
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Combining the typed λ-calculus with
CCS

W. Ferreira
M. Hennessy
A.S.A. Jeffrey

Report 2/96 May 1996

Computer Science
School of Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

Combining the typed λ-calculus with CCS

W. FERREIRA, M. HENNESSY and A.S.A. JEFFREY

ABSTRACT. We investigate a language obtained by extending the typed call-by-value λ calculus
with the communication constructs of CCS. The language contains two interrelated syntactic classes,
processes and expressions. The former are defined using the CCS constructs of choice, parallelism,
and action prefixing of expressions, where these expressions come from a syntactic class which also
includes the standard constructs from the call-by-value λ-calculus.

We define a higher order bisimulation equivalence and prove that it is a congruence for ex-
pressions; when modified in the standard manner to take into account initial τ moves it is also a
congruence for processes. We then show that when applied to expressions this semantic theory is
a generalisation of the theory of equality for the call-by-value λ calculus while when applied to
processes it is an extension of the theory of bisimulation congruence of CCS.

1 Introduction

CCS is an abstract process description language whose study and understanding,
[7], has been of great significance in the development of the theory of concur-
rency. An algebraic view is taken of processes in that their description is in terms
of a small collection of primitive constructors, such as choice

�

, parallelism

�

and action prefixing a? � a!. These action prefixes designate the sending and re-
ceiving of a synchronisation impulse along a virtual channel a. Communication
is deemed to be the simultaneous occurrence of these two events and is denoted
by the special action τ. So CCS expressions describe processes in terms of their
synchronisation or communication potentials and the algebraic theory, expressed
as equations over the constructors, is validated in terms of behavioural equiva-
lences defined using the these potentials.

Much research has been carried out on extending this elegant theory to more
expressive process descriptive languages. Here we are concerned with languages
in which the synchronisation is replaced by the exchange of data, where the ab-
stract actions a? and a! are instantiated to a?x and a!v, the reception and sending
of data. In papers such as [5, 9], and even in [7], such extensions are consid-
ered but the domain of transmittable values is taken to have no computational
significance. All data expressions denote a unique value and the computation
of this value is not of concern. Here we are interested in situation in which the
data space may be computationally complex and their evaluation may effect the
behaviour of processes which use them.

This work was partially supported by the EU EXPRESS Working Group and the Royal Society.

2 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

A typed λ-calculus, based on some primitive set of data types, provides a
non-trivial example of such a data space. It is also a very useful example as
there are various existing programming languages, such as CML [10], Facile
[3], which are based on different methods for combining the communication
primitives of CCS with the typed λ-calculus.

In this paper we try, where possible, to unify CCS directly with the typed
call-by-value λ-calculus, to find a communicate-by-value concurrent language.
However, it is not possible to fully unify the process language with the functional
language, due to the behaviour of CCS summation. The operational semantics
for β-reduction includes:

�

λ

� ��� e

� � � τ� � e
If we were to allow function applications in

�

contexts we would therefore have:

a!1

� �

λ

� ��� b!1

� � � τ� � b!1 a!1

�

b!1 � � � � b!1

and so we would have:

�

λ

� ��� e

� � � � � e
We consider this to be an undesirable property of a functional language, and so
we will distinguish between processes (which may be placed in

�

contexts) and
expressions (which may not). For expressions, weak bisimulation is a congru-
ence, and we have:

�

λ

� ��� e

� � �
	 e

For processes, we have to use observational equivalence, and we have:

τ� p

� � p
In this paper we distinguish syntactically between processes and expressions: in
languages such as CML and Facile this distinction is made by the type system.

In Section 2 we describe a language λcon
v which combines the call-by-value

λ-calculus expressions with communicate-by-value CCS processes.
In Section 3 we then develop a variation of weak bisimulation equivalence,

based on higher-order bisimulations. As is to be expected the resulting equiv-
alence is not preserved by choice contexts. However when it is adjusted in the
standard manner, [7], the resulting higher order bisimulation congruence is pre-
served by all λcon

v contexts. We also show the resulting theory is both a general-
isation of the standard theory of CCS and call-by-value λ-calculus, and that all
closed expressions can be converted to head normal form.

In Section 4 we discuss possible extensions, such as the use of symbolic
techniques, and the call-by-name variant of the language.

Combining the typed λ-calculus with CCS 3

2 The Language

This section is divided into three parts. The first outlines the syntax and oper-
ational semantics of a call-by-value λ-calculus, the second provides a commu-
nicate-by-value process language based on CCS [7], and the third combines the
languages together as far as possible.

2.1 A call-by-value λ-calculus

The language we use is typed, the types been given by the grammar:

A :: � ��
� �� � � � �
� � �
A � A

Here

� � is used as an example of a basic type and we can easily incorporate
others. For each type A we assume an infinite set of variables, VarA, ranged over
by xA, and some (indefinite) set of constants for manipulating values of the basic
types, a typical example being � �� � the successor function over

� � . However
to increase readability we will omit the typing information from variables and
constants unless absolutely necessary.

