as a labelled transition system

with labels:

� � � * ��� � � � � � � ' � � � * � � � � � � * � � � �
The operational semantics is given in Tables 4–8.

This operational semantics is very fine-grained, and is designed to mimic the
execution of a CML program very closely. As a result, derivations of fairly simple
computations can be surprisingly long. For example, one reduction of

��������� ��� %�� �
is given in Table 9.

2.3 Bisimulation

As we mentioned above, one reason for choosing a labelled transition system se-
mantics over a reduction semantics is that we can define bisimulation as an equiv-
alence on programs. This is discussed at length in (Ferreira, Hennessy, and Jef-
frey 1995), and is summarized here. We will use notation adapted from Gor-
don’s (1995) presentation of Howe’s (1989) proof technique.

Let an open type-indexed relation � be a family of relations �
	 �
�

such that if� ��	 �
� �

then � " � � �
and � " � � �

. We will often elide the subscripts from

Semantics for core Concurrent ML using computation types 109

<I� $ H #" �
<I� $ � <�� � H &" �

<I��� H #" �
<I� $ � <I� � H #" �

<I� H #" �
<I� � � H #" � �

Table 5: CML operational semantics: dynamic rules

� .0/ �" � 7
��� - #" � 7 = ����) , �����
<�� ���.' �

� � * � ��� ' , ���) , � <'�
� .G/ �" ��7

��� - #" � 7 = ��� � %�� �� .)13254D6 � (&" ��7
�&���9	������:�;�������I< - #" � 7)= �

� .�> ?BA CB6 B � (B" �(7
�&���E	��(�#�:�;���)���*< - #" � 7(= <

� .0/ �" ��7
� � � � � - #" � 7(= ����	 '-, ����� � � % ' �

� .G/ �" ��7
����	 '-, � ���:� - #" � 7(= � � ���.' ��
 � � / " ��7+�
	��� � � �" ��7

� = � - #" � 7 = � 7 � ��� ' �
�
	��� � � �" ��7 �
�� � / & " ��7
� = � - #" � 7 � ��� ' � = � 7

Table 6: CML operational semantics: silent reductions

relations, for example writing
� � �

for
� � 	 �

� �
when context makes the type

obvious.
Let a closed type-indexed relation � be an open type-indexed relation where !

is everywhere the empty context, and can therefore be elided.
For any closed type-indexed relation � , let its open extension ��� be defined as:

� � � ��	� �� �

�

iff
� ����
� �' � �

� ������ �' � for all " �� � �� &
A closed type-indexed relation � is structure preserving iff:

� if � � � " and
�

is a base type then � * " ,

� if
� � $ %�� � � � ����� ��� � " $ %�" � � then ��� � ��� "�� ,

� if
� <I� $ � � �

6��D6 �B1
� <�� � �

then
<�� $ � � <�� �

, and

� if � � �
����
 � 7 then for all " " � �

we have ��" �
 � 7 " .

A closed type-indexed relation � is a first-order strong simulation iff it is structure-
preserving and the following diagram can be completed:� $ � � � � $ � � �

as

� 7$

�
� � 7$

�
�

� � � 7�

�
�

110 Jeffrey

� .0/ �"�� ��� � �
�� � / � " ��� ��� �
	��� � � �" '

Table 7: CML operational semantics: axioms

��� �G��	 % � � %�"
� � * � ���)� � �0� �*��	 � % � � %�� � � * � ��� � � ����3�&��� % � � %�"
� � * " ���5�)���������(� � % � � * � � � � �
��� � ��� % ��� % � � � * � � � ��������������� % � � <I� $ � % � <I� � � � � * � <�� $ � <I��� �
��� �)
(� % ��� % � � � * ��� � ��� / � � � % � � <I��� %��
� � * � <�� � � ����B��� � % ��� % � � � * ��� � ���D�.� � / � %�� � * � �#� = ������3�����&� % � <�� � � * <I� ��� �(���(��� %��#� � * � � �

Table 8: CML operational semantics: basic functions

Note the use of the open extension � � . This means, for example, that if
� $ � � �

we require that the move
� $
 ����� � �" � $ be matched by a move

� �
 ����� � �" � �
where� �

is such that for all values " � � �
we have

� $ � ���.' � � � � � ��� ' � . Thus in the
terminology of (Milner, Parrow, and Walker 1992) our definition corresponds to
the late version of bisimulation.

� is a first-order strong bisimulation iff � and �	� $ are first-order strong sim-
ulations. Let
 $ be the largest first-order strong bisimulation.

Proposition 1
 $ is an equivalence.

Proof Use diagram chases to show that if � is a first-order strong simulation
then so are � and ��� . The result follows. �

Unfortunately,
 $ is not a congruence for �
����� � , since we have:

� ��� � � � ��� �

 $ � ��� � ��� � � �
however, sending the thunked expressions on channel � we get:
	�� � �0���!�&	 �
��� ��� '-, � � ��� � � � � � ��� �
 $)� � �0� �*��	 �
��� ��� '-, � � ��� � ��� � � ���

since the lhs can perform the move:
)� � �0� �*��	 �
��� ��� '-, � � ��� � � � ��� ��� ? � > � ��� �0? � � � ��� ��� �* *�*�*�*�*�*�*�*�*�*	� �#�

but this can only be matched by the rhs up to strong bisimulation:
)� � �0� �*��	 �
��� ��� '-, � � ��� � ��� � � ��� ? � > � ��� �0? � � � ������� �* *�*�*�*�*�*�*�*�*�*	� �#�

The problem is that the definition of strong bisimulation demands that the actions
performed by expressions match up to syntactic identity, rather than up to strong

