Types and Effectsfor Asymmetric Cryptographic Protocols

Andrew D. Gordon
Microsoft Research
Cambridge, UK

Abstract

We present the first type and effect system for proving
authenticity properties of security protocols based on asym-
metric cryptography. The most significant new features of
our type system are: (1) a separation of public types (for
data possibly sent to the opponent) from tainted types (for
data possibly received from the opponent) via a subtype
relation; (2) trust effects, to guarantee that tainted data
does not, in fact, originate from the opponent; and (3) chal-
lenge/response types to support a variety of idioms used to
guarantee message freshness. We illustrate the applicability
of our system via protocol examples.

1 Motivation

In recent work [GJ01c, GJO1a], we propose a type-based
methodology for checking authenticity properties of secu-
rity protocols. First, specify properties by annotating an
executable description of a protocol with correspondence
assertions [WL93]. Second, annotate the protocol with
suitable types. Third, verify the assertions by running a
type-checker. A type-correct protocol is secure against a
malicious opponent conforming to the Dolev and Yao as-
sumptions [DY83]; the opponent may eavesdrop, generate,
and replay messages, but can only encrypt or decrypt mes-
sages if it knows the appropriate key. This methodology is
promising because it requires no state-space exploration, re-
quires little interactive effort per protocol, and reduces ver-
ification to the familiar edit/type-check/debug cycle.

Still, our previous work applies only to symmetric-key
cryptography and only to one style of nonce handshake, a
significant limitation. The goal of this paper is to enrich
our type and effect system so as to apply the methodology
to a wider class of protocols based on both symmetric and
asymmetric cryptography. To do so, we need to solve the
following three problems.

(1) Let us say data is tainted if it may have been gener-
ated by the opponent, otherwise untainted, and public
if it may be revealed to the opponent, otherwise se-

Alan Jeffrey
DePaul University
Chicago, IL, USA

cret. Now, in symmetric protocols, data is either secret
and untainted (because it is sent encrypted, and the op-
ponent is ignorant of the key) or it is both public and
tainted (because it is sent in the clear). In asymmet-
ric protocols, the situation is subtler because of public
keys: data may be both secret and tainted (if sent en-
crypted with an honest agent’s public key) or public
and untainted (if sent encrypted with an honest agent’s
private key). Our previous system [GJ01a] has one
type, Un, for public, tainted data, and every other type
is both secret and untainted. Here, we need to be more
flexible; we use a subtype relation to represent whether
a type is tainted and whether it is public.

(2) Types can represent the degree of trust we place in
data. In symmetric protocols, the degree of trust, and
hence the types of data, is fixed. On the other hand, in
asymmetric protocols, the degree of trust may increase
over time as new information arises, for example, from
nonce challenges. We introduce trust effects to model
how the type of data may change over time.

(3) Our previous system supports a single format for prov-
ing freshness via nonce handshakes: the challenge in
the clear, the response encrypted. Asymmetric proto-
cols may use other styles: both challenge and response
encrypted; or the challenge encrypted, the response in
the clear. To accommodate these other styles, we in-
troduce new challenge/response types.

1.1 Background

Many methodologies exist for verifying authenticity
properties against the opponent model of Dolev and
Yao [DY83]. \erification via type-checking is one of
only a few, recent techniques that requires little interac-
tive effort per protocol, while not bounding protocol or
opponent size. Other such techniques include automatic
tools for strand spaces [SBPO1, THG98] and rank func-
tions [HS00, Sch98]. Other effective approaches include
model-checking [Low96, MCJ97], which typically puts
bounds on the protocol and opponent, and techniques re-
lying on theorem-proving [Bol96, Pau98] or epistemic log-

ics [BAN89, DMPO1], which typically require lengthy ex-
pert interaction.

Woo and Lam’s correspondence assertions [WL93] are
safety properties, specifying what is known as injective
agreement [Low95]. Given a description of the sequence
of messages exchanged by principals in a protocol, we an-
notate it with labelled events marking the progress of each
principal through the protocol. We divide these events into
two kinds, begin-events and end-events. Event labels typi-
cally indicate the names of the principals involved and their
roles in the protocol. For example, to specify an authen-
ticity property of a simple nonce handshake we decorate it
with begin-events and end-events as follows.

Messagel A—B: N

Event 1 B begins “B sends A message M”
Message2 B—A: {M,N}«
Event 2 Aends “Bsends A message M”

A protocol is safe if in all protocol runs, every assertion of
an end-event corresponds to a distinct, earlier assertion of
a begin-event with the same label. A protocol is robustly
safe if it is safe in the presence of any hostile opponent who
can capture, modify, and replay messages, but cannot forge
assertions.

Our previous work can type-check the robust safety
of protocols based on secure channels [GJO1c], and
on insecure channels protected by symmetric cryptogra-
phy [GJ01a]. These two papers are the only prior work on
authenticity by typing. They build on Abadi’s pioneering
work [Aba99] on secrecy by typing for symmetric-key cryp-
tographic protocols. Abadi and Blanchet [AB01, AB02]
extend Abadi’s original system to establish secrecy prop-
erties for asymmetric protocols. The present paper is a
parallel development for authenticity properties. Techni-
cally, it is not simply a routine combination of previous
papers [GJOla, ABO1]. For example, to facilitate type-
checking our formalism, each bound variable is annotated
with a single type. A feature of Abadi and Blanchet’s treat-
ment of tainted data is that a bound variable may assume
an arbitrary number of types, depending on its context, and
therefore they suppress type annotations. Another work on
types for asymmetric cryptography, though not for authen-
ticity, is Cervesato’s typed multiset rewriting [Cer01].

Like earlier work on types for cryptographic protocols,
we take a binary view of the world as consisting of a system
of honest protocol participants plus a dishonest opponent.
We leave a finer-grained analysis as future work.

1.2 Our Three Main Contributions

Separation of trust and secrecy. In a cryptographic pro-
tocol based on symmetric cryptography, data is typically ei-
ther secret and untainted, or public and tainted. For exam-

ple, consider the message:
A—=B: A {M}kyg

(We write {M}k,, for the outcome of encrypting M using
a symmetric algorithm with key Kag.) The principal name
A is public and tainted (since it is sent in plaintext) but the
payload M and the shared key Kag are secret and untainted
(since they are never sent in plaintext, and are known only
to honest principals).

On the other hand, in a cryptographic protocol based on
asymmetric cryptography, secrecy and taintedness are in-
dependent. Data may be secret and tainted, or public and
untainted. For example, if Kg is B’s public key and K;l is
A’s private key, consider the message:

A—B: {]Ml}Kgl,{INI}KB

(We write {]Ml}K;1 for the outcome of encrypting M using

an asymmetric algorithm with private key K12, and {NJ kg
for the outcome of encrypting N with public key Kg.) Now,
B considers:

e M is public (since the opponent knows Ka and so can
decrypt the ciphertext {IMBKgl) but untainted (since it

is encrypted with A’s private key, and so must have
originated from the honest agent A).

e N is secret (since the opponent does not know Kgl o)
cannot decrypt the ciphertext {|B[} k) but tainted (since
it is encrypted with B’s public key, and so could have
originated from a dishonest intruder).

Previous type systems [Aba99, GJO1a] feature a type, here
called Un, for all messages known to the opponent. Here,
to support asymmetric cryptography, we admit some types
that are public without being tainted, and others that are
tainted without being public. We relate these types to Un
via a subtype relation. As usual, we say T is a subtype of
U, written T <: U, to mean that data of type T may be used
in situations expecting data of type U. A type T is public if
T <:Un, that is, it may be sent to the opponent. Atype T is
tainted if Un <: T, that is, it may come from the opponent.