The syntax of the language is given by the following grammar:

e � f � � � �

Exp :: � v �
ce

�
�

e

� ��� � e � � �� e

� �� � xA

�e
� e

�

ee

v � w � � � � �
Val :: � l �

µxA �B�
�

λyA� e

� �

xA

l
�

Lit :: � �� �� � ��� � �� � � � �� �� � � � �

The main syntactic category is Exp but a sub-category of value expressions is
also defined. The only non-trivial value expressions are function abstractions, or
more accurately recursively defined function abstractions. Informally µx� �

λy� e

�

denotes a recursively defined function whose definition could also be rendered
as:

x � � λy� e

If x does not occur in e then we will often abbreviate µx� �

λy� e

�

to λy� e.
Function abstraction and let are the only variable binding construct in the

language. This leads to the standard definition of free and bound occurrences of
variables, open and closed expressions, α-equivalence, �

α, and of substitution.
However we only ever require substitutions of the form e

v

!

x

"

, i.e. the substitu-
tion of a value v for all free occurrences of a variable x in an expression e.

We can associate with every expression at most one type. The typing judge-
ments have a very simple form

#

e : A and the rules for inferring types are given
in Figure 1. Of course we also need inference rules for the literals of any extra
basic types used. We use λv �

�

λv

$ �

to denote the set of all closed (open) well-
typed expressions.

Intuitively every expression of type A should denote a value of this type and
the operational semantics describes, in an abstract form, a procedure for evalu-

4 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

�� �� :

� � � � # ��� � �� :

� � � �

� �

: ��
� #

n :

� �

n

� ��
�

�
� � � � � "

#

e : A

#

f : B# �� � xA

�e
� f : B

#

e : B#

µxA �B�
�

λyA� e

�

: A � B#

e : A#

ce : B

c : A � B " #

e : A � B #

f : A#

e f : B#

e :

� � � � #

f : A

#

g : A#
�

e

� ��� � f � � �� g : A

#

xA : A

FIGURE 1. Type Rules for λ expressions.

ating expressions to values in a call-by-value manner; of course because of the
presence of recursion this evaluating procedure may never terminate. Formally
the operational semantics is given in terms of two relations between closed ex-
pressions. The first, e τ� �

e e

�

, means that in one reduction step the evaluation of
e can be reduced to that of e

�

. For example to evaluate the expression

�� � x �e
� f
we first evaluate e, using the rule:

e τ� �

e e

�

�� � x �e
� f τ� �

e

�� � x �e �
� f

When e produces a value v then the evaluation proceeds evaluating the expression
f

v

!

e

"

. In order to express this formally we need a second relation, e

�

v� �

e which
tells when an expression e has produced a value v (the reason for the non-standard
notation will become clear when we unify the expression and process languages
in Section 2.3). The evaluation of

�� � x � � � �
� � � � expressions is captured by the
additional rule:

e

�

v� �

e�� � x �e
� f τ� �

e f

v

!

x

"

Similarly to evaluate an application e f , the expression e is evaluated until we
reach a value e τ� � �

e

�

v� �

e. Since e is well-typed this value v must be of the form
µx� �

λy� g

�

and the evaluation proceeds by evaluating

�� � y � f
� g

v

!

x

"

; this is cap-
tured by the rule:

e

�

µx �
�

λy � g

�� � � � � � �

e

e f τ� �

e

�� � y � f
� g

µx� �

λy� g

� !

x

"

The application of constants ce is handled in a similar manner; e is evaluated to
a value v and then the value produced by cv depends on the constant in question.
The effect of constants can be expressed in terms of a function δ, which given
a constant and a value returns the corresponding expression. For example the
behaviour of the constant � � � � is given by δ

� � � � �
� n

� � n �

1.

Combining the typed λ-calculus with CCS 5

Values:

v

�

v� �

e

Reductions:
e

�

µx �
�

λy � g

�� � � � � � �

e

e f τ� �

e

�� � y � f
� g

µx� �

λy� g

� !

x

" e

�

v� �
e�� � x �e
� f τ� �

e f

v

!

x

"

e

��	
�� � � �

e
�

e

� �� � f � � �� g τ� �

e f
e

��
 �� �� � � �
e
�

e

� ��� � f � � �� g τ� �

e g
e

�

v� �

e

ce τ� �

e δ

�

c � v

�

Context Rules:
e τ� �

e e

�

ce τ� �

e ce

�

e τ� �

e e

�

e f τ� �

e e

�

f

e τ� �
e e

�

�

e

� ��� � f � � �� g τ� �

e

�

e

� � ��� � f � � �� g

e τ� �
e e

�

�� � x �e
� f τ� �

e

�� � x �e �
� f

FIGURE 2. Operational Semantics for λv

The two relations are defined to be the least ones which satisfy the rules given
in Figure 2. The main properties of the operational semantics is captured in the
following proposition, whose proof we leave to the reader:

Proposition 2.1 (Subject Reduction). For every closed expression e in λv such
that

#

e : A:

1. if e τ� �

e e

�

then

#

e

�

: A

2. if e

�

v� �

e then

#

v : A

�

In addition, we can show that reduction of expressions is deterministic:

Proposition 2.2 (Determinacy). For every closed expression e in λv:

1. if e τ� �

e e

�

and e τ� �

e e

� �

then e

� � e � �

2. if e

�

v� �

e and e

�

v

�� �

e then v � v � �

2.2 A communicate-by-value process calculus

In the previous section we presented a language λv for sequential computation.
We now present a language for concurrent computation, where the data commu-

6 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

#

0 : π#

v : A �

#

p : π#

kA!v� p : π

#

p : π#

kB?xB� p : π#

p : π

#

q : π#

p

�

q : π

#

p : π

#

q : π#

p

� �q : π

FIGURE 3. Type Rules for processes.

nicated on channels are values taken from λv. In the next section we will show
how these two languages can be combined to give a concurrent λ-calculus.