Semantics for core Concurrent ML using computation types 111

�����������
	���
��
���� �����������
	���
������ ���!��� ��"�# ��$ "�# ���%$ �&"�# ��$'�&(*)�������+%� � "*,�# �'��-�-�(.��-/-���� �/����� �0"�# ��$ "�# �1��$ ��"�# ��$2�3	4�5
���(*)�������+%� � "*,�# �2�
	��5
���-/-�(��
	���
���-�-���� ��������� # ��$ "�# ����$ ��"6# �%$��
	���
���(�)��/����+�� � "�,*# �2�3	���
���-�-�(��
	��5
���-

�1�7���!��� � �
���� ��������� # ��$ " �����98:� "6# �%$��3	4�5
���(*)�������+%� � "*,�# �2�
	��5
���-/-

��� #�; �<� " ��=�)!� #�> �����982-
(��3	4�5
���-

�1�7���!���!�?�
���� ��������� # ��$ " �����98:� "
2(*)�������+%� � "�,�# ���
	���
���-�-

��� #�; �<� " ��=�)!� #�> ��� � 82-
(��3	4�5
���-

�1�7���!��� � �
���� ��������� # ��$ " �����98:�'�����9@A�B)�������+�� � "*,�# �2�3	4�5
���-����C�D
9�
@9�

��� #�; �<� " ��=�)!� #�> ��� � 82-
(��3	4�5
���-

�1�7���!��� � �
���� ��������� # ��$ " �����98:�'�����9@A�E�����E��F�� ,�# �2�
	��5
������ #�; �G� " =��/������H����'�6FI-?�1�&�J
9�
@9�

��� #�; �<� " ��=�)!� #�> �����982-
(��3	4�5
���-

�1�7���!���!�?�
���� ��������� # ��$ " �����98:�'�����9@A�E�����E��F��2	0��� #�; �G� " =��/������H�� � �6FI-?�1�&�J
9�
@9�

��� #�; �<� " ��=�)!� #�> ��� � 82-
(��3	4�5
���-

�1�7���!��� � �
���� ��������� # ��$ " �����98:�'�����9@A� #�; �G� " =��/������H����2	9-����C�D
?�3@9�

��� #�; �<� " ��=�)!� #�> �����982-
(��3	4�5
���-

�1�7���!��� � �
���� ��������� # ��$ " �����98:�'�����9@A� #�; �G��K�	GL���M2���C�D
9�
@9����� #�; �G� " ��=%)!� #�> �����N8O-�(��
	���
���-

�1�7���!���!�?�
���� ��������� # ��$ " �����98:�'�����9@A��	GL��'���C�D
9�
@9����� #�; �<� " ��=�)!� #�> ������8O-�(��
	��5
��P-

�1�7���!���!�?�QPR.S�
�I� ��������� # ��$ " �����98:�'�����9@A��T&���U�D
9�
@9����� #�; �G� " ��=%)!� #�> ��� � 8O-�(��
	���
���-
�1�7���!��� � �

���� ��������� # ��$ " �����98:�2�D
?��TG����� #�; �G� " �/=�)!� #�> ��� � 82-�(1�3	���
���-
�1�7���!��� � �

���� ��������� # ��$ "6#�; �<� " ��=�)!� #�> �����*�D
?��TG�1-�(��
	��5
V�3-���� �����/�!�'�
���� ��������� # ��$ "6#�; �<�0KP
9W ��T*M9(��
	��5
���-6���X�����/�!�'�
���� ��������� # ��$ "
9W ��T�(1�3	���
��.-���� �����/�!�'�
Y�Z S�<� ��������� # ��$ "�" -�(��3	4�5
���-���� ���������'�
���� ��������� # ��$ " �����98:�2�3	4�5
�������� " -��389�1-6���X���������'�
���� ��������� # ��$�� " -[�1�3	4�5
��\�<�1�7���!���!�'�
���� �����������
	���
������ ���!���!�'�
���� �/���������
	���
��

Table 9: CML operational semantics: example reduction

112 Jeffrey

bisimulation. In fact, it is easy to verify that the only first-order strong bisimulation
which is a congruence for ������� is the identity relation.

To find a satisfactory treatment of bisimulation for ������� , we need to look to
higher-order bisimulation, where the structure of the labels is accounted for. To
this end, given a closed type-indexed relation � , define its extension to labels � �
as:

� � �� �
��� � "

� ��� �� � " � �

 ' �

�� � �

 '

� �
 "���

 � �

�� � �

 "

Then � is a higher-order strong simulation iff it is structure-preserving and the
following diagram can be completed:

� $ � � � � $ � � �

as where
� $ � � � �

� 7$

� $
� � 7$

� $
�

� � � 7�

� �
�

Let
�� be the largest higher-order strong bisimulation.

Proposition 2
�� is a congruence.

Proof Use a similar technique to the proof of Proposition 1 to show that
�� is
an equivalence. To show that
 � is a congruence, define � as:

� *������ �	� � % � ��
�� � ���
 �
�

and then show by induction on
�

that � is a simulation. The result follows. �

For many purposes, strong bisimulation is too fine an equivalence as it is sensitive
to the number of reductions performed by expressions. This means it will not even
validate elementary properties such as

�
-reduction. We require the looser weak

bisimulation which allows � reductions to be ignored.

Let ��*��
be

*��
if
� * � and

�*��
otherwise. Then � is a higher-order weak sim-

ulation iff it is structure-preserving and the following diagram can be completed:
� $ � � � � $ � � �

as where
� $ � � � �

� 7$

� $
� � 7$

� $
�

� � � 7�

�� �
�

���������

Let � � be the largest higher-order weak bisimulation.

Semantics for core Concurrent ML using computation types 113

Proposition 3 ��� is a congruence.

Proof Given in (Ferreira, Hennessy, and Jeffrey 1995), using techniques taken
from Gordon’s (1995) presentation Howe’s (1989) proof technique. Note that
this proof relies on the fact that we are considering the subset of ������� with-
out � � /&� �0� , and hence do not have to consider initial � -actions in summations,
which present the same problems as in the first-order case (Milner 1989). �

Unfortunately, this equivalence does not have many pleasant mathematical prop-
erties. For example none of the usual equations for products are true:

�G��	 � � � � � ���� �
�&��� � � � � � �� � �

� �G��	�� � �����9� � ���� �

(For each counter-example consider an expression with side-effects, such as
�������

.)