Our recognition of tainted types—as distinct from
public types—has many parallels in analyses of non-
cryptographic aspects of security. The Perl programming
language [WCS96] can track at runtime whether or not
scalar data is tainted, to catch bugs in code dealing with
untrusted inputs. An extension of the simply-typed A-
calculus [@P97] uses annotations on each type constructor
to track whether or not data can be trusted, either because
it originates from or has been endorsed by an honest par-
ticipant. Similarly, an experimental extension [STFWO01] of
C qualifies types as tainted or untainted to allow the static
detection of issues with format strings. The Secure Lambda

Calculus [HR98] uses subtyping to track security levels. To
the best of our knowledge, the present paper is the first to
use types to track both public and tainted data in the pres-
ence of cryptography.

Dynamic trust. In asymmetric protocols, the degree of
trust we place in tainted data may increase as we receive
new information. For example, consider the following
variant of the Needham-Schroeder—Lowe [NS78, Low96]
public-key protocol, extended to include a key exchange ini-
tiated by A:

Messagel A —+B:
Message2 B —+A:
Message3 A—+B:

{A, Kag,Naltkg
{B,Kag,Na,NB[}ka
{INBI}KB

After receiving Message 1, B regards the session key Kag as
tainted; it may come from A, but it may also come from the
opponent, since the key Kg is public. In Message 2, B sends
A a nonce Ng, encrypted together with the tainted key Kag
under Kpa, and hence hidden from the opponent. Now, A
only replies with Message 3 if the session key it receives in
Message 2 matches the key it issued in Message 1. There-
fore, on successful receipt of the secret Ng in Message 3, B
trusts that Kag did not in fact come from the opponent. So
it is safe for B to send a secret message to A encrypted with
the key Kag:

Message4 B —A: {M}ku

In this protocol, B’s trust in the session key Kag is dynamic
in that it changes over time: initially Kag is tainted, but after
Message 3 it is known to be untainted.

We model dynamic trust by introducing trust effects, that
allow the type of a nonce to make assertions about the type
of other data. In the typed form of our example, the type
of N asserts that Kag has the type of keys known only to
honest participants.

Symmetric key cryptographic protocols typically do not
require dynamic trust: data is either trusted or untrusted for
the whole run of the protocol, and its trust status does not
change during a particular run. Over time, symmetric key
cryptographic protocols may downgrade their trust in data
due to key-compromise or other long-term attacks on the
cryptosystem. Still, such attacks are outside our model, and
are left for future work.

Nonce handshake styles. Protocols use nonce hand-
shakes to establish message freshness, and hence to thwart
replay attacks. The type and effect system of this paper sup-
ports three handshake idioms:

e Public Out Secret Home (POSH): the nonce goes out
in the clear and returns encrypted.

e Secret Out Public Home (SOPH): the nonce goes out
encrypted and returns in the clear.

e Secret Out Secret Home (SOSH): the nonce goes out
encrypted and returns encrypted.

SOSH nonces are useful in asymmetric protocols, such as
the protocol described above, where if either Na or Ng is
learned by the opponent, the protocol can be compromised.
The novel feature of SOSH nonces in our type system is that
they can be relied upon for authenticity even when they are
tainted (for example, when they are encrypted with a public
key) because we have two cases:

e |f the nonce was generated by the opponent, then only
the opponent can perform the equality check at the end
of the nonce handshake, so no honest agent ever relies
on the authenticity information carried by the nonce.

e If the nonce was generated by an honest agent, then
the opponent never learns of it (since the nonce is se-
cret) and so it is safe for honest agents to rely on the
authenticity information carried by it.

In contrast, POSH and SOPH nonces cannot be relied upon
when tainted. The Needham—-Schroeder—Lowe protocol re-
lies on Na and Ng being SOSH nonces, since they are en-
crypted with public keys and hence tainted.

Guttman and Thayer [GTOQ] propose authentication
tests for analysing nonce usage. Their incoming tests apply
to POSH and SOSH nonces, and their outgoing tests apply
to SOPH and SOSH nonces. Gordon and Jeffrey [GJO1a]
deal only with POSH nonces.

1.3 Remainder of this Paper

Section 2 reviews our methodology for specifying au-
thenticity properties of protocols. Section 3 describes our
new type and effect system, and describes its application to
some examples. Section 4 concludes.

2 Authenticity Propertiesin Spi (Review)

We formalise our type and effect system in a version of
the spi-calculus [AG99], a concurrent language based on the
T-calculus [Mil99] augmented with the Dolev—Yao model
of cryptography. Section 2.1 reviews the syntax and infor-
mal semantics of a spi-calculus extended with correspon-
dence assertions [WL93]. Section 2.2 shows how to specify
an example protocol. Later, we show it is robustly safe by

typing.

2.1 A Calculus with Correspondence Assertions

First, here is the syntax of messages.

Names, M essages
I 1
m,n,Xx,y,z name: variable, channel, nonce, key, key-pair

L,M,N ::= message

X name
(M,N) pair formation

inl (M) left injection

inr (M) right injection

{M}n symmetric encryption
{M[n asymmetric encryption
k (M) key-pair component

(where k either Encrypt or Decrypt)

These messages are:

e A message x is a name, representing a channel, nonce,
symmetric key, or asymmetric key-pair.

e A message (M,N) is a pair. From this primitive we can
describe any finite record.

e Messages inl (M) and inr (M) are tagged unions, dif-
ferentiated by the distinct tags inl and inr. With these
primitives we can encode any finite tagged union.

e A message {M}n is the ciphertext obtained by en-
crypting the plaintext M with the symmetric key N.

e A message {M[n is the ciphertext obtained by en-
crypting the plaintext M with the asymmetric encryp-
tion key N.

e A message Decrypt (M) extracts the decryption key
component from the key pair M, and Encrypt (M) ex-
tracts the encryption key component from the key pair
M.

An asymmetric key-pair p has two dual applications:
public-key encryption and digital signature. In the first,
Encrypt (p) is public and Decrypt (p) is secret. In the
second, Encrypt (p) is secret and Decrypt (p) is public.
For each key-pair, our type system tracks whether the en-
cryption or decryption key is public, but it makes no differ-
ence to our syntax or operational semantics. (Hence, a sin-
gle key-pair cannot be used both for public-key encryption
and digital signature; this is often regarded as an imprudent
practice, but nonetheless is beyond our formalism.)

Next, we give the syntax of processes. Each bound name
has a type annotation, written T or U. We postpone the
syntax of types to Section 3.

Processes:
I 1
O,P,Q,R::= process
out M N output
inpM (x:T);P input
repeat inp M (x:T);P replicated input
split M is (x:T,y:U); P pair splitting
match M is (N,y:T); P pair matching
case Misinl (x:T) Pisinr (y:U) Q union case

decrypt M is {x:T }n;P
decrypt M is {x:T [}-1;P

symmetric decrypt

asymmetric decrypt

check M is N;P nonce-checking
begin L;P begin-assertion
end L;P end-assertion
new (x:T);P name generation
P|Q composition
stop inactivity

The type annotations on bound names are used for type-
checking but play no role at runtime; they do not affect the
operational behaviour of processes. In examples, for the
sake of brevity, we sometimes omit type annotations.