The syntax of the process language is given by the following grammar:

p � q � � � �

Proc :: � p � � p �

p

�

p

�

0

�

τ� p

�

kA?xA� p

�

kA!v� p

The process p

� �q represents two computation threads running concurrently—
in this language p and q are treated symmetrically, but in the next section we
introduce the notion of main thread of computation, so we use an asymmetric
notation for parallel composition.

From CCS we adopt process summation

�

, the deadlocked process, τ prefix,
and two constructs for the transmission and reception of values along channels,
k?x� p and k!v� p; we assume that for each type A, kA ranges over an infinite set
of channels ChanA. The input prefix is a variable binding operator in that in the
expression k?x� p all free occurrences of x in p are bound.

Processes are typed with judgements

#

p : π, given in Figure 3.
We now discuss the operational semantics of processes. We have three pos-

sible reductions for a process, based on the labelled transition system for CCS:

� p τ� �

p p

�

, meaning, as before, that one evaluation step reduces p to p

�

. How-
ever here, τ� �

p will model communication between independent evaluation
threads. For example we will have k!v� e

� �k?x� f τ� �

p e

� � f

v

!

x

"

.

� We have the new relation p kA!v� � �

p p

�

, meaning that a first possible step in the
evaluation of the expression p consists of the emission of a value v, along the
channel kA and the computation can subsequently proceed by evaluating the
expression p

�

. Communication between threads is synchronous and so this
computation thread can only proceed if there is another concurrent thread
which wishes to input a value along this channel.

� The final relation is of the form p kA?� �

p λxA� p

�

, meaning that the computation
thread corresponding to e can input a value along the channel kA. This value
is of type A and is represented by the free variable xA in p

�

. In the terminology
of [9] this represents a late operational semantics.

In fact the relation k?A� �

p will be defined indirectly, in terms of more tech-

Combining the typed λ-calculus with CCS 7

Communication Rules:

k!v� p k!v� �

p p k?x� e k?x� �

p e

p k!v� �

p p

�

q k?x� �

p q

�

p

� �q τ� �

p p

� � �q �

v

!

x

" p k?x� �

p p

�

q k!v� �

p q
�

p

� �q τ� �

p p

�

v

!
x

" � �q �

Dynamic rules:
p µ� �

p p

�

p

�

q µ� �

p p

�

q µ� �
p q

�
p

�

q µ� �
p q

�

Context Rules:
p µ� �

p p

�

p

� �q µ� �

p p

� � �q
p µ� �

p p

�

p

� �q µ� �

p p

� �q �

FIGURE 4. Operational Semantics for processes

nically convenient relation kA?xA� � � �

p, defined as p kA?xA� � � �

p p

�

iff p kA?� �

p λxA� p

�

.

These relations are defined to be the least relations over closed processes which
satisfy the rules given in Figure 4. In these rules we use:

a :: � kA!v

�

kA?xA µ :: � a �

τ

We have the following Subject Reduction property:

Proposition 2.3 (Subject Reduction). For every process p such that

#

p : π

1. p τ� �

p p

�

implies

#

p

�

: π

2. p kB!v� � � p �

implies

#

v : B and

#

p

�

: π

3. p kB?xB� � � � p �

implies

#

p

�

: π

Proof By rule induction on the relations involved.

�

2.3 Merging the λ and process calculi

In this section we unify the two languages considered in the previous sections.
There are numerous ways in which one can conceive of such an unification. For
example, as has been pointed out in [1], the language Facile, [3], may be con-
sidered as a call-by-value λ-calculus, such as λv, extended with an extra type

�� �� � � �. The syntax of expressions is then extended by various primitives for
expressions of this new type, such as a parallel operator

�

, operators for input
and output on communication channels, and λv is used to provide values which
are transmitted and received by objects of this type. Thus in Facile, in partic-
ular in the abstract version studied in [1], there is a clear distinction between

8 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

processes, expressions of type �� �� � � �, and the expressions in the underlying λ-
calculus. For example the parallel operator

�

can only be applied to processes,
i.e. expressions of type �� �� � � �.

By contrast, in CML [10] every expression is considered to be a thread of
computation, and expressions can spawn concurrent threads. At any one time
there is a main thread of computation, whose result will be returned if that thread
terminates. We represent this using the asynchronous parallel operator p

� � q,
which specifies that q is the main thread of computation. For example

�� �� � ��

will return the result 1 and discard the result

�� �� . This is reflected in the typing
of our extended language; the type of e

� � f is given by that of f .
In CML there is still a distinction between processes (which can be placed

in

�

contexts) and expressions (which cannot). This is given by the � �� � � type
constructor. In this paper for simplicity we will use a separate syntactic category
for processes rather than a separate type—the full story is given in [2].

We extend the language of expressions by including all processes, and paral-
lel composition of expressions:

e :: � v �

ce

�
�

e

� ��� � e � � �� e

� �� � xA

�e
� e

�

ee (as before)�

p

�

e

� �e (new)

We extend the language of processes by allowing any expression to be used as a
process as long as it is prefixed:

p :: � p � � p �

p

�

p

�

0 (as before)�

τ� e �

kA?xA� e

�

kA!v� e (new)

For example

�� �� is not a valid process, but τ� �� �� is. The restriction on the use of
expressions in processes is to ensure that weak bisimulation will be a congruence
for expressions.

