Authenticity by Typing for Security Protocols

Andrew D. Gordon
Microsoft Research
Cambridge, United Kingdom

Abstract

We propose a new method to check authenticity proper-
ties of cryptographic protocols. First, code up the protocol
in the spi-calculus of Abadi and Gordon. Second, specify
authenticity properties by annotating the code with corre-
spondence assertions in the style of Woo and Lam. Third,
figure out types for the keys, nonces, and messages of the
protocol. Fourth, check that the spi-calculus code is well-
typed according to a novel type and effect system presented
in this paper. Our main theorem guarantees that any well-
typed protocol is robustly safe, that is, its correspondence
assertions are true in the presence of any opponent express-
ible in spi.

1 Verifying Correspondences by Typing Spi

We propose a new method for analysing authenticity
properties of cryptographic protocols. Our proposal builds
on and develops two existing ideas: Woo and Lam’s idea
of correspondence assertions for specifying authentication
properties of protocols [40], and Abadi’s idea of check-
ing security properties of cryptographic protocols by type-
checking [1].

Woo and Lam’s idea of correspondence assertions is very
simple. Starting from some description of the sequence of
messages exchanged by principals in a protocol, we anno-
tate it with labelled events marking the progress of each
principal through the protocol. Moreover, we divide these
events into two kinds, begin-events and end-events. Event
labels typically indicate the names of the principals in-
volved and their roles in the protocol. For example, before
running a protocol to authenticate its presence to another
principal B, an initiator A asserts a begin-event labelled “ini-
tiator A authenticating itself to responder B”. After satisfac-
tory completion of the protocol, the principal B asserts an
end-event with the same label. A protocol satisfies these as-
sertions if in all protocol runs, and in the presence of a hos-
tile opponent, every assertion of an end-event corresponds
to a distinct, earlier assertion of a begin-event with the same

Alan Jeffrey
DePaul University
Chicago, Illinois, U.SA.

label. The hostile opponent can capture, modify, and replay
messages, but cannot forge assertions.

Woo and Lam’s paper [40] describes a formal seman-
tics for correspondence assertions but suggests no verifi-
cation techniques. Marrero, Clarke, and Jha [29] base a
model-checker for security protocols on correspondence as-
sertions. This paper formalises correspondence assertions
as new commands in the spi-calculus [3], a concurrent pro-
gramming language equipped with abstract forms of cryp-
tographic primitives. We expect it would not be difficult to
adapt the techniques of this paper to other concurrent lan-
guages.

There is a variety of different formulations of authen-
ticity properties of protocols, and even a little controversy
[6, 15, 26, 12]. Still, we adopt correspondence assertions
because they are simple, precise, and flexible. They are sim-
ple annotations of a protocol expressed as a program. They
have a precise semantics. They are flexible in the sense
that by annotating a protocol in different ways we can ex-
press different authenticity intentions and guarantees. Cor-
respondence assertions allow us to express what Lowe [26]
calls injective agreement between protocol runs. In a for-
mal comparison of authenticity properties, Focardi, Gorri-
eri, and Martinelli [13] formulate a property that system-
atically generalises the equational properties proved in the
original work on spi [3], and show that this generalisation
is strictly weaker than agreement. Therefore, there is some
evidence that the authentication properties proved in this pa-
per are at least as strong as in the original work.

Abadi’s idea of type-checking secrecy properties of
cryptographic protocols in the spi-calculus is part of a surge
of interest in types for security. Other work includes type
systems for checking untrusted mabile code [25, 31, 18], for
checking access control [24, 36], and, most recently, other
type systems for cryptographic primitives [34, 2]. This pa-
per develops some of the constructs in Abadi’s system, and
proposes a new type and effect system [14, 28] for the spi-
calculus. For a well-typed program containing correspon-
dence assertions, a type safety theorem guarantees the pro-
gram satisfies the assertions.

Our new method is the following. First, code up the pro-

tocol in the spi-calculus. Second, specify authenticity prop-
erties expected of the protocol by annotating the code with
correspondence assertions. Third, figure out types for the
keys, nonces, and messages of the protocol. Fourth, check
that the spi-calculus code is well-typed. The type safety the-
orem guarantees the soundness of the authenticity proper-
ties specified in the second step. The theorem asserts these
properties hold in the presence of an opponent represented
by an arbitrary spi process. Therefore, a limitation of the
theorem is that it does not rule out attacks that cannot be
expressed in the spi-calculus. On the other hand, it does
not limit the size of the attacker in any way. We have ap-
plied this method to several protocols by hand, and have
re-discovered some known flaws.

Our method is one of only a few formal analyses that
require little human effort per protocol, while putting no
bound on the size of the protocol or opponent. Other
examples include Song’s mechanisation [37] of strand
spaces [38], Heather and Schneider’s algorithm [23, 21]
for computing Schneider’s rank functions [35], and Cohen’s
resolution-based theorem prover TAPS [9]. Non-examples
include most approaches based on model-checking [27],
which are automatic but require bounds on the size of the
opponent or the protocols, and most approaches based on
theorem-proving [7, 33], which impose no bound on oppo-
nent or protocol size, but require lengthy and expert human
intervention.

Our method is also one of only a few where analysing
a protocol involves no exploration or enumeration of the
possible states or messages of the protocol, and so is de-
cidable even for protocols with no bound on the size of the
principals. The only other such methods we know of are
those based on proof-checking belief logics [8, 16]. Like
constructing a proof in a belief logic, the work of devising
types for a protocol in our system amounts to writing down
a formal argument explaining the protocol. Failing to find
a proof or a typing can suggest possible attacks on the pro-
tocol. Unlike most belief logics, our method has a precise
computational basis.

In this paper, we only consider type checking, not type
synthesis. Type checking (where the computer checks user-
defined typings) is easily seen to be decidable, and provides
a straightforward top-down algorithm for protocol verifica-
tion. Type synthesis (where the computer derives the typ-
ings itself) would be harder.

In summary, our new method enjoys a rare and attractive
combination of strengths:

o |t needs little human effort per protocol.

It puts no bound on the size of the principals.

It needs no state space enumeration per protocol.
It has a precise computational foundation.