In the next section we shall consider a variant of ������� which uses a restrictive
type system to provide more pleasant mathematical properties of programs. We
shall then show a translation from ������� into the restricted language, which is
correct up to weak bisimulation.

3 Concurrent monadic ML

In the previous section, we showed how to define an operational semantics for
CML which can be used as the basis of a bisimulation equivalence between pro-
grams. Unfortunately, this equivalence does not have pleasant mathematical prop-
erties. For example

�
-conversion does not hold:

� ��� '-, � � ' � ' ��� � ������� �
��� � ��� �� � � ������� �
��� � �)� ������� �
��� � ���
Because CML computations are non-trivial (CML processes may diverge, and can
have side-effects) we cannot use the standard mathematical models of typed (-
calculi such as cartesian closed categories (Lambek and Scott 1986).

In this section, we present a Concurrent Monadic ML (CMML) a variant of
CML with a type system based on Moggi’s (1991) computation types. Such type
systems have proved popular in giving an elegant treatment to functional languages
with non-trivial computation, such as the Haskell I/O system (Gordon et al. 1994).

CMML can be provided with an operational semantics similar to that given to
CML in the previous section, although the semantics is much simpler, and has
pleasant properties such as forming a category with finite products and a restricted
class of exponentials.

The language presented here (���������) is a subset of the language presented
in (Jeffrey 1995a).

114 Jeffrey

3.1 Syntax

The main difference between CMML and CML is that the distinction between
values and expressions is handled by the CMML type system rather than as a
separate syntactic category. For example, in CML we have:

" �-�(����	
(a value) " � ��� � ��� � � � �)�&��	

(an expression)

whereas in CMML we have:

"�� � � � �
(an expression) " $���� � �� % � � � � � � �����	� (an expression)

This uses an explicit type constructor
������	� to represent computations which
return results of type
 . For example

$���� � �� % � � returns the result � , so it has the
type

� � � �����	� .
Moggi (1991) proposed two syntactic constructions for manipulating computa-

tion types:

� the expression
�	� �

which immediately returns
�
, and

� the expression
� ����

� � � � �

which evaluates
�
, binds the result to

and then

evaluates
�
.

For example
��� � � � � ��� � � �

can be calculated as:

� ����
�� �	� �
� � � ������� $���� �
 %
 �� ��$���� � � % � �

Note that expressions written in ��������� tend to be more long-winded than their
������� equivalents: this is because the flow of execution through a �
������� pro-
gram is made explicit by the use of

� ���
-expressions. Such an explicit language may

seem overly verbose to functional programmers used to programming in the SML
style, where execution order is implicit in the left-to-right evaluation order. How-
ever, as we shall see, making execution order explicit has the benefit of a simpler
semantics and better equational properties.

Using an explicit type constructor for computation has the advantage that the
only terms which perform computation are those of type
������	� , and that an ex-
pression of any other type is guaranteed to be in normal form. This gives us the
normal form results (Proposition 4 below):

� the only closed term of type
� ��� �

is
� �

,

� the only closed terms of type ��� � � are
�������

and
�%$�� !�

,

� the only closed terms of type
� � �

are &�&�&�% �� %�� % � %�&�&�& ,

Semantics for core Concurrent ML using computation types 115

� the only closed terms of type � ��$ � are
$ % ��%�&�&�& ,

� the only closed terms of type
 ��� are of the form
� � % � � , and

� the only closed terms of type
 " � �����
� are of the form
� � �
 * � � � � �

.

These results make the operational semantics much simpler to define, for example
rather than two rules for function application:

� H #" � 7
��� H #" � 7 �

� .G/ #" � 7
�&� - #" � 7 = ����) , ���&�'<�� ���.' �

� � * � ��� '-, ���) , � <'�

we only need one simple
�

-reduction rule:

� � - #" " � � � � �B� � �
 �
�	� * � � � �
 * � � � � " � �

The simplicity of the operational semantics rests on the normal form result de-
scribed above, but this requires a somewhat non-standard treatment of projections
on pairs. In �
����� projections are given using

�G��	
and

�����
, for example a func-

tion to swap a pair is:

" ��� '-, � � ����� '�� �0�&	 ' � � � � � ��� � � �

If we were to allow
�0�&	

and
�&���

in CMML we would no longer have the normal
form result described above. However, projections on pairs are useful both practi-
cally and as the categorical basis of products. In CMML we use a restricted form
of projections which maintains the normal form result: we use Pascal-style record
field selection on lvalues rather than ML-style selection functions. If

is a vari-

able of type
 ��� then

 & � is an expression of type
 , and

 & � is an expression of
type � . For example a CMML function to swap a pair is:

" � �
 � � �
 & � %
 & � � �%�
 ��� " � ���
 � �����	�
Similarly, we need to use a restricted form of function space, since the result of
any function application should be a computation. This means that rather than the
CML function type:

! % ' � � ���	� %) � � " � � �
!�" �)��� '1, ���) , � � � � ��� � ! " � � � ���
� ! " � � �

! " ��� � �

we have the restricted CMML function type:
� %
 �
 " � �����
� % � �
�" ��� � �����
�
� " � � �
 * � � � � � �
 " � �����	�

� " ���
 " � �����	� � " � �

� " � � � � �����
�

For example there is no CMML projection function with type
 ��� "
 , instead
we have:

" � �
 � �
 & � � �
 ��� "
������	�

116 Jeffrey

The concurrent features of �
������� are similar to those of �
����� � , for example
a concurrent communication is given by:

� � � = � � - &" � � � � = � � �

We will now give the grammar and type system for �
������� .