Note that output is restricted to being of values kA!v� e rather than expressions
kA!e� f . We can define an expression for arbitrary output as syntactic sugar:

k!e� f � �� � x �e
� k!x� f

but note that this is an output expression rather than an output process, so cannot
be placed in

�

contexts.
The typing judgements for the new constructs are given in Figure 5.
We use λcon

v to denote the set of well-typed closed expressions in the new
syntax and as before use

�

λcon
v

� $

to denote the open expressions.
The operational semantics for λcon

v is given by unifying the previous opera-
tional semantics, and using a labelled transition system with labels:

a :: � kA!v

�

kA?xA µ :: � a �

τ l :: � µ � �

v

In particular, expressions can spawn subprocesses before returning a value, so

Combining the typed λ-calculus with CCS 9

#

0 : A#

v : B �

#

e : A#

kB!v� e : A

#

e : A#

kB?xB� e : A#

p : A

#

q : A#

p

�

q : A

#

e : A

#

f : B#

e

� � f : B

FIGURE 5. Type Rules for the merged language

�

v� � transitions now have to have a residual, for example:

p

� � �� �� ��	
�� � � � p � �0
These residuals have to be accommodated in other reductions, for example:

�

p

� ��� �� � ��� � e � � �� f τ� � p � �0 � �e
We have the following Subject Reduction Theorem:

Theorem 2.4 (Subject Reduction). For every e in λcon
v such that

#

e : A

1. e τ� � f implies
#

f : A

2. e

�

v� � f implies
#

v : A and

#

f : A

3. e kB !v� � � f implies

#

v : B and

#

f : A

4. e kB?� � f implies

#

f : B � A
Proof By rule induction on the relations involved.

�

We end this section by examining the properties of value production, the relation�

v� �.
Proposition 2.5. The operational semantics of λcon

v satisfies the following prop-
erties:

� single-valuedness: If e

�

v� � e �

then e

� �

w� � for no w.

� value-determinacy: e

�

v� � e �

and e

�

w� � e � �

implies e

� � e � �

and v � w

� forward commutativity:

e
µ � e1

e2

�

v� implies

e
µ � e1

e2

�

v�

µ

� e3

�

�

v

10 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

Values:

v

�

v� � 0
Communication Rules:

k!v� e k!v� � e k?x� e k?x� � e
e k!v� � e �

f k?x� � f

�

e

� � f τ� � e � � � f �

v

!

x

" e k?x� � e �

f k!v� � f

�

e

� � f τ� � e �

v

!

x

" � � f �

Dynamic rules:

p µ� � p �

p

�

q µ� � p �

q µ� � q �

p

�

q µ� � q �

Reductions:
e

�

µx �
�

λy � g

�� � � � � � � e �

e f τ� � e � � � �� � y � f
� g

µx� �

λy� g

� !

x

" e

�

v� � e �

�� � x �e
� f τ� � e � � � f

v

!

x

"

e

� �	
�� � � � e �

�

e

� ��� � f � � �� g τ� � e � � � f
e

��
 �� �� � � � e �

�

e

� ��� � f � � �� g τ� � e � � �g
e

�

v� � e �

ce τ� � e � � �δ �

c � v

�

Context Rules:
e µ� � e �

ce µ� � ce

�

e µ� � e �

�

e

� ��� � f � � �� g µ� �
� e

� � ��� � f � � �� g

e µ� � e �

�� � x �e
� f µ� � �� � x �e �
� f
e µ� � e �

e f µ� � e �

f

e µ� � e �

e

� � f µ� � e � � � f
f µ� � f

�

e

� � f µ� � e � � f �

f

�

v� � f

�

e

� � f

�

v� � e � � f �

FIGURE 6. Operational Semantics for λcon
v

� backward commutativity:

e

�

v � e1

e2

� µ implies

e

�

v � e1

e3

µ�

�

v

� e2

� µ

Combining the typed λ-calculus with CCS 11

Proof Routine induction on the syntax.
�

These special properties of

�

v� � imply that in some sense the production of values
is asynchronous; we will later show, using these properties, that if e

�

v� � e �
then e

is semantically equivalent to the expression e

� � �v. This latter term can produce
the value v but no subsequent behaviour can depend on its production.

3 A Semantic Theory

In this section we develop a semantic equivalence for λcon
v based on bisimulations.

A typical semantic equivalence, � , is defined by abstracting in some manner
from the operational semantics and is usually a relation over closed expressions,
in our case over λcon

v . This is extended in the standard way to a relation �
$

over
open terms by letting e � $ e �

if eρ � e

�

ρ for all closed substitutions ρ, i.e. type-
respecting functions from variables to closed values.

In this section, we will define two semantic equivalences	 h and �h such
that:

� 	 h is a congruence for λcon
v expressions, and �h is a congruence for λcon

v
processes,

� 	 h generalises the standard theory of equality of the call-by-value λ-calculus,

� �h generalises Milner’s observational congruence, [7], originally developed
for CCS.

In the first subsection we explain the definition of higher-order bisimulation
equivalence while some of its properties are investigated in the remainder.