It is decidable.

On the other hand, the type system on which our method
is based has limitations. Like all type systems, it is incom-
plete in the sense that perfectly well-behaved code can fail
to type-check. For example, we have found that certain uses
of nonces cannot be type-checked. Our system is also lim-
ited to symmetric-key cryptography. We leave the study of
types for other cryptographic primitives as future work.

The new technical contribution of this paper is a type and
effect system for proving correspondence assertions that
supports the cryptographic primitives of the spi-calculus.
A series of examples supports its usefulness. In earlier
work [17], we proposed a type system for proving corre-
spondence assertions about non-cryptographic communica-
tion protocols in the T-calculus. The system of the present
paper copes with untrusted opponents, encryption primi-
tives, and synchronisation via nonce handshakes, additional
features essential for cryptographic protocols.

2 Programming Protocols

This section reviews the syntax and informal semantics
of the spi-calculus, and explains how to express a simple
protocol example as a spi-calculus program.

Abadi and Gordon’s spi-calculus [3] is an extension of
Milner, Parrow, and Walker’s te-calculus [30] with abstract
forms of encryption and decryption, akin to the idealised
versions introduced by Dolev and Yao [11]. The atomic
names of the spi-calculus represent the random numbers
of cryptographic protocols, such as encryption keys and
nonces, as well as channels. The name generation opera-
tor abstractly represents the fresh generation of unguessable
random numbers such as keys and nonces. We can describe
cryptographic protocols by programming them in the spi-
calculus.

2.1 Review of the Spi-Calculus

There are in fact several versions of spi. The main differ-
ence between the spi-calculus presented in this section and
the original version [3] is that each binding occurrence of
a name is annotated with a type, T. (We postpone defining
the set of types till Section 4.) Choosing these type anno-
tations is part of our verification method; they are needed
for type-checking processes, but do not affect the runtime
behaviour of processes.

We assume an infinite set of atomic names or variables,
ranged over by m, n, x, y, and z. For the sake of simplicity in
presenting our type system, this version of the spi-calculus,
unlike the original, does not distinguish names from vari-
ables. The set of messages, which includes the set of names,
is given by the grammar in the following table.

Names and M essages.

I 1
m,n,x,y,z name: variable, channel, nonce, key
L,M,N ::= message

X name

(M,N) pair

O empty tuple

inl (M) left injection

inr (M) right injection

{M}n encryption

e A message (M,N) is a pair, and () is an empty tu-
ple. With these primitives we can describe any finite
record.

e Messages inl (M) and inr (M) are tagged unions, dif-
ferentiated by the distinct tags inl and inr. With these
primitives we can encode any finite tagged union.

e A message {M}n is the ciphertext obtained by en-
crypting the plaintext M with the symmetric key N.

We regard messages as abstract representations of the bit
strings manipulated by cryptographic protocols. We assume
there is enough redundancy in the format that we can tell
apart the different kinds of messages.

The set of processes is defined by the grammar:

Processes:
I 1
O,P,Q,R::= process

out M N output

inpM (x:T);P input

split M is (x:T,y:U); P pair splitting

case Misinl (x:T) Pisinr (y:U) Q union case

decrypt M is {x:T }n;P decryption
check M is N; P name-check
new (x:T);P name generation
P|Q composition
repeat P replication

stop inactivity

These processes are:

e Processes out M N and inp M (x:T);P are output and
input, respectively, along an asynchronous, unordered
channel M. If an output out X N runs in parallel with
an input inp x (y); P, the two can interact to leave the
residual process P{y«M}.

e A process split M is (x:T,y:U); P splits the pair M into
its two components. If M is (N, L), the process behaves
as P{x<N}{y«L}. Otherwise, it deadlocks, that is,
does nothing.

e A process case M is inl (x:T) P isinr (y:U) Q checks
the tagged union M. If M isinl (L), the process behaves
as P{x«L}. If M is inr (N) it behaves as Q{y+N}.
Otherwise, it deadlocks.

A process decrypt M is {x:T }n;P decrypts M using
key N. If M is {L}, the process behaves as P{x«L}.
Otherwise, it deadlocks. We assume there is enough
redundancy in the representation of ciphertexts to de-
tect decryption failures.

e A process check M is N; P checks the messages M and
N are the same name before executing P. If the equal-
ity test fails, the process deadlocks.

e A process new (x:T); P generates a new name x, whose
scope is P, and then runs P.

e A process P | Q runs processes P and Q in parallel.

e A process repeat P replicates P arbitrarily often. So
repeat P behaves like P | repeat P.

e The process stop is deadlocked.

Each binding occurrence of a hame bears a type annotation.
These types play a role in type-checking but have no role at
runtime; they do not affect the operational behaviour of pro-
cesses. In examples, for the sake of brevity, we sometimes
omit type annotations.

The free and bound names of a process are defined in
the normal way. We write P{x<N} for the outcome of
a capture-avoiding substitution of the message N for each
free occurrence of the name x in the process P. We identify
processes up to the consistent renaming of bound names,
for example when y ¢ fn(P), we equate new (x:T);P with
new (y:T);(P{x«y}). We will often elide stop from the
end of processes, and we will write out X M; P as shorthand
forout xM | P.

2.2 Programming an Example

This section shows how to program a simple crypto-
graphic protocol in spi. The protocol is intended to allow
a fixed principal A to send a series of messages to another
fixed principal B via a public channel, assuming they both
share a secret key K.

In a common notation, we can summarise this flawed
protocol as follows:

Messagel A—B: {M}k

Although standard, this notation leaves implicit details of
both protocol behaviour and security goals. One of the orig-
inal purposes of the spi-calculus was to make protocol be-
haviour explicit in an executable format. We can program
the protocol in spi as follows.

First, we describe the behaviour of the sender and re-
ceiver.

A A

FlawedSender(net, key)
repeat
new (Msg);
out net {msg} ey

FlawedReceiver (net, key)
repeat
inp net (ctext);
decrypt ctext is {msg}xey

These are:

e The process FlawedSender(net,key) is the sender A,
parameterized on net (the name of the public channel)
and key (the shared secret key). It repeatedly gener-
ates a fresh name msg, and then sends the ciphertext
{msg}key 0N the public net channel.

e The process FlawedReceiver(net,key) is the receiver
B, parameterized on net and key It repeatedly receives a
message on the public net channel, binds it to variable
ctext, and attempts to decrypt it with key key.