The free and bound names of a process are defined as
usual. We write P{x+—N} for the outcome of a capture-
avoiding substitution of the message N for each free oc-
currence of the name x in the process P. We identify
processes up to the consistent renaming of bound names,
for example when y ¢ fn(P), we equate new (x:T); P with
new (y:T); (P{x+y}).

Next, we give informal semantics for process behaviour
and process safety; formal definitions appear in Ap-
pendix B. These processes are:

e Processes out M N and inp M (x:T);P are output and
input, respectively, along an asynchronous, unordered
channel M. If an output out x N runs in parallel with
an input inp x (y);P, the two can interact to leave the
residual process P{y<N}.

e Process repeat inp M (x:T);P is replicated input,
which behaves like input, except that each time an in-
put of N is performed, the residual process P{y«N} is
spawned off to run concurrently with the original pro-
cess repeat inp M (x:T); P.

e A process split M is (x:T,y:U); P splits the pair M into
its two components. If M is (N, L), the process behaves
as P{x«N}{y«L}. Otherwise, it deadlocks, that is,
does nothing.

e Aprocess match M is (N,y:U); P splits the pair M into
its two components, and checks that the first one is
N. If M is (N,L), the process behaves as P{y«L}.
Otherwise, it deadlocks.

e A process case M is inl (x:T) P is inr (y:U) Q checks
the tagged union M. If M isinl (L), the process behaves
as P{x«L}. If M isinr (N) it behaves as Q{y«+N}.
Otherwise, it deadlocks.

e A process decrypt M is {x:T }n;P decrypts M using
symmetric key N. If M is {L}, the process behaves as
P{x«L}. Otherwise, it deadlocks. We assume there is
enough redundancy in the representation of ciphertexts
to detect decryption failures.

e A process decrypt M is {x:T [}-1;P decrypts M us-
ing asymmetric key N. If M is {{L[tgncrypt (k) and N

is Decrypt (K), then the process behaves as P{x«+L}.
Otherwise, it deadlocks.

e A process check M is N; P checks the messages M and
N are the same name before executing P. If the equal-
ity test fails, the process deadlocks.

e A process begin L;P autonomously asserts an begin-
event labelled L, and then behaves as P.

e An process end L;P autonomously asserts an end-
event labelled L, and then behaves as P.

e Aprocess new (x:T);P generates a new name x, whose
scope is P, and then runs P. This abstractly represents
nonce or key generation.

e Aprocess P | Q runs processes P and Q in parallel.
e The process stop is deadlocked.

Safety:

A process P is safe if and only if
for every run of the process and for every L,
there is a distinct begin-event labelled L
preceding every end-event labelled L.

We are mainly concerned not just with safety, but with ro-
bust safety, that is, safety in the presence of an arbitrary hos-
tile opponent. In the untyped spi-calculus [AG99], the op-
ponent is modelled by an arbitrary process. In our typed spi-
calculus, we do not consider completely arbitrary attacker
processes, but restrict ourselves to opponent processes that
satisfy two mild conditions:

e Opponents cannot assert events: otherwise, no process
would be robustly safe, because of the opponent end x;.

e Opponents do not have access to trusted data, so any
type occurring in the process must be Un.

Opponentsand Robust Safety:

A process P is assertion-free if and only if
it contains no begin- or end-assertions.
A process P is untyped if and only if
the only type occurring in P is Un.
An opponent O is an assertion-free untyped process O.
A process P is robustly safe if and only if
P | O is safe for every opponent O.

2.2 Specifying an Example

We show how to program a simple cryptographic pro-
tocol in our formalism. This protocol is a version of
Needham-Schroeder-Lowe [NS78, Low96] modified to il-
lustrate the various features of our type system. (The pro-
tocol is different from the version discussed in Section 1.)

The protocol shares a session key Kag between participants
A and B, and uses this key to send a message M from A to B.
The protocol should guarantee the authenticity properties:

(1) A believes she shares the key Kag with B.
(2) B believes he shares the key Kag with A.
(3) B believes message M was sent by A.

We specify the protocol informally as follows:

Event 1 Abegins “A generates Kag for B”
Messagel A—B: {A Kag,Naltks

Event 2 B begins “B received Kag from A”
Message 2 B—A: {]B, KAB, NA, NBl|}KAa Ng2
Event 3 A ends “B received Kag from A”
Event 4 A begins “Asends M to B”
Message 3 A—B: Ngi,{M,Ne2}kyps

Event 5 B ends “A generates Kag for B”
Event 6 B ends “A sends M to B”

Figure 1 is a spi-calculus version of the protocol. The top-
level process, System(net) generates two fresh key pairs
pair, and pairg, and places a single sender and a single
receiver in parallel. We publish the public encryption keys
of A and B, to allow the attacker access to them. The param-
eter net is a communications channel, on which the attacker
may send or receive, representing the untrusted network.
For simplicity, Figure 1 includes just one sender and one
receiver; it is easy to extend the program to run multiple
senders and receivers in parallel.

Given the assertions embedded in the program, our for-
mal specification is simply the following:

Authenticity: The process System(net) is robustly safe.

3 Authenticity by Typing for Asymmetric
Cryptographic Protocols

Section 3.1 introduces the type and effect system. Sec-
tion 3.2 describes how we type messages. Section 3.3 ex-
plains the subtyping relation. Section 3.4 explains how we
ascribe effects to processes. In Section 3.5 we explain how
to type the assertions in the example of the previous section.

3.1 Environments and judgments

The type and effect system is given as a series of judg-
ments E F 7, for example the judgment E - T can be read
as ‘in environment E we have that T is a type’.

JudgmentsE | 7:
I

Elo good environment
EFes good effect es
EFT good type T
EFT<:U subtyping

A

Sender (net, privaten, publicg)
new (keyag);
new (challenge,);
begin “A generates key 5g for B,
out net {A, keyag, challengea} punlics:
inp net (ctexty,challengeg,);
decrypt ctexty
is {|B, keyg, response,, challenges: [rjyae; 1
check challenge, is response,;
end “B received key pg from A",
new (Msg);
begin “A sends msg to B”;
out net (challengeg;, {msg, challengeg, by,)

A

System(net)

new (pair); new (pairg); (
Sender (net, Decrypt (pair 5), Encrypt (pairg)) |

Receiver (net, Encrypt (pair 5), Decrypt (pairg)) |

out net (Encrypt (pair»), Encrypt (pairg))

)

Receiver (net, public,, privateg) =

repeat
inp net (ctext;);
decrypt ctexty
is {A, keyag, chaJImgeA[}privateEl;
new (challengeg,);
new (challengeg,);
begin “B received key pg from A”;
out net
({B, keyag, challengen, challengeg; | puslic,
challengeg,);
inp net (responseg, ctexts);
check challengeg, is responsegy;
end “A generates key pg for B”;
decrypt ctexts is {Msg, responseg; Jrey, s :
check challengeg; is responseg,;
end “A sends msg to B”;

Figure 1. An example protocol with correspondence assertions

EFM:T
EFP:es
L

good message M of type T
good process P with effect es

Judgments are given in an environment that assigns types
to the names in scope. An environment, E, takes the form
X1:T1,-..,%n:Tn, and we write dom(E) for {X1,...,Xn}.

Environments:

I
D,E ::= environment
X1:T1, ..., X0 Th unordered set of entries

A well-formed environment E is one where E |- ¢.

Rulesfor Environments:

I
(wWhere E = x1:T1,...,%n:Tp)
EFTi Viel.n Xxg,...,Xpdistinct

Elo

3.2 Types for Messages

We give the syntax of types and explain when a message
M has type T, written informally M : T.