3.1 Higher Order Bisimulations

Recall from [7] that that a relation R (over closed expressions from λcon
v) is is

a (strong) simulation if the following diagram, representing a transfer property,
can be completed:

e1 R e2 e1 R e2

as

e

�

1

l

�

e

�

1

l

�

R e

�

2

l

�

A semantic equivalence between expressions � can then be defined as the largest
symmetric simulation. There are many reasons why � is inadequate as the basis
of a semantic theory for λcon

v ; some of these are quite general while others are
due to the nature of the language λcon

v .
First in order to take into account the fact that τ� � actions are unobservable

12 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

we will require that the move e1
l� � e �

1 be matched by a weak action e2
l̂� �

e

�

2,
where

� ε� � is the reflexive transitive closure of τ� �

� l� � is ε� � l� �

� l̂� � is ε� � if l � τ and l� � otherwise.

In order to ensure that only closed expressions of the same type are related we
consider typed-indexed relations R , i.e. families of relations RA indexed by types
A.

The requirement that an l-action be matched by one with exactly the same la-
bel is too strong. For example, the expressions kA!

�

λx� 1

��� 0 and kA!

�

λx� � � � � 0

� � 0
are differentiated although it would be difficult to conceive of a context which
can distinguish them. The appropriate definition of simulation should compare
not only expressions but also labels. To this end, for any type-indexed relation
R , define its extension to labels R l by:

τ R l
A τ

v RA w

�

v R l
A

�

w k?B R l
A k?B

v RB w

k!Bv R l
A k!Bw

We only require labels to be matched up to R l rather than up to syntactic identity.
Unfortunately, the resulting equivalence now identifies all terms in normal

form, since all a normal form can do is tick with its own value. We add the extra
requirement that R be structure preserving, i.e.:

1. if v1 RA �B v2 then for all closed values

#

w : A we have v1 w RB v2 w

2. if v1 RA v2 where A is a base type then v1

� v2.

Definition 3.1. (Higher-Order Weak Simulation) A type-indexed relation R
over extended λcon

v is a higher-order weak simulation if it is structure-preserving
and the following diagram can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e

�

1

l1

�

e

�

1

l1

�

R e

�

2

l̂2

�
��
��
��
��
��
��
��
�

�

Let	 h be the largest symmetric higher-order weak simulation. Since the identity
relation I is a higher-order simulation and R R is whenever R is, it follows that	 h is an equivalence relation.

However, as is usual for weak bisimulations and CCS, the choice construct

�

is not preserved by	 h. For example τ� 0	 h 0 but kA!1� 0

� τ� 0 �	 h kA!1� 0

�

0.

Combining the typed λ-calculus with CCS 13

Fortunately we can adapt the usual remedy of Milner’s observational equiva-
lence, [7], to λcon

v .

Definition 3.2. (Higher-Order Observational Equivalence) Let �h be the
smallest symmetric relation such that the following diagram can be completed:

e1

�h e2 e1

�h e2

as where l1

	 hl
l2

e

�

1

l1

�

e

�

1

l1

�

	 h e

�

2

l2
�

��
��
��
��
��
��
��
�

�

Theorem 3.3. �h is a congruence for λcon
v processes, and	 h is a congruence

for λcon
v expressions.

Proof It is easy to establish that it is an equivalence relation and that it is pre-
served by operators such as

�
and the various forms of action prefixing. How-

ever it is more difficult to prove that it, or indeed	 h, is preserved by the parallel
construct, i.e. ei

	 h fi implies e1

� � f1

	 h e2

� � f2. For example if ei is kA?x� gi

where g1

	 h g2 and fi are of the form kA!vi� 0 where v1

	 h v2 then we need to
establish g1

v1

!
x

"	 h g2

v2

!

x

"

.
The proof uses Howe’s technique, [6], and is relegated to the Appendix.

�

Theorem 3.4. �h is the largest congruence for λcon
v processes contained in	 h.

Proof Let	 be any congruence on λcon
v processes contained in	 h. To show	 is

contained in �h it is sufficient to prove that if p	 q and p τ� � p �

then q τ� �

q

�

for
some q

�

such that p

�	 h q

�

. Since	 is a congruence, we have p

�

k!0	 q

�

k!0
(for fresh k) and since p

�

k!0 τ� � p �

we have q

�

k!0 � � q �

and p

�	 h q

�

. Since
p

�

cannot perform k, neither can q

�

, so we must have q τ� �

q

�

. The result follows.

�

It follows immediately that

Corollary 3.5. In λcon
v :

� e	 h f implies µ� e �h µ� f

� e	 h f implies e �h f or τ� e �h f or e �h τ� f .

�

3.2 Properties of λcon
v expressions

We first examine λcon
v as a call-by-value λ-calculus, by considering λcon

v expres-
sions up to weak bisimulation.

It is straightforward to show

�

λx� e

�

v	 h e

v

!

x

"

14 W. Ferreira, M. Hennessy and A.S.A. Jeffrey�

µx� �

λy� e

� �

v	 h e

µx� �

λy� e

� !

x

"

v

!

y

"

�� � x �v
� e	 h e

v

!

x

"

�� � y � � �� � x �e
� f

�
� g	 h �� � x �e
� � �� � y � f
� g

�

where x

��

f v

�

g

�

The last two are the left unit and associativity axioms of the monadic meta-
language of [8]. The third unit equation:

�� � x �e
� x � e
is more difficult to establish. Indeed as pointed out in [2] this is not true in
arbitrary labelled transition systems, as can be seen from the following example:

e

�	 h �� � x �e
� x

� �
�

�
�

k!