We specify the behaviour of the whole system running in
the protocol by generating a fresh name key—the shared se-
cret key—and then by placing the sender and receiver in
parallel.

FlawedSystem(net, done) =
new (key);
(FlawedSender (net, key) | FlawedReceiver(net, key))

Most protocols analysed with the spi-calculus have been
programmed in this style.

3 Specifying Protocols

Woo and Lam [40] introduce correspondence assertions,
a method for specifying protocol authenticity properties,
such as properties that are violated by replay or man-in-the-
middle attacks. The method depends on principals asserting
labelled begin- and end-events during the course of a pro-
tocol. The idea is that each end-event should correspond to
a distinct, preceding begin-event with the same label. Oth-
erwise there is an error in the protocol. We formalize these
ideas by adding begin- and end-event annotations to spi pro-
Cesses.

3.1 A Spi-Calculus with Correspondence Asser-
tions

First, we introduce the following notation for events, us-
ing messages as labels.

Events:

I 1
begin L begin-event labelled with message L
end L end-event labelled with message L

L

Second, we add processes to assert begin- and end-events.

Processes:

I 1

0O,P,Q,R:= process
as in Section 2.1
begin L; P begin-assertion
endL;P end-assertion

Assertions are autonomous in that they act independently
without any synchronisation with other processes.

e The begin-assertion begin L; P autonomously asserts a
begin L event, and then behaves as P.

e The end-assertion end L;P autonomously asserts an
end L event, and then behaves as P.

Given this informal semantics, we give an informal defini-
tion of process safety. (We formalize these definitions in the
full version of the paper.)

Safety:

A process P is safe if and only if
for every run of the process and for every L,
there is a distinct begin L event for every end L event.

For example:

e Process begin L;end L is safe.

e Process begin L;end L;end L is unsafe because of the
unmatched end L.

e Process begin L;begin L;end L is safe; the unmatched
begin L does not affect safety.

e Process begin L;begin L;end L;end L is safe; here
there are two correspondences, both named L.

e Process begin L;end L;begin L';end L’ is safe.

e Process begin L;end L'; begin L';end L is unsafe.

Safety does not require begin- and end-assertions to be
properly bracketed:

e Process begin L;begin L’;end L’;end L is safe.
e Process begin L;begin L’;end L;end L’ is safe.

Finally, consider the parallel process begin L | end L. This
process either asserts a begin L event followed by an end L
event, or it asserts an end L event followed by a begin L
event. Because of the latter run, the process is unsafe.

We are mainly concerned not just with safety, but with
safety in the presence of an arbitrary hostile opponent,
which we call robust safety. (This use of “robust” to de-
scribe a property invariant under composition with an ar-
bitrary environment follows Grumberg and Long [19]). In
the untyped spi-calculus [3], the opponent is modelled by
an arbitrary process. In our typed spi-calculus, we do not
consider completely arbitrary attacker processes, but restrict
ourselves to opponent processes that satisfy two mild con-
ditions:

e Opponents cannot assert events: otherwise, no process
would be robustly safe, because of the opponent end x.

e Opponents are not required to be well-typed: we
model this using a type Un for untyped, untrusted data.
This is discucssed further in Section 4

Opponents and Robust Safety:
I

A process P is assertion-free if and only if
it contains no begin- or end-assertions.
A process P is untyped if and only if
the only type occurring in P is Un.
An opponent O is an assertion-free untyped process.
A process P is robustly safe if and only if
P | O is safe for every opponent O.

3.2 Specifying the Example

Recall the protocol example of Section 2.2. Two fixed
principals A and B share a key K with which A sends a se-
quence of messages to B. We introduce begin- and end-
events labelled M for each message M. The sender asserts a
begin-event labelled M before sending M, and the receiver
asserts an end-event labelled M after successfully receiving
a message M.

We express this idea informally as follows:

Event 1 Abegins M
Messagel A—B: {M}k
Event 2 Bends M

We express the idea formally by inserting assertion pro-
cesses into the spi-calculus descriptions of the sender and
receiver. We update our definitions as follows.

CheckedSender(net,key) = CheckedReceiver(net, key) =

repeat repeat
new (Msg); inp net (ctext);
begin msg; decrypt ctext is {msg}key;
out net {msg}ey end msg
CheckedSystem(net) £
new (key);

(CheckedSender (net, key) | CheckedReceiver(net, key))

Next, we precisely state the authenticity property we desire
(but that is actually violated by the protocol).

Authenticity: The process CheckedSystem(net) is robustly
safe. (Breaks.)

If the protocol is safe, each end msg has a distinct corre-
sponding begin msg, and therefore B accepts each message
no more times than A sent it. Moreover, if the protocol is
robustly safe, no attacker can violate this property.

It is easy to prove that this protocol is safe, since the
protocol itself never duplicates messages. Still, the protocol

is not robustly safe since a suitable attacker can violate this
safety property.

Attacker(net) £
inp net (ctext);out net (ctext); out net (ctext)

This attacker carries out a replay attack on the system, caus-
ing the receiver to assert end msg twice, even though the
sender has only asserted begin msg once.

3.3 Fixing the Example

A standard countermeasure against replay attacks is to
include a nonce, a randomly generated bit-string, in each
ciphertext to ensure its uniqueness. The following variant
of our protocol is now initiated by the receiver, who sends
anew nonce N to the sender, to guard against replays of the
encrypted form of the message M.