Integers and channels are given as for �
����� :

� � � * 	�	�	 �� ���� � � ��� 	�	�	
� � � * $ � � � 	�	�	

Basic functions are given by the grammar:

� � � * $���� � � ��� � � ���

Expressions are given by the grammar:

� � � * ������� � �%$�� !� � � � � ��� � � � � �
 * � �
 � ��� � �
� � � � ������� � ��� !� � � � ����
�� � � � � ��� � ���������	� � � � � % � �� � � � = � � � � ��� � �
	 � � � ��	

Lvalues are given by the grammar:

��� � � *
 ����� & � ���
� & �

Types are given by the grammar:

 � � * � ��� � � ��� � � � � � � � � ��$ � �
 �
 �
 "
������
� �
������	�
Typing is given by Tables 10 and 11.

Proposition 4 We have the following normal form results:

1. If
� " � � � ��� �

then
�

is an lvalue or
� * � �

.

2. If
� " � � ��� � � then

�
is an lvalue or

�$* �������
or

� * �%$�� !�
.

3. If
� " � � � � �

then
�

is an lvalue or
� * � .

4. If
� " � � � ��$ � then

�
is an lvalue or

� * �
.

5. If
� " � �
 ��� then

�
is an lvalue or

� * � � % " � .
6. If

� " � �
 " � �����	� then
�

is an lvalue or
��* � � � �
 * � � � � � �

.

Proof A case analysis on the proof of
� " � �
 . �

Semantics for core Concurrent ML using computation types 117

� " ������� � ��� � � � " �%$�� !� � ��� � � � " � � � � � � " � � � ��$ � � " � � � � ��� �
� " � �

� " � � � � �����
�
� � �
 " � �����
� �

� %
 �
 " � �����
��% � �
 " � � � �����
�
� " � � �
 * � � � � ���
 " � �����
�

� " ��� ��� � � � " � �
������
� � " " �
������
�
� " � � � ������������� �#" �
������
�

� " � �
������
� � %
 �
�" � � � �����	�
� " � ����
 � � � ��� � � �����
�

� " ���
 " � �����
� � " � �

� " � � � � �����	�

� %
 �
�"
 �

� "
 �

� % � � � "
 �

�
 �* � � � " ��� �
 ���

� " �
� & � �

� " ��� �
 ���
� " ��� & � � �

� " � �

� " � � ���
������	�

� " � �
 � " � � �
� " � � % � � �
 ���

� " ���
������	�
� " � �
������
� � " � � � �����
�

� " � = � � � �����	�
� " � �
������	� � " � �
������
�

� " � � � �
������	�
� " � � � ��$ � � " � �

� " � � 	 � � � ��� � �����
�

� " ��� � ��$ �
� " � � 	 �
������
�

Table 10: Types for �
������� expressions

$���� � � � � � � � � " � � � �����
�
� ��� � � � � � � � � " � � � �����
�� ��� � � � � � � � � " ��� � � �����
�

Table 11: Types for �
������� basic functions

When
� " � �
 and

� %
 �
 " � � � , define the substitution
� " � � � �
 � � � as

normal, except that:
��� & � �	� �
 ��*���� �
�(�	� �
 � � ��� & � �	� �
 �&*�� 7 � �
�(�	� �
 � �

where: � � � % � � * � � �
� * ��� & � � 7 � � % � � * � � 7 �
� * ��� & �

Note that this is well-defined because of Proposition 4.5.
As an example ��������� program, consider a one-place buffer:

� ��� � 	 � � ��$ � � � ��$ � " � �����
�
� ��� � 	 ��� %�� � � ���* � ����
 � � � 	 � � � �������

�
� 	
	� � � ��� � 	 ��� %�� �

Comparing this definition with its ������� equivalent is instructive, so we shall
repeat the definition here:

�������.� � �#� � ���$��� � � ���	�

118 Jeffrey

�������	� � ' �) � � � �* �������	� � �&��� � ���#����� �) � � ����� ��	 � ' � � � ' �) � ���
Writing programs in ��������� can be repetitive, because of the number of let-
expressions required. However, the let-expressions are precisely what controls the
flow of execution through a �
������� program, so it is easier to recognize the
behaviour of a ��������� program. In the above example, it requires some thought
to realize that

�������0��� ��% � � will input on � before outputting the result on � , and that
the process does not just simply diverge, whereas the execution of the �
�������
equivalent is much more obvious.

In Section 4 we shall see that �
����� programs can be translated into ��������� ,
and that in particular we can perform some simple equational reasoning to trans-
form

�������
into � ��� � .

3.2 Operational semantics

The operational semantics for ��������� is given in Tables 12–15. It is similar to
that of ������� , except that it is simpler, due to the normal form results in Propo-
sition 4. For example, since any closed term of type ��� � � must be either

�������
or�%$�� �

, the only two rules required for if-statements in �
������� are:

� � ���%���#������������� !��" - #" � � ���%$�� !�&������������� �#" - &" "

This can be compared with the more complex three rules required for �
����� :
� .)1325436 # � #" � 7

���8�9	��(�#�:�;���)���*< - #" � 7 = �
� .�>@?BABCB6 B () D" � 7

�&���E	��(���'�F�������G< - #" � 7 = <
� H #" ��7

���8�9	������:�;�������I< H #" �&�J� 7 	������'���������*<

In the operational semantics of ������� , terms in many contexts can reduce, whereas
there are far fewer reduction contexts in �
������� . In fact, looking at the sequential
sub-language of �
������� (without

=
or �) the only reduction context is

� ���
:

� H #" � 7
� ����
 � � � � � H #" � ����
 � � 7 � � �

Many of the operational rules in �
����� require spawning off concurrent processes,
whereas in ��������� the main rule which produces extra concurrent processes is�

-reduction for
� ���

-expressions:
� .�� �" � 7

� ����
�� � � � � - &" � 7 = � � " �
 �
The other significant difference between the operational semantics for �
����� and
��������� is the treatment of summation. In �
����� choice is only allowed between
guarded expressions