� �

�
�

�
�

�

v

� � �
�

�
�

k!

� �

�
�

�
�

τ

�

0 0 0 0

� �v

0

�

v

�

However in the labelled transition system generated by extended λcon
v we have:

Proposition 3.6. If e

�

v� � e �

then e �h e

� � �v.

Proof The following is a higher-order bisimulation:

� �

e � e

� � �v � �

e

�

v� � e � �� � �

e

�
� e

� � �0 � �

e

�

v� � e � �

Establishing this requires Proposition 2.5.

�

Corollary 3.7. e	 h �� � x �e
� x

Proof Using the previous Proposition one can show that

� �

e �
�� � x �e
� x

� �� 	 h

is a higher-order bisimulation.

�

These identities all involve the equivalence	 h but using the first part of Corol-
lary 3.5 they can be turned into identities for �h. So for example we have

τ� e �h τ� �� � x �e
� x�
The second part of this Corollary indicates that by analysing the initial τ actions
we can sometimes come up with slightly stronger identities. Examples of these

Combining the typed λ-calculus with CCS 15

are:

�

λx� e

�

v �h τ� e

v

!

x

"

�� � x �v
� e �h τ� e

v

!

x

"

We leave the reader to transform the other identities for	 h given above to iden-
tities for �h.

3.3 Properties of λcon
v processes

We now turn our attention to the language viewed as a process algebra. The es-
sential features of a process algebra such as CCS are a choice operator, a parallel
operator and a notion of action prefixing. All of these appear in λcon

v . We can
take the syntactic expressions of the form kA!v� � kA?x� � τ� to be action prefixes,
ranged over by µ. Note that even if µ� e is a closed expression e may be open.
The following two τ-law of CCS, [7], are valid:

p
� τ� p �h τ� p

µ� e �h µ� τ� e
The third τ-law

µ� �

p

� τ� q � � µ� q �

µ� �

p

� τ� q �

is not in general true; but this is as expected as we have used a late operational
semantics, [9], and this law does not hold in value-passing CCS for such a se-
mantics. It is only satisfied for the τ prefix, and in this case it is derivable from
the first law.

The choice operator satisfies the expected laws, those of a commutative
monoid:

0

�

p �h p

p

�

p �h p�

p1

�

p2

� �

p3

�h p1

� �

p2

�

p3

�

p1

�

p2

�h p2

�

p1

The parallel operator does not quite satisfy all the laws of CCS. It does satisfy:

0

� �e �h e�

e1

� �e2

� � �e3

�h e1

� � �e2

� �e3

�

�

e1

� �e2

� � �e3

�h �

e2

� �e1

� � �e3

It is not in general symmetric because of its interaction with the production of
values; for example 1

� �0 �h 0 but 0

� �1 �h 1.
In CCS every closed expression is semantically equivalent to a sum-form, i.e.

16 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

an expression of the form

∑
i

�

I
µi� ei

In λcon
v we can also show that every expression (resp. process) is equivalent, up

to	 h (resp. �h), to a such a form. This is the subject of the next subsection.

3.4 A head normal form for closed finite expressions

Here we outline a characterisation of �h in terms of equations and proof rules.
The characterisation is restricted to closed finite expressions from the language
λcon

v , i.e. closed expressions in which for all occurrences of µx� �

λy� e

�

x does
not occur free in e; as already explained in Section 2 such expressions will be
denoted by λy� e.

The characterisation can be viewed as an extension of the equational charac-
terisation of finite CCS expressions, [7]. These equations are given in Figure 7
although the third τ-law from [7] is missing because we are dealing with a late
behavioural equivalence, together with the usual structural rules for equational
reasoning.

The syntax of λcon
v is larger than that of CCS and we need extra equations for

each of the new syntactic constructs. These are given in Figure 8 and are of five
kinds. The first gives the properties of parallelism as an associative operator with
left units. The second gives the β-reduction rules for each of the operators. The
others show how the process operators (parallelism, summation and prefixing)
distribute through the functional operators (if, let and application).

Let

#

e � f denote that e � f can be deduced in the resulting proof system.
We leave the reader to check that this is sound, i.e.

#

e � f implies e �h f . We
will show that any closed finite expression can be converted into head normal
form, that is:

∑
i

µi� ei or

�

∑
i

µi� ei

� � �v

Note that we cannot use this directly to show completeness of the proof system,
since the terms ei may be open, and we can only normalize closed terms. A com-
plete proof system would require techniques taken from symbolic bisimulation
[5], which is left for future work.

Proposition 3.8. For every closed finite expression e there is a head normal form
f such that

#

e � f .

Proof (Outline) Show by induction on syntax that any process can be con-
verted to the form ∑i µi� ei and that any expression can be converted to the form�

∑i µi� ei

� � �v "

, where

 � �v "

denotes an optional occurrence of

� �v. The equa-
tional properties of

� � given by the ‘parallelism’ and ‘process spawning’ rules
are needed only in the case of expressions whose head normal form is of the

Combining the typed λ-calculus with CCS 17

Summation:

p

�

0 � p
p

�

p � p
p

�

q � q �

p

p

� �

q

�

r

� � �

p

�

q

� �

r

p

� τ� p � τ� p

µ� e � µ� τ� e

Interleaving law:

Let p � q denote ∑i µi� ei � ∑ j ν j� f j, where f v

�

µi

� �

f v

�

ν j

� � /0.

p
� �q � ∑

i
µi�

�

ei

� � f � � ∑
j

ν j�
�

e

� � f j

�

� ∑
µi

� k!v � ν j

� k?x

τ� �

ei

� � f j

v

!

x

" �

� ∑
µi

� k?x � ν j

� k!v

τ� �

ei

v

!

x

" � � f j

�

FIGURE 7. Equations for CCS

form p

� �v.