Event 1 Abegins M
Messagel B—A: N
Message2 A—B: {M,N}x
Event 2 Bends M

In the spi-calculus, nonces are represented by names, and
creation of fresh nonces by name generation. We program
the revised protocol as follows:

FixedSender(net,key) = FixedReceiver(net, key) =

repeat repeat
inp net (nonce); new (nonce);
new (Msg); out net nonce;
begin msg; inp net (ctext);

decrypt ctext

is {msg, nonce’ }1ey;
check nonce is nonce’;
end msg

out net {msg, nonce} ey

The process check nonce is nonce’; P checks that nonce and
nonce’ are the same name before executing P. For the sake
of simplicity, in this example and others in the paper we
omit error recovery code: upon receiving a ciphertext con-
taining an unexpected nonce, an instance of the receiver just
terminates. The whole system and its authenticity property
are now:
FixedSystem(net) =
new (key);
(FixedSender(net, key) | FixedReceiver(net, key))

Authenticity: The process FixedSystem(net) is robustly
safe.

Given our madifications, this property is true. A direct
proof is possible, but tricky, since we must quantify over all

possible attackers. The original paper on the spi-calculus
includes a verification via equational reasoning of a proto-
col similar to that embodied in FixedSystem(net). The point
of our type system, presented next, is to provide an efficient
way of proving this specification, and others like it.

4 Typing Protocols

This section describes the heart of our method for
analysing authenticity properties of protocols: a dependent
type and effect system for statically verifying correspon-
dence assertions by type-checking.

4.1 Types for Messages

There is an objection in principle to a security analysis
based on type-checking processes: it may be reasonable to
assume that honest principals conform to typing rules, but
it is imprudent to assume the same of the opponent. As pre-
viously discussed, our general model of the opponent is any
untyped, assertion-free process. The objection to a typed
analysis is that we may miss attacks by ruling out processes
that happen not to conform to our typing rules. On the in-
ternet, famously, nobody knows you’re a dog. Likewise,
nobody knows your code failed the type-checker.

To answer this objection, Abadi [1] introduces an un-
trusted type (which we call Un) for public messages, those
exposed to the opponent. Every message and every oppo-
nent is typable if all their free variables are assigned the Un
type. The type represents the unconstrained messages that
an arbitrary process manipulates. Since any opponent can
be typed in this trivial way we have not limited the power
of opponents.

To illustrate this, here are some informal typing rules for
messages and processes (for brevity, we elide some techni-
cal requirements on free names). Messages of the Un type
may be output, input, paired, split apart, encrypted, and de-
crypted, with no constraints.

e If M:Unand N : Un then out M N is well-typed.
e IfM:Un and P is well-typed
then inp M (x:Un); P is well-typed.
e [fM:UnandN:Unthen (M,N): Un.
e If M : Un and P is well-typed
then split M is (x:Un,y:Un); P is well-typed.
e IfM:UnandN : Un then {M}n: Un.

e IfM:UnandN : UnandP is well-typed
then decrypt M is {x:Un};P is well-typed.

When modelling protocols, we assume that all the names
and messages exposed to the opponent—representing pub-
lic data and channels—are of this type. Names and mes-

sages not publicly disclosed may be assigned other types,
known as trusted types.

Messages of the trusted type Key(T) are symmetric keys
for encrypting messages of type T. When encrypting with
a Key(T), the plaintext must have type T, and the resulting
ciphertext is given untrusted type. Using the rules above
for Un, we can send and receive ciphertexts on untrusted
channels. When decrypting with a Key(T), if we succeed
we know the plaintext must have been encrypted with the
same key, and therefore our typing rules assign it type T.

e IfM:T andN : Key(T) then {M}y : Un.

e IfM:UnandN : Key(T) and P is well-typed
then decrypt M is {x:T }n;P is well-typed.

The remaining trusted types are more standard. Messages
of type Ch(T) are channels communicating data of type T.
Messages of type (x:T,U) are dependent pairs where the
first element has type T and the second element has type U.
The variable x is bound, and has scope U. (The need for
such dependent types arises later, when we introduce a type
for nonces.) The only message of the empty tuple type ()
is the empty tuple (). Messages of type T + U are tagged
unions. A union of type T 4+ U is either of the form inl (M)
where M has type T, or of the form inr (N) where N has type
U. Other base types such as int or boolean could easily be
added to this language: we expect they would produce no
technical difficulties.

Types:

T,U = type
Un untrusted type
Key(T) shared-key type
Ch(T) channel type
O empty tuple type
(x:T,U) dependent pair type
T+U variant type

4.2 Effects for Processes

Our effect system tracks the unmatched end-assertions
of a process. In its most basic form, our main judgment

P:[endLy,...,end L]

means that the effect [end L4,...,end Ly, is an upper bound
on the multiset (or unordered list) of end-events that P may
assert without asserting a matching begin-event. Hence, if
P : [] then every end-event in P has a matching begin-event,
that is, P is safe.

Let e stand for an atomic effect. One kind of atomic ef-
fect is end L. The second kind is check N; we explain later
its use to track nonce name-checking. Let es stand for an

effect, that is, a multiset [e1,...,en] of atomic effects. We
write es + es’ for the multiset union of the two multisets es
and es’, that is, their concatenation. We write es —es’ for the
multiset subtraction of es’ from es, that is, the outcome of
deleting an occurrence of each atomic effect in es’ from es.
If an atomic effect does not occur in an effect, then deleting
the atomic effect leaves the effect unchanged.

Tracking Correspondencesin Sequential Code

Given this notation, the typing rules for begin L;P and
end L; P are essentially:
e |f P:esthen begin L;P: (es—[end L]).
e [fP:esthenend L;P: (es+ [end L]).
These rules are enough to check correspondences in sequen-
tial code, for example:
e end L :[end L]
begin L;end L : []
end L;end L : [end L,end L]
begin L;end L;end L : [end L]
begin L;begin L;end L;end L : []

Transferring Effects between Parallel Processes

Our rules for assigning effects to communications and com-
positions are similar to those in previous work on effect sys-
tems for the te-calculus [10, 17].

e [fM:Ch(T)and N : T thenout M N : [].
e [fM:Ch(T)and P:estheninp M (x:T);P :es.
o IfP:espand Q:esqthenP | Q: (esp+esg).

When computing the effect of the composition P | Q of two
processes, we simply compute the multiset union of the ef-
fects of the processes. This rule in itself does not allow a
begin-assertion in P, say, to account for an end-assertion
in Q. Somehow we need to be able to show that temporal
precedences are established between parallel processes. Re-
call our FixedSystem example: we need to show that a dis-
tinct begin msg precedes each end msg, even though these
assertions are running in parallel.