<�� $ � <I� �
, whereas in �
������� choice is allowed between

Semantics for core Concurrent ML using computation types 119

� H #" � 7
� ����
�� � � ��� H #" � ����
 � � 7 � � �

� H #" � 7
� = � H #" � 7 = �

� � �" � 7
� = � � �" � = � 7

� - #" � 7
� � � - #" � 7 � �

� - #" � 7
� � � - #" � � � 7

Table 12: CMML operational semantics: static rules

� � #" � 7
� � � � &" � 7

� � #" � 7
� � � � &" � 7

Table 13: CMML operational semantics: dynamic rules

arbitrary expressions
� � �

. In particular, this means we need operational rules for
when processes in a choice can perform silent reductions:

� - #" � 7
� � � - #" � 7 � �

� - #" � 7
� � � - #" � � � 7

and when processes in a choice can return a value:
� . � #" � 7

� � � - #" � 7(= � " �
� . � �" � 7

� � � - &" � 7�= � " �

Note that we are using rules for choice based on CSP (Hoare 1985) external choice
rather than CCS (Milner 1989) summation. This is because we will be using ���
as our equivalence on programs, and CCS summation does not preserve weak
bisimulation. We have used slightly different termination rules for choice from
CSP, in order to ensure forward commutativity of the resulting transition system
(see Section 3.3 below for why this is important).

As an example of an ��������� program execution, one possible run of the one-
place buffer is given in Table 16, which can be compared to the equivalent �������
execution in Table 9. The extra complexity of the �
����� execution is due to the
book-keeping work that �
����� has to do because an expression of any type has the
capability of computation, so the operational semantics has to allow computation
at any point in evaluation. For example, in the evaluation of

���#��� � � � � � , both
�

and
�

have to terminate before the communication can happen, so if
� .
* � �

and� .0/* ���
then:

������� � � � � �
- #" ����	 '-,-� � � � � �&� ����� � � 	�� � �G� �!�&	 ' �*�� ����	 '-, ����) , � �&� � � %) � ��� ����� � �)� � �G� �*��	 ' �*�� ����	 '-, � � %#�
� ��� �����&� �)� � �G� �*��	 ' � #" �����&� � 	�� � �0���!��	 � � %��
� �

120 Jeffrey

� � - #" " � � � � � �	� �
 �
� � * � � � �
 * � � � � " � �

� � - #" � ��� � % � � �
� � ���%���#������������� !��" - #" � � ���%$�� !�&������������� �#" - &" "

� .�� �" � 7
� ����
�� � � � � - &" � 7�= � � " �
 ���� � �

�
 � " � 7 � �!����� � #" � 7

� = � - #" � 7 = � 7 � " �
 �
���!����� � �" � 7 � � � �

�
 &" � 7

� = � - #" � 7 � " �
 � = � 7� . � �" � 7
� � � - #" � 7 = � " �

� . � #" � 7
� � � - #" � 7 = � " �

Table 14: CMML operational semantics: silent reductions

�	� � . � #" � � � 	 �	� � � � " � � � � � � 	 �!�
��� � �" �
 �

Table 15: CMML operational semantics: axioms

 #" ����� � � ��� � � #" ��� �
�� / �" �#�
whereas the type system for ��������� ensures that

�
and

�
do not have to be eval-

uated before
� � �

can communicate.

3.3 Bisimulation

We can define ‘structure-preserving’ and ‘bisimulation’ for ��������� in the same
way as for ������� .

Proposition 5 � � is a congruence for ��������� .

Proof Similar to the proof of Proposition 3. �

In comparison to ������� , this equivalence has some pleasant mathematical prop-
erties. In particular we can define a category of �
����� terms, where:

� objects are �
����� types,

� morphisms from
 to � are expressions with one free variable

 �
 " � � �

viewed up to higher-order weak bisimulation � � � ,
� the identity morphism is

 �
 "
 �
 , and

Semantics for core Concurrent ML using computation types 121

� ��� � ��� %�� �
- �" � ����
 � � � � ��� ����� �

�
�
 � � � ��� � ��� %�� �� � � �" � ����
 � �	� � � ��� �������
�
�
 � � � ��� � ��� %�� �

- �" � ����� �
�
� � � � � ��� � ��� %�� �

� � � �" � ����� � � � � � � � � ��� � ��� %�� �
- �" � ��� � ��� %�� �

Table 16: CMML operational semantics: example reduction

� morphism composition is substitution:
�
 �
 " � � � � (#� � � � " � ��� �

is
 �
 " � � � � � � ��� .

This category has binary products
 ��� with projections:

 �
 ��� "
 & � �

 �
 ��� "
 & � � �

and mediating morphism:

 �
�" � � �
 �
 " � ���

 �
 " � � % � � � � � �

To verify that these satisfy the defining property for products we have to show that
(whenever

� " " �
 � �):
� � � % � � ��� �
� 7 � � % � � ��� �

" ��� � � " % � 7 " �
The category has an initial object

� ��� �
with mediating morphism:

 �
 " � � � � ��� �

since (whenever
� " � � � ��� �

):
� � � � �

The category has monad given by the �����
� type constructor with action on mor-
phisms given by:

 �
 " ��� �
� �
������	� " � ����
 � �	� � �	� � � � �����	�

and strict monadic structure given by natural transformations:

 �
�" �
 � �
������
�
 �
������	�������
� " � �������
 � � � �
������
�
 �
 � � � �����	� � " � ����� �
 & ��� � � �
 & � % � � � ���
 ��� � �����
�

122 Jeffrey

since (whenever
� " � �
������	� , � %
 �
 " � � � �����	� , � % � � � " " � � �����
�

and

 % � �� �):

� ����
�� �	� � � ��� � � � �	� �
 �� ����
 � � � � �
 � � � �
� ��� � � � ����
 � � � � ��� �&" � � � ����
 � � � ��� ������� � � � "

This category has all �����	� exponentials given by
 " � �����	� with the currying
adjunction given by:

 �
 � � " � � � �����
�� �
 " � ��� � � ����
 � � � � % � � � � � � � � " � �����
�
 �
�" ��� � " � �����
�� �
 ��� " � ����
 � � � & � � � � ��� � & � � � �

since (whenever
� %
 �
�" ��� � �����	� , � " � �
 and

� " " �
 " � �����
�):
� � �
 � � � � ��� ���
 � � �� �
 � � "
 � ��� "

The categorical structure of ��������� is based on Moggi’s (1991) general theory
of computation types, and is discussed further in (Jeffrey 1995a; Jeffrey 1995b).