�

4 Conclusions

In this paper we have described one method for combining the concurrency fea-
tures of CCS with those of the typed λ-calculus. The resulting semantic theory
can be viewed as an extension of the theory of bisimulation congruence of CCS,
when restricted to the syntactic class of processes, and when applied to expres-
sions as an extension of the theory of equality for call-by-value λ-calculus.

In section 3.4 we have briefly investigated a syntactic characterisation of this
semantic theory using a combination of process algebra equations and those from
the theory of equality for call-by-value λ-calculus. It is not surprising that these
equations are incomplete even for expressions without recursion as the values
being communicated may be higher-order abstractions. However even the intro-

18 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

Concurrency:

0

� �e � e
v

� �e � e�

e

� � f � � �g � e � � � f � �g �

�

e

� � f � � �g � �

g

� �e � � �g

Reduction:

� � � �� � �� � e � � �� f � τ� e
� ��� � �� � �� � e � � �� f � τ� f�� � x �v
� e � τ� e

v

!

x

"

�

λx� e

�

v � τ� e

v

!

x

"

cv � τ� δ �

c � v

�

Process spawning:

� �

e

� �e � � � ��� � f � � �� g � e � � �
� e

� � ��� � f � � �� g

�

�� � x � �e � �e � �
� f � e � � � �� � x �e �
� f

�

�

e

� �e � �

f � e � � �e �

f

�

c

�

e

� �e � � � e � � �ce

� �

Choice:

� �

p

�

q

� � ��� � f � � �� g � �
�

p

� ��� � f � � �� g

� � �
�

q

� �� � f � � �� g

�

�� � x � �p �

q

�
� f � � �� � x �p
� f

� � � �� � x �q
� f

�

�

p

�

q

�

f � �

p f

� � �

q f

�

c

�

p

�

q

� � �

c p

� � �

cq

�

Prefixing:

�

µ� e � ��� � f � � �� g � µ� �
�

e

� ��� � f � � �� g

�

�� � x �µ� e
� f � µ� � �� � x �e
� f

�

�

µ� e �

f � µ� �

e f

�

c

�

µ� e � � µ� �

ce

�

FIGURE 8. Extra equations

Combining the typed λ-calculus with CCS 19

duction of rules such as

for all v,

�

λx� e1

�

v � �

λy� e2

�

v
λx� e1

� λy� e2

for all v,

�

λx� e1

�

v � �

λy� e2
�

v
kA?x� e1

� kA?y� e2

will not lead to a complete characterisation. The problem is that the behaviour of
a process such as kA?x� e of type B depends on the behaviour of

�

λx� e

�

v where
v ranges over all values of type B. However B may be any type, and in partic-
ular a type which has A as a sub-type, and therefore the proof rules above are
not of great help in establishing judgements of the form kA?x� e1

� kA?y� e2. In
order to obtain a complete syntactic characterisation the proof system needs to
be generalised to open expressions, where the symbolic techniques of [5] may be
applicable.

We have concentrated on a communicate-by-value paradigm because this is
the approach taken in languages such as CML and Facile. However in HOπ, [11],
and CHOCS, [12], actual text or code is transmitted between processes, much in
the same way as with standard β-reduction in the λ-calculus. In CML there
is also a mechanism, using Event types, for this kind of data exchange and in
Facile scripts are used in a similar manner. To study this form of communication
an alternative to λcon

v , say λcon
n , could be designed with reductions such as:

�
λx� e1

�
e τ� � e1

e

!

x

"
� kA!e� e1

� �kA?x� e2
τ� � e1

� �e2

e

!

x

"

We conjecture that in this language 	 h and �h are still congruences for ex-
pressions and processes respectively. Nevertheless it is known from [12] that
higher-order bisimulation congruence is not preserved by all CHOCS contexts,
the reason being that in CHOCS no distinction is made between processes and
expressions. In λcon

v , and the hypothetical λcon
n , variables are expressions and may

only be instantiated by expressions. If however λcon
n were further extended to al-

low variables to be instantiated by processes, and therefore the communication of
processes, then	 h � �h would no longer be preserved by all contexts. As a coun-
terexample consider the two processes p1 � p2 defined by kA!0� 0 � kA!

�

τ� 0 ��� 0 re-
spectively. These two processes send the processes 0 � τ� 0, respectively, along the
channel kA and it is straightforward to verify p1

�h p2. However C

p1

" � �h C

p2

"

where C is the context kA?x� �

x

�

l!0� 0

� � �C "

.
This phenomenon also occurs in CML and is studied in [2]. A suitable mod-

ification of higher-order bisimulations equivalence called hereditary bisimula-
tions is proposed and shown to be preserved by all CML contexts. This seems
to be the most appropriate form of bisimulation for λcon

n extended with process-
communication. However we leave this for further study.

20 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

A Appendix: Congruence proofs

We prove Theorem 3.3 using a variant of Howe’s [6] technique, and following
Gordon’s [4] presentation. The proof follows closely that in Section 5 of [2] and
here we merely state the required propositions.