Typing Nonce Handshakes

A nonce handshake guarantees temporal precedence be-
tween events in parallel processes. In this paper, we con-
sider a particular idiom for nonce handshakes, referred to
by Guttman and Thayer as incoming tests [20]. Other id-
ioms are possible, for example Guttman and Thayer’s out-
going tests, but we leave these for future work. Incoming
tests break down into several steps.

(1) The receiver creates a fresh nonce and publishes it.
(2) The sender embeds the nonce in a ciphertext.

(3) The receiver looks for the nonce in a received cipher-
text.

(4) To avoid vulnerability to replay of messages contain-
ing the nonce, the receiver subsequently discards the
nonce and no longer looks for it.

We type-check these four steps as follows.

(1) The receiver creates the nonce N in the untrusted type
Un. This allows the nonce to be sent on an untrusted
channel, and reflects that it can be received and copied
by the opponent as well as the sender.

(2) The sender embeds the nonce in a ciphertext as a mes-
sage of a new trusted type Nonce es, where es is an ef-
fect. The sender casts the nonce N : Un to this trusted
type using the new process cast N is (x:Nonce es);P.
At runtime, this process simply binds the message N to
the variable x of type Nonce es, and then runs P. The
sender uses the variable x to embed the nonce in the
ciphertext.

(3) After decrypting a ciphertext containing a nonce
N’ : Nonce es, the receiver uses a name-check
check N is N’; Q to check for the nonce N : Un which
it made public earlier. Only a cast can populate the
type Nonce es. So the presence of the message N’ :
Nonce es proves there was a preceding execution of a
cast process.

(4) To guarantee that each nonce N is the subject of no
more than one name-check, we introduce a new atomic
effect, written check N. We include check N in the
effect of a name-check check N is N’; Q on a nonce N.
When checking name generation new (N:Un);P, we
check that check N occurs at most once in the effect of
P. This guarantees that each free name is the subject
of no more than one name-check.

In summary, our type and effect system provides a so-
lution to the problem of guaranteeing temporal prece-
dences between parallel processes: for every success-
ful execution of a process check N is N’;Q, where N’ :
Nonce es, there is a distinct preceding execution of a pro-
cess cast N is (x:Nonce es); P, even if the name-check and
the cast are in parallel processes.

The following rules for computing the effect of casts
and name-checks exploit this temporal precedence. They
allow us to guarantee by typing that those end-events fol-
lowing the name-check and listed in the effect es of the type
Nonce es are matched by distinct begin-events that precede
the cast. This effect is transferred from the name-check to
the cast; the effect es is added to the effect of a cast, and is
subtracted from the effect of a name-check.

e IFN:UnandP:esp
then cast N is (x:Nonce es); P : (esp +€s).

e IfN:UnandN’:NonceesandQ : esg
then check N is N; Q : ((esq — es) + [check N]).

e If P:espthen new (N);P : (esp — [check N]).
In Section 4.4 we give an example of these type rules, show-
ing that the FixedSystem(net) is robustly safe.
Effectsand Atomic Effects

Given these motivations for and examples of assigning ef-
fects to processes, here is the grammar of effects and atomic
effects.

Effects:

I
e, fi= atomic effect
end L end-event labelled with message L

check N name-check for a nonce N
es, fs = effect
[e1,-.-,€n] multiset of atomic effects

Effects contain no name binders, so the free names of an
effect are the free names of the messages they contain. We
write es{x«M} for the outcome of a capture-avoiding sub-
stitution of the message M for each free occurrence of the
name x in the effect es.

Additional Typesand Processes

We end this section by completing the grammars of types
and processes with the new type and new processes we need
for typing nonce handshakes.

Types.

T,U = type
as in Section 4.1

Nonce es nonce type

The free names of a type are defined in the usual way,
where the only binder is x being bound in U in the type
(x:T,U). For example, x is free in Nonce [check X] but not
in (x:Un, Nonce [check x]). We write T {x<M} for the out-
come of a capture-avoiding substitution of the message M
for each free occurrence of the name x in the type T.

As we explained, we add a process to cast untrusted data
into nonce type. Moreover, we add a new process for pattern
matching pairs.

Processes:

process

I
O,P,Q,R:=
as in Sections 2.1 and 3.1

cast M is (x:T);P cast to nonce type
match M is (N,y:U);P pair pattern matching

In a process cast M is (x:T);P, the name x is bound; its
scope is the process P. In a process match M is (N,y:U);P,
the name y is bound; its scope of the process P.

e The process cast M is (x:T);P casts the message M
to the type T, by binding the variable x to M, and then
running P. (This process can only be typed by our type
system if T is of the form Nonce es.)

e The process match M is (N,y);P is similar to
split M is (x,y);P except that it checks that the first
component of M is equal to N before extracting the
second component (which is bound to y in P). If the
equality test fails, then the process deadlocks.

Pair pattern matching is used in the protocol examples in
Appendix A.

4.3 Typing Rules

In this section, we formally define the judgments of our
type and effect system.

These judgments all depend on an environment, E, that
defines the types of all variables in scope. An environment
takes the form x1:T1,...,%n: Ty and defines the type T; for
each variable x;. The domain, dom(E), of an environment
E is the set of variables whose types it defines.

Environments:

I
D,E = environment

1%} empty

E,xT entry
dom(x1:T1,...,Xn:Tn) = domain of an environment

{X1,..-,%n}

The following are the five judgments of our type and effect
system. They are inductively defined by rules presented in
the following tables.

JudgmentsE + :

I

EtFo good environment

Etes good effect es

EFT good type T

EFM:T good message M of type T

EFP:es good process P with effect es

Rulesfor Environments:

(Env @) (Envx) (where x ¢ dom(E))
EFT

gFo ExTFo

These standard rules define an environment x1:Ty,...,Xn: Th
to be well-formed just if each of the names x1, ..., X are
distinct, and each of the types T; is well-formed.