In order to prove the above bisimulations, we need to show some properties
about the labelled transition systems produced by ��������� programs. In particular
we require the lts to be value deterministic:

� � � � � 7

if then

 *��

and
� 7 * � 7 7

� 7 7
� "

�

single-valued:

if
� � � � � 7

�
� � 7 7 then

� �* � "

forward commutative:

� � � � � 7 � � � � � 7

if then

� 7 7
�
� � 7 7

�
�

� � � � � 7 7 7
�
�

Semantics for core Concurrent ML using computation types 123

and backward commutative:

� � � � � 7 � � � � � 7

if then

� 7 7 7
�
� � 7 7

�
�

� � � � � 7 7 7
�
�

From these properties we can show that:

if
� � � � � 7 then

� � � � 7 = � � �

which is used in proving the above bisimulations.

4 Translating CML to CMML

As we have seen, the operational semantics for ������� is more complex than that
of �
������� , since terms of any type can reduce. However, in this section we shall
show that there is a translation from ������� � into ��������� , and that the translation
is correct up to weak bisimulation.

4.1 The translation

This translation is based on Moggi’s (1991) translation of the call-by-value (-
calculus into the computational (-calculus.

First, we translate each �
����� � type
�

into an �
������� type � � � � � � . The only
tricky question is how to translate the function space

� ��� �
. Moggi has proposed

������	� " � �����	� for the call-by-name translation (where functions take com-
putations as arguments) and
 " � �����	� for the call-by-value translation (where
functions take canonical forms as arguments). Since ������� is a call-by-value lan-
guage, we shall use the latter translation. This is given in Table 17, and can be
extended to contexts:

� � � ' $ � � $ %�&�&�&�% ' (� � (� � *
 $ � � � � � $ � � %�&�&�& %
 (� � � � � (� �

The trick for translating ������� � terms into ��������� terms is to provide two trans-
lations:

� translate �
����� � values !�" � � �
into �
������� expressions � � � ! � � "�� � � � � � � � � � � � � , and

� translate �
����� � expressions !�" � � �
into �
������� computations � � � ! � � " ��� � ��� � � � � � � � � �����
� .

124 Jeffrey

� � � � �����@� � * ��� � �

� � � ��� � � � � * � ��$ �

� � ������	&� � * � � �

� � �
��0�&	 � � * � ��� �

� � � � � � � � * � � � � � � � � � � � � �
� � � � ��� � � � * � � � � � �#" � � � � � � �����
�
� � � � ���(�#��	#� � * � � � � � � �����
�

Table 17: Translation of �
����� � types into �
�����

� � � 	���
(� � � * ���%���

� � � � � ����� � � * �%$ � !�

� � � � � � * �

� � � � � � * �

� � � ��� � � * � �
� � � � � %#"
� � � * �

� � � � � � % � � � " � � �
� � � �)��� '-, ���) , � ��� � * � � �
 * � � � � ��� �$��� �

� � � ' � � *

� � � � <I� ��� � * ��� � <I� � �

Table 18: Translation of ������� � values into �
�����

This reflects the intuition that any expression in ������� � can perform computation,
whereas in �
������� only terms of type
������	� can compute. The two translations
are given in Tables 18 and 19.

Note that most of the ������� � expressions have the same form, which is to eval-
uate their argument in a

� ���
-expression before continuing. This corresponds to the

notion that ������� � is a call-by-value language, where expressions are evaluated
to canonical form before being manipulated.

For example, the translation of
�������

is given in Table 20, where to save space
we have used the fact that:

��� �%�������0� ��� � � � � ����
 � ��� � ��� � � �
 & � �
 & ���� � � �����	��	 � ��� � ��� � ����
 � ��� � ��� � � �
 �

This translation is almost unreadable, and very inefficient, but we can use
�

-

Semantics for core Concurrent ML using computation types 125

��� � � � � * � � � � � � �$���� � �0�&	 ��� � * � ����
 � ��� � ��� � � � �
 & � ���� ������� ��� � * � ����
 � ��� � ��� � � � �
 & � ���� � � ��� ��� � * � ����
 � ��� � ��� � � � $����

��� � ��
��
��� � * � ����
 � ��� � ��� � � � � ���
��� � ����� ��� � * � ����
 � ��� � ��� � � � � ���

��� �)� � �0� �0�&	 � ��� � * � ����
 � ��� � ��� � � � �
 & � � ��� � ��� �
 & � ���� �,� �����������
� ��� � * � ����
 � ��� � ��� � � � �
 � ��� � ��� � �
��� � �������)��� ��� � * � ����
 � ��� � ��� � � � �
 & � �
 & � ���� �%�0� � / � ��� � * � ����
 � ��� � ��� � � �
 � � = � � � �
��� �%�����&�
��� � * � ����
 � ��� � ��� � � �

��� � / � � � ��� � * � ����
 � ��� � ��� � � � � � �������
 & � � �
 & � � ���� � ������� �:��� � * � ����
 � ��� � ��� � � � � �&�

��� �%�&� �9	��(�#�:�;���)���*<'� � * � ��� ' � ��� � ��� � � � � � ' �����'� ��� � ��� � ��� !� ��� � <'� �
��� � � � � � � � � * � ����
 � ��� � ��� � � � � ������� ��� � ��� � � � � �
 % � � ���� � ����	 '-, � ���:��� � * � ����
 � ��� � ��� � � � ��� �,��� �

��� �$�&��� � * � ����
 � ��� � ��� � � � � ������� ��� � ��� � � �
 �
��� �$� = ��� � * ��� � ��� � = ��� � ��� �
��� � � � � � � * � � � � � � � ��� � ��� ���� � � � � " � � * � � � � � � � ��� � ��� � � � � " � ���� � �&� � * �

��� � <�� $ � <I� � � � * ��� � <I� $ � � � ��� � <�� � � �
��� � <I� � � � � * � ����
 � ��� � <I� � � � � � � � � � �

Table 19: Translation of �
����� � expressions into �
�����

reduction to remove some extraneous
� ���

s:

� � � ������� � � � � � � �
 $ * � �
 � �
� ����
�� � � ����

	 � � ����
�� � � ����
�� � � ����
 $�
 �
 � & � � � � � �
 � & � %
 $�
!� �� �
�� & � �
�� & �� � � �
�� %
 � � �� � �

	 & � �� �
 $
��

126 Jeffrey

� � � ������� � � � � � � �
 $ * � �
 � �
� ����
�� � �
 $ �� ��� ����
 � � � ����
 	 � � ����
 � � � ����
 � � � ����
�� � � ����
 $ $ � �
 � �

� � �
 $ $ & � �� ��� ����
 $�
 � � ���
 $ � � � ���
 $ � � �
 � �
� � �
 $ � & � �� �
 $ � �� � � �
 � %
 $�
 � �� �
�� & � �
�� & �� � � ����
�� � �
 � �

� � � �
�� %
�� � �� � �
 	 & � �� �
��
��

Table 20: Example translation of ������� � into �
�������

Then associativity gives:

� � � ������� � � � � � � �
 $ * � �
 � �
� ����
 $�
 �
 � & � �� ��� ����
�� � � �
 � & � %
 $�
!� �� ��� ����
�� �
�� & � �
�� & �� ��� ����
 	 � � �
 � %
 � � �� ��� ����
�� � �

	 & � � � �
 $
 �

So further use of
�

-reduction gives:

� � � ������� � � � � � � �
 $ * � �
 � �
� ����
 $
 �
 � & � �� � � ����
 � �
 � & � �
 $�
� �
 $
 �

and since (up to � -conversion) this is the definition of � ��� � , we have:

� � � ������� � � � � � ��� �

This example shows that it is easy to perform syntactic manipulations on �
�������
expressions to drastically reduce them in size, and improve their efficiency. This
suggests that �
������� may be a suitable virtual machine language for a �������
compiler, where verifiable peephole optimizations can be performed.

4.2 Correctness of the translation

We will now show that the translation of �
����� � into �
������� is correct up to
bisimulation. We will do this by defining an appropriate notion of weak bisimu-

Semantics for core Concurrent ML using computation types 127

lation between �
����� and ��������� programs. This proof uses Milner and San-
giorgi’s (1992) technique of ‘bisimulation up to’.

A closed type-indexed relation between ������� and �
������� is a family of
relations:

� �� � ���@� % � � � " � � � % " ��� � � � � � � �����
�

��� � � ��� � % � � � " � � � % " ��� � � � � � �

For any closed type-indexed relation � , let its open extension � � � be defined as:

� � � ��� � �� �

�

iff
�������� �' � � �

��� � � ���� � � � �
 � for all " �� � �� &
A closed type-indexed relation � is structure-preserving iff:

� if � � � � � and
�

is a base type then � * �
,

� if
� � $ %�� � � � � ����� ��� � � $ % � � � then ��� � � ��� � � ,

� if
� <I��� � � � 6��D6 �B1

�
then

<I� � �� � , and

� if � � � � ����

�

then for all " " � �
we have ��" � �

��� � � � " � � � .
A closed type-indexed relation can be extended to labels as:

� � �� �
� � � � �

� ��� �� � � ���

 ' �

�� � � ��� �

� �
 � � �

�
���

 ���

�� � � ��� �

� � �

A closed type-indexed relation between �
����� and ��������� is a higher-order
weak bisimulation iff it is structure preserving and we can complete the following
diagrams:

� $ � � � � � $ � � � �

as where
� $ � � � �

� 7$

� $
� � 7$

� $
�

� � � � 7�

�� �
�

���������

and: � $ � � � � � $ � � � �

as where
� $ � � � �

� 7�

� �
� � 7$

�� $
�

���������

� � � � 7�

� �
�

128 Jeffrey

A closed type-indexed relation between �
����� and ��������� is a higher-order
strong bisimulation up to

� � %�� � iff it is structure preserving and we can complete
the following diagrams:

� $ � � � � � $ � � � �

as where
� $ � � � �

� 7$

� $
� � 7$

� $
� � � � � � � 7�

� �
�

and: � $ � � � � � $ � � � �

as where
� $ � � � �

� 7�

� �
� � 7$

� $
� � � � � � � 7�

� �
�

An expansion on ��������� (and similarly on �������) is a weak bisimulation �
such that the following diagrams can be completed:

� $ � � � � $ � � �

as where
� $ � � � �

� 7$

� $
� � 7$

� $
�

� � � 7�

� �
�

���������

and: � $ � � � � $ � � �

as where
� $ � � � �

� 7�

� �
� � 7$

�� $
�

� � � 7�

� �
�

Let � be the largest expansion.

Proposition 6 � is a precongruence on ������� and �
������� .

Proof Similar to Proposition 3. �
For example, the preorder

���
given by

�
-reducing in all contexts is an expansion:

� ��� � " � � � � �B� � �
 �
�	��* � � � �
 * � � � � " � � � ����
�� � � � � � ��� � � �	� �
 �

� ���������#������������� �#"�� � � � ���%$�� !�&������������� �#"�� � "

� � � �
� � � �	� � "
� � � "

� � � �
� �	� � � � � � � �

Semantics for core Concurrent ML using computation types 129

Proposition 7 If
� � � �

then
� � �

.