Apart from challenge/response types, deferred to the
next section, here is the syntax of our types.

Types:

S,T,U = type
(x:T,U) dependent pair type (x bound in U)
T+U sum type

Un data known to the opponent
Top top

SharedKey(T) shared-key type

KeyPair(T) asymmetric key-pair

k Key(T) encryption or decryption part

(where k either Encrypt or Decrypt)
1

Many of these types are standard or appear in earlier work
on spi [GJOla]. Messages of type (x:T,U) are dependent
records (M,N), where M : T, and N : U {x+T}. Messages
of type T + U are tagged unions, either inl (M) with M : T
or inr (N) with N : U. Messages of type Un are arbitrary,
untrusted data known to the opponent. Any typeable mes-
sage is also of type Top. Messages of type SharedKey(T)
are names representing symmetric keys for encypting data
of type T to yield a ciphertext of type Un.

We need some new types for asymmetric cryptography.
A message of type KeyPair(T) is a name representing an
asymmetric key-pair for encrypting data of type T. Mes-
sages of types Encrypt Key(T) or Decrypt Key(T) take the
form Encrypt p or Decrypt p, where p : KeyPair(T).

In an environment E, a well-formed type T is one where
EFT.

Rulesfor Message Types:

I

(where x ¢ dom(E))

EFT E,xTHU EFT EFRU
E + (x:T,U) EFT+U

EFUn EF Top

EFT EFT EFT

E b SharedKey(T) E - KeyPair(T) E Fk Key(T)

The formal message typing judgment takes the form
EFM:T, read ‘in environment E, message M has type
T

Our typing rules rely on a subtyping relation on types,
written E T <:U. Intuitively, this means that any message
of type T also is of type U. We explain subtyping in detail
in the next section.

Type Rulesfor M essages:
I

EFM:T EFT<:T
EFM:T/

E'xT,E"Fx:T

EFM:T EFN:U{xM} ExTFU
EF(M,N): (xT,U)

EFM:T EFU
Ekinl (M):T +U

EFT EEFN:U
EFinr (N): T+U

EFM:T EFN:SharedKey(T)

Et+ {M}N :Un
_ . EFM:T
E M KeyPair(T) E N : Encrypt Key(T)
E k(M) :k Key(T) EF My Un

The type-rules are all syntax-directed, and so it is routine to
implement a top-down typechecker for this type system.

3.3 The Subtyping Relation

The subtyping relation E - T <: T’ means that messages
of type T can be used in place of a message of type T'. The
environment E tracks the names in scope, and sometimes is
omitted in informal discussion.

The interaction of subtyping and dependent types can be
quite subtle; our treatment is based on that of Aspinall and
Compagnoni [ACO01], although our setting is much simpler,
due to the absence of higher-order types.

A type’s relationship to the type Un of data known to the
opponent determines whether it can be sent to or received
from the opponent. Let a type T be public if and only if
T <:Un. Letatype T be tainted ifand only if Un <: T.

The following tables of rules define the subtyping rela-
tion. Subtyping is reflexive and transitive, and has a top
element Top:

Basic rulesfor subtyping:

EFT—EFT<T
EFS<T,EFT<:U=EFS<:U
EFT=EFT <:Top

L

Pair types (x : T,U), sum types T +U and decryption
key types Decrypt Key(T) are covariant; encryption key
types Encrypt Key(T) are contravariant; symmetric keys
SharedKey(T) and key pairs KeyPair(T) are invariant.

Congruence Rules for Subtyping:

I

(where x ¢ dom(E))

EFT<:T" ExTHU<U ExT'HU’
EF(xT,U) <:(xT',U)

EFT<:T" EFU<:U’
EFT+U < T/ +U’

EFT<:T' EFT/<:T
E I SharedKey(T) <: SharedKey(T')

EFT<:T EFT'<:T
E I KeyPair(T) <: KeyPair(T')

EFT/ <:T
E F Encrypt Key(T) <: Encrypt Key(T’)

EFT<: T
E I Decrypt Key(T) <: Decrypt Key(T’)
L

A pair type (x:Un,Un) contains only public data, so is itself
public. Similarly, the sum type Un + Un, the symmetric key
type SharedKey(Un), the asymmetric key type k Key(Un),
and the key pair type KeyPair(Un) are all public types:

Subtyping Rulesfor Public Types:

I

E F (x:Un,Un) <:Un
EFUn+Un<:Un

E F SharedKey(Un) <: Un
E F KeyPair(Un) <: Un

E F k Key(Un) <: Un

A pair type (x:Un, Un) contains only tainted data, so is itself
tainted. Similarly, the sum type Un+ Un, the symmetric key
type SharedKey(Un), the asymmetric key type k Key(Un),
and the key pair type KeyPair(Un) are all tainted types:

Subtyping Rulesfor Tainted Types:

I

E F Un <: (x:Un,Un)
EFUn<:Un+Un

E F Un <: SharedKey(Un)
E F Un <: KeyPair(Un)

E F Un <:k Key(Un)

We end this section by discussing the two dual applica-
tions of key-pairs. We have the following equivalences:

Proposition 1 Suppose that E+ T and E | o. Then:

(1) T is tainted if and only if Encrypt Key(T) is public if
and only if Decrypt Key(T) is tainted.

(2) T is public if and only if Encrypt Key(T) is tainted if
and only if Decrypt Key(T) is public.

The first case represents public-key applications, where
the payload type T is tainted, and the encryption key is
public, so that anyone, including the opponent, can encrypt
messages. The second case represents digital signature ap-
plications, where the payload type T is public, and the de-
cryption key is public, so that anyone, including the oppo-
nent, can check signatures.

If we attempt to use the same keypair of type KeyPair(T)
for both applications, T is both public and tainted, and
hence equivalent to Un. This matches the common engi-
neering practice that keys used for both public-key and dig-
ital signature applications are not to be trusted.

3.4 Effects for Processes

We write E - P : es to mean that the process P is well-
typed in environment E, and that the effect es is an upper
bound on certain aspects of the behaviour P. An effect is a
multiset (that is, an unordered list) of atomic effects. These
can take three forms:

e end L, used to track the unmatched end-events of a
process;

e check Public N and check Private N, used to track how
often a nonce has been used; and

e trust M:T, a trust effect used to gain the trust informa-
tion that data M really has type T.

Overall, the goal when type-checking a protocol is to assign
it the empty effect, for then it has no unmatched end-events,
and therefore is safe. This section explains the intuitions
behind the rules for assigning effects to processes.

Let e stand for an atomic effect, and let es stand for an
effect, that is, a multiset [eq,...,en] of atomic effects. We
write es + es’ for the multiset union of the two multisets es
and es’, that is, their concatenation. We write es — es’ for the
multiset subtraction of es’ from es, that is, the outcome of
deleting an occurrence of each atomic effect in es’ from es.
If an atomic effect does not occur in an effect, then deleting
the atomic effect leaves the effect unchanged.

The interesting part of the effect system for processes is
how it handles nonce handshakes. Each nonce handshake
breaks down into several steps:

(1) Participant A creates a fresh nonce and sends it to B
inside a message M.

(2) Participant B returns the nonce to A inside message N.

(3) Participant A checks that she received the same nonce
as she sent. From this (and some trust in the cryptog-
raphy used to encrypt secret messages) she knows that
B must have been involved in the dialogue.