Rules for Messages of Untrusted Type:
(Msg Pair Un) (Msg Unit Un)

EFM:Un EFN:Un EFo

Rulesfor Effects: E+(M,N):Un EF(:Un
(Effect) (Effect End) (Effect Check) (Msg Inl Un) (Msg Inr Un)

EFo EFes EFL:T Ekles EFN:Un EFM:Un EFN:Un

Eto E Fes+ [end L] E F es+ [check N] EFinl(M):Un EFinr(N):Un

(Msg Encrypt Un)

These rules define an effect [e1,...,en] to be well-formed EFM:Un EFN:Un
just if for each atomic effect ej = end L, message L has type EF{M}x:Un

T for some type T, and for each atomic effect e; = check N,
message N has type Un.

Rulesfor Types:

(Type Un) (Type Chan) (Type Pair) (Type Unit)
Elo EFT E,xTHFU Elo
EFUn E F Ch(T) EF(xT,U) EF()

(Type Variant) (Type Key) (Type Nonce)
EFT ERU EFT EFes

EFT+U EFKey(T) EF Noncees

According to these rules a type is well-formed just if every
effect occurring in the type is itself well-formed.

Next, we present the rules for deriving the judgment E
M : T that assigns a type T to a message M. We split the
rules into three tables: first, the rule for variables; second,
rules for manipulating data of trusted type; and third, rules
for assigning the untrusted type to arbitrary messages.

Rulefor Variables:

I
(Msg x)
E'xT,E"Fo
ExT,E'Fx:T
L

Rules for Messages of Trusted Type:

(Msg Pair) (Msg Unit)
EFM:T EEN:U{x<M} EFo

EF(M,N): (xT,U) EF(O:(
(Msg Inl) (Msg Inr)
EFM:T EFRU EFT ERN:U

EFinl(M):T+U EFinr (N): T+U

(Msg Encrypt)
EFM:T EFN:Key(T)

E}—{M}NZUn

Recall from Section 4.1 the principle that any message can
be assigned the untrusted type Un, provided its free vari-
ables are also untrusted. Using just the rules in the first and
third tables of message typing rules, we can prove:

Lemmal If fn(M) C {X1,...,Xn} then X3:Un,... , Xn:Un F
M : Un.

A message may be assigned both a trusted and an untrusted
type. For example:

e x:Un,y:Unk (x,y):(z:Un,Un) by (Msg Pair)
e x:Un,y:Unk (x,y):Un by (Msg Pair Un)

Finally, we present the rules for assigning effects to pro-
cesses. To state the rule for name-generation we introduce
the notion of a generative type. A type is generative if it
is untrusted or if it is a key or channel type. A process
new (x:T);P is only well-typed if T is generative. This rule
prevents the fresh generation of names of, for example, the
Nonce es type; it is crucial to our system that the only way
of populating this type is via a cast process.

Generative Types.

A type is generative if and only if
it takes the form Ch(T), Un, or Key(T).

Basic Rules for Processes:

(Proc Begin)
EFL:T EFP:es

(Proc End)
EFL:T EFP:es

EFbeginL;P:es—[endL] EtendL;P:es+[endL]

(Proc Par)
EFP:es EFQ:fs

EFP|Q:es+fs

(Proc Repeat)
EFP:]

E I repeat P : []

(Proc Stop) (Proc Res) (where x ¢ fn(es — [check x]))
Elo E,xT -P:es T isgenerative

Ebstop:[] EFnew (xT);P:es—[checkX]

(Proc Subsum)
E-P:es Eles

EFP:es+es

We discussed informal versions of the rules (Proc Begin),
(Proc End), (Proc Par), and (Proc Res) previously. The rule
(Proc Repeat) requires the effect of the replicated process P
to be empty. The rule (Proc Stop) says the inactive process
has empty effect. The effect of a process is an upper bound
on the behaviour of a process; the rule (Proc Subsum) al-
lows us to weaken this upper bound by enlarging the effect.

The rule (Proc Case), in the following table, uses an
operator Vv defined as follows. Let the multiset ordering
es < es’ mean there is an effect es” such that es +es” = es’.
Then we write esV es’ for the least effect es” in this ordering
such that both es < es” and es’ < es”.

Rules for Processes Manipulating Trusted Types:

(Proc Output)
EFXx:Ch(T) EFM:T
EFoutxM:[]

(Proc Input) (where y ¢ fn(es))
EFx:Ch(T) E,y;THP:es

EFinpx (y:T);P:es

(Proc Split) (where x ¢ fn(es) and y ¢ fn(es))
EFM:(xT,U) ExT,yyUFP:es
EFsplitMis (x:T,y:U);P:es

(Proc Match) (where y ¢ fn(es))
EFM:(xT,U) EFN:T E,yU{Xx<N}FP:es
E F match M is (N,y:U{x<N});P :es

(Proc Case) (where x ¢ fn(es) and y ¢ fn(fs))
EFM:T+U E,xTHP:es E,yUFQ:fs

EFcase Misinl (x:T) Pisinr (y:U) Q:esV fs

(Proc Decrypt) (where x ¢ fn(es))
EFM:Un EFy:Key(T) E,xTHFP:es

E I decrypt M is {x:T }y;P : es

(Proc Cast) (where x ¢ fn(es))
EFM:Un E,x:Nonce fs-P:es

E I cast M is (x:Nonce fs); P : es+ fs

(Proc Check)
EFM:Un EFN:Noncefs EFRP:es

E + check M is N; P : (es— fs) + [check M]

We discussed informal versions of the rules (Proc Input),
(Proc Output), (Proc Cast), and (Proc Check) previously.

Rule (Proc Split) is a standard rule to allow a pair M :
(x:T,U) to be split into two components named x:T and
y:U, where x may occur free in the type U. The condi-
tions x ¢ fn(es) and y ¢ fn(es) prevent the bound variables
x and y from appearing out of scope in the effect es. In the
rule (Proc Match), the message N : T is meant to match the
first component of the pair M : (x:T,U), and the variable
y:U gets bound to the second component. Again, the con-
dition y ¢ fn(es) prevents y from appearing out of scope in
es. The rule (Proc Case) is a standard rule for checking in-
spections of tagged unions. In the rule (Proc Decrypt), the
ciphertext M is of untrusted type, Un, the key y is of type
Key(T), and the plaintext, bound to x, has type T. The con-
dition x ¢ fn(es) prevents x from appearing out of scope in
the effect es.