Proof Show that each of the axioms forms an expansion. The result then follows
from Proposition 6. �

We can use the proof technique of strong bisimulation up to
� � % � � to show that

the translation from �
����� to ��������� forms a weak bisimulation.

Proposition 8 Any strong bisimulation up to
� � % � � is a weak bisimulation.

Proof An adaptation of the results in (Sangiorgi and Milner 1992). �

Proposition 9 The translation of ������� � into ��������� is a strong bisimulation
up to

� � � % � � � .
Proof Let � be:

� �� * ���@� % ��� � ��� � � � " � � �
 � � � *���� � % � � � � � � � � " � � �

and let � � � � � � be the extension of the translation to labels:

� � � � � � * � � � � � � � � * � � � � � � �
� � � ��� � � � � * � � ��� � ��� � � � � � � � � � � � � � ' � � * � � ��� � ��� �

First show that the translation respects substitution of values, that is:

��� � � � � ���.' � � � ��* ��� �$��� � � � � � � � � �
 �
Next show by induction on

<��
that if

<I� � #" �
then

�
is an input or output label.

Then show that for any " � � �
, if

� � #" ��7
then

��� �$��� ��� � � � � � D B" � � ��� �,��7 � �
and��7 � � ��7

. This is an induction on the proof of reduction, for example if:

<I� H #" �(7
<I� � � H #" � � 7

where � * �)���*) , ����� , � < then by induction:

��� � <I� � ��� � � H � � � #" � � ��� �,� 7 � � � 7 � � � 7

and so:

��� � <I� � � � �* � ����
�� ��� � <I�)� � � � � � � � � �
� � � H � � � #" � � � ����
�� ��� � ��7 � � � � � � � � � �
� � � ����
�� ��� � ��7 � � � � ��� � <'� �B�
 � � � � � � � � � � � � �* ��� � ����	�� , ��7 �&�'<�� ���) � � �

130 Jeffrey

and:

� ��7 � � � ��7� � ����	 � , ��7��&� <�� ���)��
The other cases are similar.

Then show that for any " � � �
, if

��� �$��� � � � #" � 7
then

� � � #" � � ��7
, � � � � $ � ��* � �

and
� 7 � � ��� �$��7 � �

. This is an induction on
�

, for example if:
��� � <I� � � H � #" � 7

��� � <�� � � � � H � #" � ���
 � � 7 � � � � � � � �

where � * �)���) , ��� � , � < then by induction:

<�� H � &" � � � 7 � � � � $ � �%* � � � 7 � � ��� � � 7 � �

and so:

<I� � �H � #" � � � ��7� � ����	 � , ��7����
<�� ���) �
and:

� ���
 � � 7 � � � � � � � �
� � � ����
 � ��� � ��7 � � � � � � � � � �
� � � ����
 � ��� � ��7 � � � � ��� � <'� �B�
 � � � � � � � � � � � � �* ��� � ����	�� , ��7���� <�� ���) �$� �
The other cases are similar. �

Proposition 10
�

is weakly bisimilar to
��� �$��� �

.

Proof Follows from Propositions 7, 8 and 9. �

It follows from this that weak bisimulation for �
������� is at least as fine as weak
bisimulation for �
����� � .

Proposition 11 If
��� �$��� � ��� ��� � ��� � then

� ��� � .

Proof Follows immediately from Proposition 10. �

However, note that the translation is not necessarily fully abstract, in that we have
not shown that this implication is an ‘if and only if’. This is because the bisimu-
lation is higher-order, and the clause for bisimulation between functions requires
the functions to agree on all arguments, not just ones which are the image of

��� � � �
.

Semantics for core Concurrent ML using computation types 131

References

Ferreira, W., M. Hennessy, and A. Jeffrey (1995). A theory of weak bisimula-
tion for core CML. COGS Comp. Sci. Tech. Report 05/95, Univ. Sussex.

Gordon, A. (1995). Bisimilarity as a theory of functional programming. In Proc.
MFPS 95, Number 1 in Electronic Notes in Comp. Sci. Springer-Verlag.

Gordon, A. et al. (1994). A proposal for monadic I/O in
Haskell 1.3. WWW document, Haskell 1.3 Committee,
http://www.cl.cam.ac.uk/users/adg/io.html.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

Howe, D. (1989). Equality in lazy computation systems. In Proc. LICS 89, pp.
198–203.

Jeffrey, A. (1995a). A fully abstract semantics for a concurrent functional lan-
guage with monadic types. In Proc. LICS 95, pp. 255–264.

Jeffrey, A. (1995b). A fully abstract semantics for a nondeterministic functional
language with monadic types. In Proc. MFPS 95, Electronic Notes in Com-
put. Sci. Elsevier.

Lambek, J. and P. J. Scott (1986). Introduction to Higher Order Categorical
Logic. Cambridge University Press.

Milner, R. (1989). Communication and Concurrency. Prentice-Hall.

Milner, R., J. Parrow, and D. Walker (1992). A calculus of mobile proceses.
Inform. and Comput. 100(1), 1–77.

Milner, R., M. Tofte, and R. Harper (1990). The Definition of Standard ML.
MIT Press.

Moggi, E. (1991). Notions of computation and monad. Inform. and Comput. 93,
55–92.

Reppy, J. (1991). A higher-order concurrent langauge. In Proc. SIGPLAN 91,
pp. 294–305.

Reppy, J. (1992). Higher-Order Concurrency. Ph.D thesis, Cornell Univ.

Sangiorgi, D. and R. Milner (1992). Techniques of ‘weak bisimulation up to’.
In Proc. CONCUR 92. Springer Verlag. LNCS 630.