(4) To avoid vulnerability to replay of messages contain-
ing the nonce, A subsequently discards the nonce and
refuses to accept it again.

Our type system requires us to distinguish nonces which
may be published to the untrusted agents (Public nonces)
from ones which may not (Private nonces). We let £ be
either Public or Private. We type-check the above four steps
as follows:

(1) A creates the nonce N as having type £ Challenge es,
where es is an effect, and sends it to B.

(2) B casts the nonce to a new type £ Response fs, where
fs is also an effect, and returns it to A. In order to do
this, B must ensure that the effect es + fs is justified.

(3) After receiving the newly cast nonce, A uses a hame-
check check N is N’; to check equality of the original
nonce challenge with the new nonce response. If this
check succeeds, A can assume that the effect es + fs is
justified.

(4) To guarantee that each nonce N is only checked once,
we introduce a new atomic effect check ¢ N, which is
introduced each time a check N is N’; is used. This
can only be justified by freshly generating the nonce
N, which ensures that each nonce is only ever checked
once.

This four-phase process extends the treatment of POSH
nonces in earlier work [GJ01a], and is sufficient to type
check symmetric key protocols. Asymmetric key protocols,
however, have dynamic trust, where the trust in a piece of
data may increase over time. In our system, trust is given by
knowing the type of data, so dynamic trust is modelled by
allowing the type of some data to change over time. We in-
troduce two new statements, which allow A to communicate
to B that a piece of data M has type T:

(1) Aknows that M has type T, and executes witness M:T;
which justifies a trust effect trust M:T. A can then use
the nonce mechanism described above to communicate
this trust effect to B.

(2) B executes trustMis (x:T); which gives M type T by
binding M to variable x of type T. This requires a trust
effect trust M:T.

In this fashion, type information can be exchanged between
honest agents, using the same mechanism as authenticity
information.

Effects:

I
e fu= atomic effect
end L end-event labelled with message L
check /N name-check for a nonce N
trust M:T trust that a message M has type T
es, fs = effect
[e1,---,€n] multiset of atomic effects

Effects contain no name binders, so the free names of an
effect are the free names of the message and types they
contain. We write es{x<—M} for the outcome of a capture-
avoiding substitution of the message M for each free occur-
rence of the name x in the effect es.

We define E F es meaning ‘in environment E, the effect
es is well-formed’.

Rulesfor Effects:

EFes EFN:ZChallenge fs
EH] E - es+ [check £ N]
Eres EFL:Top Etes EFM:Top EFT

EFes+[end L] E Fes+[trust M:T]

We extend the grammar of types to include nonce types.
These come in two varieties: Public nonces (for SOPH and
POSH nonce handshakes, and public at some points in their
lifetime) and Private nonces (for SOSH nonce handshakes,
and never public).

e POSH nonces are sent out with tainted public type
Public Challenge [], and return with untainted public
type Public Response es.

e SOPH nonces are sent out with untainted secret type
Public Challenge es (with es # []), and return with
tainted public type Public Response [].

e SOSH nonces are send out with tainted secret type
Private Challenge es, and return with tainted secret
type Private Response fs.

In addition, we introduce challenge-response types
£ CR es fs, which can act as both challenges and responses.
These are only required for technical reasons in the proof of
correctness, and are not intended for use in user code.

Nonce Types:
I

T,U = type
as in Section 3.2
£ Challenge es nonce challenge type
£ Response es nonce response type
£CRes fs challenge-response type
L= privacy

Public public
Private private
L 1
Type Rulesfor Nonce Types
I 1
EFes EFes

E -/ Challengees E I- £ Response es

EFes+ fs
EFZCRes fs

Subtyping Rulesfor Nonce Types:

I
E I Public Challenge [] <: Un
E - fs = E I~ Public Response fs <: Un
E I Un <: Public Challenge []
E F Un <: Public Response []
E es = E - Un <: Private Challenge es
E Fes = E I Un <: Private Response es
EFes+fd,es<ed, fs< fd
= EF/{CRes fs' <:£CRes fs
EF?¢CRes fs= EF £ CRes fs <: £ Challenge es
EFZCRes fs=EF £ CRes fs <: £ Response fs
L

We extend the grammar of processes to include nonce ma-
nipulation:

Processes M anipulating Nonces:
I
O,P,Q,R:=

process

as in Section 2.1
cast M is (x:T);P nonce-casting
witness M:T; P witness testimony
trustMis (x:T);P trusted-casting

In a process cast M is (x:T);P or trust Mis (x:T);P, the
name X is bound; its scope is the process P.

e The process cast M is (x:T);P casts the message M
to the type T, by binding the variable x to M, and then
running P. (This process can only be typed by our type
system if M has type £ Challenge es and T is of the
form £ Response €s.)

e The process witnessM:T ; P requires that M has type T .
It justifies any number of effects of the form trustM:T.

e The process trust Mis (x:T); P casts the message M to
the type T, by binding the variable x to M, and then
running P. (This process requires an effect trust M:T
to be justified: this allows type information to be com-
municated amongst honest agents.)

We can now give rules which calculate the effect of a pro-
cess. Most of the rules are the same as [GJ01a], so we only

discuss the rules for asymmetric cryptography, nonce chal-
lenges, and dynamic trust here.

The rule for asymmetric decryption is similar to the one
for symmetric decryption in [GJ0la]: if M is a plaintext
of type T and K is a decrypt key of type Decrypt Key(T)
then we can decrypt a ciphertext of type Un to reveal the
plaintext of type T:

Rulefor Asymmetric Cryptography:
I
(where x ¢ dom(E) Ufn(es))
EFM:Un EFN:Decrypt Key(T) E,xTHP:es
E F decrypt M is {x:T [[\-1:P : es

The rules for nonce types are similar to the rules
from [GJ01a], except that they support SOPH and POSH
nonces as well as POSH nonces:

Rulesfor Challenges and Responses:

(where x ¢ dom(E) Ufn(fs))
EFM:ZChallengeesc E Fesg
E,x:¢ Response esgF P : fs

E F cast M is (x:¢ Response esg);P : esc +esg+ fs

E M :ZChallengeesc EF N :Z Response esg
EFP:fs

E I check M is N;P : (fs— (esc + esr)) + [check £ M]

(where x ¢ dom(E) U fn(es — [check £ X]))
EF fs E,x:f Challenge fs- P :es

E I new (x:£ Challenge fs);P : es — [check £ X]

The rules for trust effects are new in this paper. A process
witness M:T; P requires that message M has type T, and al-
lows the process P to use the trust effect trust M:T many
times; A process trust M is (x:T); P makes use of the trust
effect trust M:T to use M with type T:

Rulesfor Witness Testimony and Trusted-Casting:
I

EFM:T EFP:es+[trustM:T,... trust M:T]
E F witnessM:T;P :es

(where x ¢ dom(E) Ufn(es))
EFM:Top EFT E,xTHFP:es

E F trustMis (x:T); P : es+ [trust M:T]

The remaining rules are the same as in [GJ01a], so we re-
peat them without comment.
Basic Rules for Processes:
I
EFM:Un EFN:Un
EFoutMN:[]

10

(where'y ¢ dom(E) Ufn(es))
EFM:Un E,y:UnkP:es

EkFinp M (y:Un);P:es

(where'y ¢ dom(E))
EFM:Un E,y:UnkP:]

E | repeat inp M (y:Un);P: []

EFP:es EFQ:fs
EFP|Q:es+fs

E F stop : []

(where x ¢ dom(E) Ufn(es))