Rulesfor Processes M anipulating Untrusted Types:

I
(Proc Output Un)
EFM:Un EFN:Un

EFoutMN:[]

(Proc Input Un) (where y ¢ fn(es))
EFM:Un E,y:UnkP:es

EFinp M (y:Un);P:es

(Proc Split Un) (where x ¢ fn(es) and y ¢ fn(es))
EFM:Un E,xUn,y:UnkP:es

E | split M is (x:Un,y:Un);P : es

(Proc Match Un) (where y ¢ fn(es))
EFM:Un EFN:Un E,y:UnkP:es

E F match M is (N,y:Un);P : es

(Proc Case Un) (where x ¢ fn(es) and y ¢ fn(fs))
EFM:Un E,xUnkP:es E,y:UnkQ:fs

E I case M isinl (x:Un) Pisinr (y:Un) Q:esV fs

(Proc Decrypt Un) (where x ¢ fn(es))
EFM:Un EFN:Un E,xUnkP:es

E I decrypt M is {x:Un}n;P : es

(Proc Cast Un) (where x ¢ fn(es))
EFM:Un E,xUnkP:es

E F cast M is (x:Un);P : es

(Proc Check Un)
EFM:Un EFN:Un EFRP:es

E F check MisN;P:es

These rules are similar to those in the previous table in how
they compute effects of processes, but differ in that all mes-
sages are of untrusted type. These rules are needed to type-
check opponents.

Our rules for processes conform to the principle, stated
in Section 4.1, that any opponent can be typed if all its free
variables are assigned the type Un.

Lemma 2 (Opponent Typability) If O is an opponent,
that is, an untyped, assertion-free process, and fn(O) C
{X1,...,xn} then xz:Un,... . Xp:Un F O : [].

The following theorem, proved in the full version of this
paper, says a process is safe if it can be assigned the empty
effect.

Theorem 1 (Safety) If E+ P :[] then P is safe.

Combined, Lemma 2 (Opponent Typability) and Theorem 1
(Safety) establish our main result, that our type and effect
system guarantees robust safety.

Theorem 2 (Robust Safety) If x1:Un,...,xp:Un = P : []
then P is robustly safe.

4.4 Typing the Example

Our example FixedSystem(net) from Section 3.3 uses a
nonce handshake over the public channel net to transfer
messages from the sender to the receiver. Here we show
how to prove the example’s correspondence assertions by
choosing suitable types and adding a cast process.

Any public channel should be accessible to the opponent,
S0 we assign net the untrusted type Un, and since nonce is
sent on these channels, they too must have the untrusted
type. We fix some arbitrary type Msg and assume each msg
is of this type. To type-check the correspondence between
begin- and end-assertions made by the sender and receiver,
respectively, we add a cast process to the sender to cast the
nonce into the type Nonce [end msg]. Therefore, the shared
key has type Key(msg:Msg,nonce:Nonce [end msg]); the
first component of the ciphertext is the actual message, and
the second component is a nonce proving it is safe to assert
an end msg event.

Therefore, we introduce the types

Msg some arbitrary type

Network £ Un

MyNonce (msg) = Nonce [end msg]

MyKey £ Key(msg:Msg, nonce:MyNonce (msg))

and we type the sender as follows, where we display the
effects of bracketed subprocesses to the right.

A

TypedSender(net:Network, key:MyKey) : []
repeat
inp net (nonce:Un);
new (msg:Msg);
begin msg;
cast nonce
is (nonce’:MyNonce (msg)); ¢ [end msg] [
out net {msg, nonce’ }ygy } []

(]

11

Next, we type the receiver. Like the sender, it is effect-free,
that is, it can be assigned the empty effect.

TypedReceiver (net:Network, key:MyKey) : [] £
repeat
new (nonce:Un);
out net nonce;
inp net (ctext:Un);
decrypt ctext * 1
is {msg:Msg, nonce’:MyNonce (Mmsg) } key;

check nonce is nonce’; [check nonce]
end msg } [end msg] e

7

Since the sender and receiver are both effect-free, the whole
system is also effect-free:

TypedSystem(net:Network) : [] =
new (key:MyKey);
(TypedSender (net, key) | TypedReceiver(net, key))

By Theorem 2 (Robust Safety), it follows that
TypedSystem(net:Network) is robustly safe. This proves the
following authenticity property by typing.

Authenticity: The process TypedSystem(net) is robustly
safe.

5 Further Protocol Examples

We have applied our method to several cryptographic
protocols from the literature. We verified some protocols,
found flaws in others, but also found at least one incom-
pleteness in our method. Details are in an appendix, but we
can summarise our experience as follows.

e Abadi and Gordon [3] propose a nonce-based variation
of the Wide Mouth Frog key-exchange protocol [8].
We can verify authenticity properties of Abadi and
Gordon’s protocol by typing. Abadi and Gordon prove
an equationally-specified authenticity property by con-
structing a bisimulation relation based on an elaborate
invariant; our proof of correspondence assertions by
typing took considerably less time.

e Woo and Lam [39] propose a nonce-based authenti-
cation protocol. Trying to type-check the protocol
exposes known flaws in the protocol and suggests a
known simplification [4, 5].

e Otway and Rees [32] propose another nonce-based key
exchange protocol. The nonces used by the protocol
to prove freshness are kept secret; hence the proto-
col does not fit the idiom that can be checked by our
type system. Still, we can type-check a more efficient
version of the protocol suggested by Abadi and Need-
ham [4]. The typing suggests a further simplification.

In each case, there is a spi-calculus representation of the
protocol in which there are arbitrarily many participant
principals and arbitrarily many sessions.

6 Summary and Conclusion

To summarise, we reviewed the spi-calculus, a formal-
ism for precisely describing the behaviour of security proto-
cols based on cryptography. We embedded Woo and Lam’s
correspondence assertions in spi as a way of specifying au-
thenticity properties. We devised a new type and effect
system that proves authenticity properties, simply by type-
checking.