One-level deep contexts are defined by:

D :: � x �

l

�

c �

1

�
� �

1

� ��� � �

2

� � �� �

3

� �� � x � �

1

� �

2

� �

1

�

2

�

µx� �

λy� �

1

�

kA?x� �

1

�

kA! �

1� �

2

� �

1

� �

2

� �

1

� � �

2

�

τ� �

1

Let Dn range over restricted one-level deep contexts: one-level deep contexts
which do not use

�

.
For any pair of relations R � �

R n � R s �

with R s �

R n, let its compatible
refinement,

�

R be defined by:

�

R
n � � �

Dn

 �

e

"
� Dn

 �

f

" � �

ei R n fi

�� �

R
s

�

R
s � � �

D

 �

e

"
� D

 �

f

" � �

ei R s fi

�

� � �

µx� �

λy� e

�
� µx� �

λy� f

� � �

e R n f

�

� � �

τ� e � τ� f

� �

e R n f

�

� � �

k?x� e � k?x� f

� �

e R n f

�

� � �

k!v� e � k!w� f

� �

e R n f � v R n w

�

The following proposition is easily established, using induction on contexts.

Proposition A.1. If R is an equivalence and

�

R

�

R , then R s is a congruence
on processes and R n is a congruence on expressions

Proof The proof is by structural induction on contexts. The definitions of

�

R
n

and

�

R
s

are intended to reflect the syntactic interplay between expressions and
processes; two weakly bisimilar expressions become weakly congruent when
guarded, or ‘thunked’. For example, if e R n f , and C � kA?x� �

1

�

p, then C

e

"

R n

C

f

"

because even though C is not a restricted context, we have C

e

" �

R
s
C

f

"

and�

R
s � �

R
s �

R n.
�

For any R , its compatible closure, R

�

, is given by:

e

�

R

�

e

�

R

$

e

� �

e R

�

e

� �

This definition of R

�

is specifically designed to facilitate simultaneous inductive
proof on syntax (since the definition involves one-level deep contexts) and on
reductions (since the definition involves inductive use of R

$

). This form of
induction is precisely what is required to show the desired congruence results.

Its relevant properties are given in the three following Propositions. Their

Combining the typed λ-calculus with CCS 21

proofs are simple variants of the corresponding theorems in [4, 6] and are nearly
identical to those in Section 5 of [2].

Proposition A.2. If R

$

is a preorder then R

�

is the smallest relation satisfy-
ing:

1. R

�

R

$ �

R

�

,

2.

�

R

� �

R

�

, and

3. R

$ �

R

�

.

�

Proposition A.3. If R is a preorder then for any v R

� n w: if e R

� n f then
e

v

!

x

"

R

� n f

w

!

x

"

.

Proof Suppose v R

� n w; since

�

R
s � �

R
n
, the proof is a by a mutual induction on

the following two statements:

1. e R

� n f implies e

v

!

x

"

R

� n f

w
!

x
"

, and

2. e R

� s f implies e

v

!

x

"

R
� s f

w

!
x

"

.

These are shown by structural induction on e.

�

Proposition A.4. If R is an equivalence then R

� �

is symmetric.

�

We need one specific property of the compatible closure of bisimulation:

Proposition A.5. When restricted to closed expressions, 	 h �

is a simulation,
and if e �h �

f and e l1� � e �

then f l2� �

f

�

where l1

	 h �

l2 and e

�	 h �

f

�

.

Proof Very similar to the proof of Proposition 4.4 of [2].

�

We now have all the information we need to prove Theorem 3.3.

Theorem A.6. �h is a congruence for λcon
v processes, and	 h is a congruence

for λcon
v expressions.

Proof Follows from Propositions A.2, A.5 and A.4.

�

References
[1] Roberto Amadio. From a concurrent λ-calculus to the π-calculus. In FCT’95. Springer–Verlag,

1995.

[2] W. Ferreira, M. Hennessy, and A. Jeffrey. A Theory of Weak Bisimulation for Core CML.
Technical Report 5/95, COGS, University of Sussex, 1995.

[3] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of concurrent and functional
programming. International Journal of Parallel Programming, 18(2):121–160, 1989.

[4] A. Gordon. Bisimilarity as a theory of functional programming. In Proceediings of MFPS95,
number 1 in Electronic Notes in Computer Science. Springer–Verlag, 1995.

[5] M. Hennessy and H. Lin. A proof system for value passing processes. In Proc. of CONCUR’93,
number 715 in Lecture Notes in Computer Science, pages 202–216, 1993. To appear in Acta
Informatica.

22 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

[6] D. Howe. Equality in lazy computation systems. In Proceedings of LICS89, pages 198–203,
1989.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] Eugenio Moggi. Notions of computation and monad. Information and Computation, 93:55–92,
1991.

[9] J. Parrow and D. Sangiorgi. Algebraic theories for value-passing calculi. Technical report,
University of Edinburgh, 1993. Also Technical Report from SICS, Sweeden.

[10] J. H. Reppy. A higher-order concurrent language. In Proceedings of the ACM SIGPLAN 91
PLDI, number 26 in SIGPLAN Notices, pages 294–305, 1991.

[11] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. Phd thesis, Edinburgh University, Scotland, 1992.

[12] B. Thomsen. Higher order communicationg systems theory. Information and Computation,
116:38–57, 1995.