ExTHP:es EFT

T is Un or KeyPair(U) or SharedKey(U)
EFnew (xT);P:es

Rulesfor Processes Manipulating Productsand Sums:

I(where X,y ¢ dom(E)Ufn(es) and x #y)
EFM: (xT,U) E,xT,y;UFP:es
EFsplit Mis (x:T,y:U);P:es

(where'y ¢ dom(E) Ufn(es))
EFM:(xT,U) EFN:T E,yU{x<N}FP:es
E F match Mis (N,y:U{x<N});P:es

(where x ¢ dom(E) Ufn(es) and y ¢ dom(E) Ufn(fs))
EFM:T+U ExTHP:es E,yUFQ:fs
E Fcase Misinl (x:T) Pisinr (y:U) Q:esV fs

Rulesfor Cryptography:
(where x ¢ dom(E) Ufn(es))
EFM:Un EFN:SharedKey(T) E,xTHFP:es
E I decrypt M is {x:T }n;P : es

Rulesfor Beginsand Ends:
I
EFL:T EFP:es
E I begin L;P :es —[end L]

EFL:T EFP:es
EkendL;P:es+[endL]

Rulesfor Witness Testimony and Trusted-Casting:
I
EFM:T EFP:es+[trustM:T,... trust M:T]
E - witnessM:T ;P : es

(where x ¢ dom(E) Ufn(es))
EFM:Top EFT E,xTHFP:es

E F trustMis (x:T); P : es+ [trust M:T]

The type-and-effect rules for processes E - P : es rely on
some multiset algebra, which we define here for unordered
sequences [X1,. . .,Xn] for some grammar ranged over by x.

Multiset algebraxs +xs’, xs < xs', xs —Xs', X € X, XSV xs'
I

1
A

[Xla- .. ,Xm] + [yla' .. ayn] = [X17' - Xm, Y1, .. ayn]

xs < xs' if and only if xs +xs” = xs’ for some xs”

xs—xs' = the smallest xs” such that xs < xs” + xs’

x € xs if and only if [x] < xs

A
xsVxs' = the smallest xs” such that xs < xs” and xs" < xs”

Finally, we state the safety theorem for this type system.
The proof depends on identifying a suitable runtime invari-
ant and showing it is preserved by the operational seman-
tics.

Theorem 1 (Robust Safety) If x1:Un,...,xp:Un = P : []
then P is robustly safe.

3.5 Typing the Example

We now show that the process System(net) has empty ef-
fect, and so by Theorem 1 (Robust Safety) is robustly safe.
We give other examples in Appendix A, including an exam-
ple using signed certificates. Each nonce has two types: one
type when it is used as a nonce challenge, and one for when
it is used as a response. The types for N are:

Ca(a,b,k) = Private Challenge
[end (“a generates k for b”)]
Ra = Private Response []
The types for Ng; are:
Cgi(a,b,k) = Public Challenge
[end (“b received k from a”),
trust k:KAB(a, b)]
Rg1 = Public Response]
The types for Ngp are:
Cg2 = Public Challenge []
Rez(a,b,m) = Public Response [end (“a sends m to b”)]

Keys have only one type, giving the type of the plaintext
encrypted with the key. The type for Kag is:

Kag(a,b) SharedKey(m:Payload, r:Rgz(a,b,m))
The type for KA is:
Ka(a) Key(b:Principal, k: Top, ra:Ra,cg1:Cg1(a, b, k))
The type for KB is:
Kg(b) Key(a:Principal, k:Top,ca:Ca(a,b,k))

We can then check that the encryption keys for each of the
participants is public:

11

e The types Principal, Top, Ra and Cg1(a,b, k) are all
tainted, so the record type
(b:Principal, k: Top, ra:Ra,cg1:Cp1(a,b,k)) is tainted,
so the encryption key type Encrypt Ka(a) is public.

e The types Principal, Top and Ca(a,b,k) are all
tainted, so the record type
(a:Principal,k:Top,ca:Ca(a,b,k)) is tainted, so the

encryption key type Encrypt Kg(b) is public.

In Figure 2, we annotate the participants in the protocol
with types and appropriate casts, to ensure that the proto-
col is robustly safe. When we typecheck the receiver, we
cannot initially trust the session key, so we have to give it
type Top rather than key type. It is only once message 3
has arrived that we know that the key is really from A and
not fabricated by an intruder, at which point we can cast
it to keysg : Kag(A,B). This is justified by the trust effect
trust keyng : Kag(A,B) which is communicated as part of
nonce challenge challengeg; .

4 Conclusionsand Further Work

This paper presents a type and effect system for asym-
metric cryptographic protocols. The main new ideas are (1)
to identify the separate notions of public and tainted types,
defined formally via subtyping; (2) to formalize the way
nonces increase the degree of trust in data via trust effects;
and (3) to support different styles of nonce handshake via
challenge/response types. Examples show how to model
common features of asymmetric protocols such as key ex-
change and the use of signed certificates.

The Cryptyc project [GJ01b] includes a tool for type-
checking symmetric key protocols. We have used this tool
to verify most of the protocols in the Clark-Jacob sur-
vey [CJ97]. We intend to include the type and effect system
described here.

The long-term aims of all the work on typing crypto-
graphic protocols are to find secrecy and authenticity types
that are as compellingly intuitive as BAN formulas, are
easy to type-check, have a precise semantics, and support
a wide range of cryptographic transforms and protocol id-
ioms. This paper represents solid progress towards these
goals.

Still, several limitations remain to be addressed. Our
types for encryption give every ciphertext type Un, so we
cannot model some forms of nested cryptography such as
“sign-then-encrypt” or “encrypt-then-sign”. Our attacker
model assumes that every opponent is completely untrusted:
they only have access to data of type Un; this does not
model attacks where opponents are partially trusted (for ex-
ample, M may have a public key Ky which is trusted to
give authenticity information about M but not about A or B).
Also, the attacker model does not support key-compromise

L

Sender (net : Un, private, : Decrypt Ka(A), publicg : Encrypt Kg(B))
new (keyag : Kag(A,B));
// Effect: []
new (challenge, : Ca(A, B, keyag));
// Effect: [check Private challenge,]
begin “A generates key 5g for B,
out net {|A, keyag, challengen [publicg;
inp net (ctext, : Un,challengeg, : Cgp);
decrypt ctext; is {|B, keyag, response, : Ra, challengeg; : Cpi(A, B, kWAB)I}privatexl;
// Effect: [check Private challenges,end “A generates key pg for B
check challenge, is responses;
// Effect: [end “B received key o5 from A”,end “A generates key g for B
end “B received key pg from A”;
new (msg : Payload);
// Effect: [end “A generates key pg for B']
begin “A sends msg to B”;
// Effect: [end “A generates key g for B”, end “A sends msg to B”|
witness keyag:Kas(A, B);
// Effect: [end “A generates key pg for B, trust key ag:Kas (A, B), end “A sends msg to B
cast challengeg, is (responseg; : Rg1);
// Effect: [end “A sends msg to B”]
cast challengeg, is (responseg, : Rg2(A, B,msg));
// Effect: []
out et (responseg; , {MSg, responsegy ey,):

A

Receiver (net : Un, publicy : Encrypt Ka(A), privateg : Decrypt Kg(B))
repeat
inp net (ctexty : Un);
decrypt ctext; is {A, untrusted : Top,challenge, : Ca(A, B, keyag)
// Effect: []
new (challengeg; : Cg1(A, B, keyap));
// Effect: [check Public challengeg,]
new (challengeg, : Cgy);
// Effect: [check Public challengeg;, check Public challengeg,]
begin “B received untrusted from A”;
// Effect: [end “B received untrusted from A", check Public challenge g1, check Public challengeg,]
cast challenge, is (response, : Ra);
out net {B, untrusted, challengen, challengeg [} public, , challengegy;
inp net (responseg; : Rpj, ctexts : Un);
// Effect: [check Public challengeg,, check Public challengeg,]
check challengeg; is responseg;;
// Effect: [end “A generates untrusted for B, trust untrusted:K ag(A, B), check Public challengeg,|
end “A generates untrusted for B”;
// Effect: [trust untrusted:Kag(A, B), check Public challengeg,]
trust untrusted s (keyag : Kag(A,B));
decrypt ctexts is {msg : Payload, responseg; : Rg2(A, B, MSY) }key .
// Effect: [check Public challengeg,]
check challengeg; is responsegy;
// Effect: [end “A sends msg to B']
end “A sends msg to B”;

l}privategl;

Figure 2. Proof that the exampleis robustly safe

12

attacks. Our encryption model does not include other en-
cryption technologies such as hashing, Diffie—-Hellman key
exchange, and constructing keys from pass phrases.

A Other Examples
A.1 Abbreviations Used in Examples

In these examples, we make use of the following syntax
sugar:

e Dependent record types (X1:T1,...,Xn:Tn), rather than
just pairs.

e Tagged union types (£1(T1) | --- | €n(Tn)) rather than
just binary choice T +U.

e Strings “az...an” used in correspondence assertions.

e A public, tainted type Principal for principal names.

We show in the full version of this paper that these con-
structs can be derived from our base language.

A.2 Authentication using certificates

A simple authentication protocol using certificates is the
ISO Public Key Two-Pass Unilateral Authentication Proto-
col described by Clark and Jacob [CJ97]. In this protocol, a
principal A sends a certificate for her public key Ka together
with a message encrypted with her private key K;l to prin-
cipal B. The certificate is encrypted with the private key
KgAl of a certificate authority CA. The protocol, simplified
to remove messages unrelated to authenticity, is:

Messagel B—A: Np

Event 1 A begins “Asending M to B”
Message2 A—B: {A, KA|}KC_A1,{|M, B,NB|}K;1
Event 2 Bends “Asending M to B”

Translating the protocol into the spi-calculus with corre-
spondence assertions is routine, but we have to provide
types for the participants. The type of A’s key is (for any
public type Payload):

Ka(a: Principal) = Key(msg : Payload,b : Principal,
n : Public Response
[end “a sending msg to b”])

The type of the certificate authority CA’s key is:
Kea = Key(a . Principal,kA . KA(a))

We can then check that the participants’ public keys are
public:

e The plaintext of type Ka(@) is public so Decrypt Ka(a)
is public (this depends on the Payload type being pub-
lic).

13

e The plaintext of type Kca is public, so Decrypt Kca is
public.

It is then routine to verify that this protocol typechecks and
is effect-free, and so is robustly safe.

A.3 Needham-Schroeder-Lowe

The full Needham-Schroeder-Lowe [NS78, Low96]
protocol makes use of a certificate authority S which val-
idates the public keys Ka and Kg of principals A and B, by
encrypting the public keys with private encryption key Kgl.
A and B use S to find each others public keys, then use two
SOSH nonce handshakes to establish contact:

Messagel A—S: AB

Message2 S—A: {B, KBI}Kgl

Event 1 Abegins “A contacting B”
Message3 A—B: {msgs(A,Na) ks
Event 2 B begins “B contacted by A”
Message4 B—+S: B,A

Message5 S—B: {A, KAﬂKgl
Message 6 B — A: {msgg(B,Na,NB) [k,
Event 3 Aends “B contacted by A”
Message 7 A—B: {msg;(Ng)[}ks
Event 4 Bends “A contacting B”

Translating the protocol into the spi-calculus with corre-
spondence assertions is routine, but we have to provide
types for the participants. The type of A and B’s keys is:

Kp(p : Principal) = Key(
msgs(q : Principal,
Nng : Private Challenge [end “p contacted by ")
| msge(q : Principal,np : Private Response [],
Nng : Private Challenge [end “p contacting q”])
| msg;(Private Response [])

The type of S’s key is:
Ks= Key(p : Principal,kp : Kp(p))

We can then check that the participants’ public keys are
public:

e The plaintext of type Kp(p) is tainted, so
Encrypt Kp(p) is public (note that this depends
on private nonce types being tainted).

e The plaintext of type Ks is public, so Decrypt Ks is
public.

It is then routine to verify that NSL typechecks is effect-
free, and so is robustly safe. In the type for msgg we require
g’s name to be present, otherwise the type for msgg is not
well-formed; this is the basis of Lowe’s attack on the origi-
nal Needham—Schroeder public key protocol.

B Operational Semantics and Safety

Processes include correspondence assertion events
begin L and end L which describe the authenticity prop-
erties expected of the protocol. We take a new approach
to formalizing correspondence assertions via a tuple space
metaphor. Informally, we regard these events as analogous
to put and get in a fictitious secure tuple space similar to
Linda [CG89]. When a begin L event takes place, we add
L to the secure tuple space. When an end L event takes
place, we remove L from the tuple space: a violation of
the security requirements of the protocol have taken place
if L is not present. In reality, this tuple space does not ex-
ist, so we need the type system to ensure that every end L
event is guaranteed to succeed. In an implementation of a
typechecked protocol, begin L and end L events can be im-
plemented as no-ops, since the type checker guarantees that
the end L will succeed.

We define a state As of a protocol to be a tuple space
(that is, a multiset of tuples which have been begun but not
ended) and a thread pool (that is, a multiset of executing
threads).

Activities
I 1
A,B,C::= activity
L tuple labelled L
P process P
Ls::=[Ly,...,Ln] tuple space: multiset of tuples

Ps,Qs ::=[P1,...,Pn]
As,Bs,Cs::=Ls+Ps
L

thread pool: multiset of processes
state: tuple space plus thread pool

The free names fn(As) of a state As are defined in the usual
way. We define the operational semantics of a state by giv-
ing a reduction relation As — Bs meaning ‘in state As the
program can perform one step of computation and become
state Bs’. This is defined in Figure 3.

Let a frame, fr, be a set of names. We use frames to
record the names available in a particular state. So as to
track the names freshly generated by state transitions, we
define the judgment fr - As — As’ - fr’ to mean that there
is a transition As — As’ and that the frame fr includes all
the names available at As, and that the frame fr’ records the
fresh names generated by the transition. In fact, fr’ is either
empty or a singleton.

Framed Transitionsfr - As — As’ - fr’

Ifr F As — As'-fr’ if and only if
fn(As) C fr and As — As’ and fr’ = fn(As') — fn(As) and
fr' Nfr=o.

Starting in a framed state fr - As, a state As’ is reachable,
written fr - As = As’, if there is a sequence of framed tran-
sitions from As to As'.

14

Framed Reachability fr - As = As’
fn(As) C fr
fr- As= As

fr-As —» As'-fr' frufr’ - As' = As”
fr - As = As”

An error state is one where an end L event is encountered
without a matching tuple L in the tuple space.

Error Statesand Safety:

A state is an error if and only if
it has the form [end L;P] + As where L ¢ As.
A process P is safe if and only if
there is no error state As such that fn(P) +- [P] = As.

References

[ABO1] M. Abadi and B. Blanchet. Secrecy types for asymmetric com-
munication. In Foundations of Software Science and Compu-
tation Structures (FoSSaCS 2001), volume 2030 of Lectures

Notes in Computer Science, pages 25—41. Springer, 2001.

[AB02] M. Abadi and B. Blanchet. Analyzing security protocols with
secrecy types and logic programs. In 29th ACM Symposium
on Principles of Programming Languages (POPL’02), pages

33-44, 2002.

M. Abadi. Secrecy by typing in security protocols. Journal of
the ACM, 46(5):749-786, September 1999.

D. Aspinall and A. Compagnoni. Subtyping dependent types.
Theoretical Computer Science, 266(1-2):273-309, 2001.

M. Abadi and A.D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computation,
148:1-70, 1999.

M. Burrows, M. Abadi, and R.M. Needham. A logic of au-
thentication. Proceedings of the Royal Society of London A,
426:233-271, 1989.

D. Bolignano. An approach to the formal verification of cryp-
tographic protocols. In Third ACM Conference on Computer
and Communications Security, pages 106—118, 1996.

[Abag9]

[ACO1]

[AG99]

[BANSY]

[Bol96]

[Cer01] I. Cervesato. Typed MSR: Syntax and examples. In First In-
ternational Workshop on Mathematical Methods, Models and
Architectures for Computer Network Security (MMM’ 01), vol-
ume 2052 of Lectures Notes in Computer Science, pages 159—

177. Springer, 2001.

N. Carriero and D. Gelernter. Linda in context. Communica-
tions of the ACM, 32(4):444—-458, 1989.

J. Clark and J. Jacob. A survey of authentication protocol lit-
erature. Unpublished report. University of York, 1997.

[CG89]

[CJ97]

[DMP0O1] N. Durgin, J.C. Mitchell, and D. Pavlovic. A compositional
logic for protocol correctness. In 14th IEEE Computer Secu-
rity Foundations Workshop, pages 241-255. IEEE Computer

Society Press, 2001.

D. Dolev and A.C. Yao. On the security of public key
protocols. |EEE Transactions on Information Theory, IT—
29(2):198-208, 1983.

[DY83]

State Transitions:

[out x M] +
[out x M] +

[inp x (y:T); P]+ As — [P{y«<M}] + As

[repeat inp X (y:T);

X ¢ fn(As) = [new (x:T);P]+As — [P] + As
[P QI +As — [P]+[Q] +As
stop] + As — As

split (M,N) is (x:T,y:U);
match (M,N) is (M,y:U);

caseinr (N) isinl (x:T) Pisinr (y:U)

P]+As — [P{y«<N}] +As

decrypt {M}n is {X:T }n;P] +As = [P{x+—M}] +As

decrypt {I M |}Encrypt

— e e ——

begin L;P] + As — [L] +
L]+ [end L;P] 4+ As — [P] 4 As
check x is x; P] + As — [P] + As
cast xis (y:T);
witness M:T;P] + As — [P] + As

trustMis (X:T);P] + As — [P{x<M}] + As

[P]+As

P]+As — [P{y«x}] + As

P]+As — [P{x«M}{y<N}] +As

P]+ As — [P{y<—M}] + [repeat inp X (y:T);

[

|

[case inl (M) isinl (x:T) Pisinr (y:U) Q] +As — [P{x<M}] +As
[Q] +As — [Q{y+N}] +As
[

[

) 18 XT Fpecrypt (n)-1:P] +As = [P{x<M}] + As

P]+As

[GJ01a]

[GJO1b]

[GJ01c]

[GT00]

[HR98]

[HS00]

[Low95]

[Low96]

Figure 3. Operational semantics

A.D. Gordon and A. Jeffrey. Authenticity by typing for secu-
rity protocols. In 14th IEEE Computer Security Foundations
Workshop, pages 145-159. IEEE Computer Society Press,
2001.

A.D. Gordon and A. Jeffrey. The Cryptyc Project.
http://cryptyc.cs.depaul .edu/, 2001.

At

A.D. Gordon and A. Jeffrey. Typing correspondence asser-
tions for communication protocols. In Mathematical Founda-
tions of Programming Semantics 17, volume 45 of Electronic
Notesin Theoretical Computer Science. Elsevier, 2001. Pages
99-120 of the Preliminary Proceedings, BRICS Notes Series
NS-01-2, BRICS, University of Aarhus, May 2001. Extended
version to appear in Theoretical Computer Science.

J.D. Guttman and F.J. Thayer Fabrega. Authentication tests. In
IEEE Computer Society Symposium on Research in Security
and Privacy, pages 96—109, 2000. Extended version to appear
in Theoretical Computer Science.

N. Heintze and J.G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. In 25th ACM Symposium
on Principles of Programming Languages (POPL’98), pages
365-377, 1998.

J. Heather and S. Schneider. Towards automatic verification
of authentication protocols on an unbounded network. In 13th
Computer Security Foundations Workshop, pages 132—143.
IEEE Computer Society Press, 2000.

G. Lowe. A hierarchy of authentication specifications. In
10th Computer Security Foundations Workshop, pages 31-43.
IEEE Computer Society Press, 1995.

G. Lowe. Breaking and fixing the Needham-Schroeder public-
key protocol using CSP and FDR. In T. Margaria and B. Stef-
fen, editors, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 96), volume 1055 of Lectures
Notes in Computer Science, pages 147—166. Springer, 1996.

15

[MCJ97]

[Mil9g]

[NS78]

[@P97]

[Pau9s]

[SBPO1]

[Schos]

[STFWO1]

[THGO8]

[WCS96]
[WL93]

W. Marrero, E.M. Clarke, and S. Jha. Model checking for se-
curity protocols. In DIMACSWbrkshop on Design and Formal
Verifi cation of Security Protocols, 1997. Preliminary version
appears as Technical Report TR-CMU—-CS—97-139, Carnegie
Mellon University, May 1997.

R. Milner. Communicating and Mobile Systems:
Calculus. Cambridge University Press, 1999.

R.M. Needham and M.D. Schroeder. Using encryption for au-
thentication in large networks of computers. Communications
of the ACM, 21(12):993-999, 1978.

P. @rbaek and J. Palsberg. Trust in the A-calculus. Journal of
Functional Programming, 3(2):75-85, 1997.

L.C. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Computer Security, 6:85—-128,
1998.

D. Song, S. Berezin, and A. Perrig. Athena, a novel approach
to efficient automatic security protocol analysis. Journal of
Computer Security, 9(1,2):47-74, 2001.

S.A. Schneider. Verifying authentication protocols in CSP.
|EEE Transactions on Software Engineering, 24(9):741-758,
1998.

U. Shankar, K. Talwar, J.S. Foster, and D. Wagner. Detect-
ing format string vulnerabilities with type qualifiers. In 10th
USENIX Security Symposium, 2001.

F.J. Thayer Fabrega, J.C. Herzog, and J.D. Guttman. Strand
spaces: Why is a security protocol correct? In IEEE Com-
puter Society Symposium on Research in Security and Privacy,
pages 160-171, 1998.

L. Wall, T. Christiansen, and R.L. Schwartz.
Perl. O’Reilly Associates, 2nd edition, 1996.

T.Y.C. Woo and S.S. Lam. A semantic model for authenti-
cation protocols. In IEEE Computer Society Symposium on
Research in Security and Privacy, pages 178—194, 1993.

the =

Programming