To conclude, the examples in this paper, together with
others we have investigated, suggest that this is a promising
technique for checking protocols, since it requires little hu-
man effort to type a protocol, and the types of protocol data
document how the protocol works.

Acknowledgements

Thanks to Martin Abadi, Gavin Lowe, Dusko Pavlovic,
Simon Peyton Jones, Benjamin Pierce, Corin Pitcher, James
Riely, and Andre Scedrov for discussions about this work.
The anonymous referees for the IEEE Computer Secu-
rity Foundations Workshop provided invaluable feedback.
C.A.R. Hoare suggested several improvements to a draft.
Alan Jeffrey was supported in part by Microsoft Research
during some of the time we worked on this paper.

A Protocol Examples

Abbreviations Used in Examples

In these examples, we shall make use of the following syn-
tax sugar:

e Dependent record types (X1:T1,.--,Xn:Tn), rather than
just pairs.

e Tagged union types (€1(T1) | --- | €n(Tn)) rather than
just binary choice T +U.

We show in the full version of this paper that these con-
structs can be derived from our base language.

For reasons of length, we will not provide full spi im-
plementations of each of these protocols, and instead just
provide the typings. In each case it is fairly routine to re-
construct the spi code. The full specifications are provided
in the full version of this paper.

12

A.1 Abadi and Gordon’s Variant of Wide Mouth
Frog

The original paper on the spi-calculus [3] includes a
lengthy proof of authenticity and secrecy properties for a
variation of the Wide Mouth Frog key distribution proto-
col [8] based on nonce handshakes instead of timestamps.
In this section, we show how to type-check this protocol.

To begin with we look at an unsafe version of the pro-
tocol, to illustrate how attempting to type-check a protocol
may expose flaws. This broken protocol consists of a sender
(Alice), a receiver (Bob) and a server (Sam). Alice wishes
to contact Bob, and asks Sam to establish her credentials:

Event 1 Abegins “Asending B key Kag”
Messagel A —S A

Message2 S— A Ns

Message3 A — S A,{B,Kag,Ns}k,s
Message4 S—B 0O

Message5 B —S N

Message6 S—B {A,Kag,NB}Kgs

Event 2 B ends “A sending B key Kag”

(For the sake of readability, we use “A sending B key Kag”
as a shorthand for the message (A,B,Kag).)

This protocol can be compromised by an intruder | im-
personating Sam, if Alice acts both as a sender and a re-
ceiver:

Eventa.l A begins “A sending B key Kag”
Message a.1 A — | A

Message .4 | —A 0

Message B.5 A—1 Na

Message a.2 | —A Na

Message 0.3 A — | A, {B,Kag,Na}kys
Message .6 | — A {B,Kag,Na}kas

Event 3.2 Aends “Bsending A key Kag”

At this point, Alice believes that she has been contacted by
Bob, when in fact she has been contacted by the intruder.

We can easily express this protocol in the spi-calculus,
and use begin M and end M statements to specify the de-
sired correspondence property. Then we can try to define
the types appropriately. For most of the types, it is fairly
routine:

Network = Un
Princ = Un
SKey £ Key(Msg)
WMFNonce(alice, bob, sKey) =
Nonce [end “alice sending bob key sKey”]
WMPFKey(princ) = Key(WMFMsg(princ))

The problem comes when we try to give a definition for
WMFMsg, which is the type of the plaintext of messages

used in the WMF protocol. In order to type-check Message
3, we require:

WMFMsg(alice) =
(bob:Princ, sKey:SKey, nonce:WMFNonce(alice, bob, sKey))

and in order to type-check Message 6, we require:

WMFMsg(bob) =
(alice:Princ, sKey:SKey, nonce:WMFNonce(alice, bob, sKey))

Unfortunately, these requirements are inconsistent, since
the roles of alice and bob have been swapped. This is the
root of the attack on this broken WMF, which relies on the
fact that the key for alice is being used in two incompatible
ways, depending on whether alice is acting as the sender or
the receiver.

This is an example of a type-flaw attack [22] and may be
solved by the standard solution of adding tag information
to messages. This is akin to the use of tagged union types
in type-safe languages like ML or Haskell. In this case, we
have the type for Message 3 of the protocol:

WMFMsg,(alice) 2
(bob:Princ, sKey:SKey, nonce:WMFNonce(alice, bob, sKey))

and the type for Message 6:

WMFMsgg(bob) =
(alice:Princ, sKey:SKey, nonce:WMFNonce(alice, bob, sKey))

and we can define WMFMsg(princ) as the tagged union of
these two types:

WMFMsg(princ) =
(msg3(WMFMsgs(princ)) | msgg(WMFMsgg(princ)))

We can then check that the safe versions of the principals
are effect-free. Applying the results of this paper, we get:

e The Wide Mouth Frog protocol is effect-free, and
hence robustly safe.

We have shown the Wide Mouth Frog protocol to satisfy
this particular safety property for an arbitrary humber of
principals, sessions, and in the presence of an arbitrary at-
tacker.

The use of tagged unions to represent the different mes-
sage types which are sent in a protocol is a common tech-
nique, and corresponds to the final phrase of Principle 10 of
Abadi and Needham [4]:

If an encoding is used to present the meaning
of a message, then it should be possible to tell
which encoding is being used. In the common
case where the encoding is protocol dependent, it

13

should be possible to deduce that the message be-
longs to this protocol, and in fact to a particular
run of the protocol, and to know its number in the
protocol.

Many protocols use ad hoc techniques such as increment-
ing timestamps, or juggling the order of participant names
to encode message numbers implicitly. Our type system
makes these ad hoc solutions formal, as an instance of the
standard technique of using tagged union types.

A.2 Woo and Lam’s Authentication Protocol

Woo and Lam [39] propose a server-based symmetric-
key authentication protocol. Alice wishes to authenticate
herself to Bob, and does so by responding to a nonce chal-
lenge with a message which Bob can ask the trusted server
to decrypt:

Event 1 Abegins “A authenticates to B”
Messagel A—B: A

Message2 B—A: Np

Message3 A—B: {msg3(NB)}kas

Message 4 B—S: {msgy(A, {Msga(Na)}ius) tes
Message5 S—B: {msgs(NB)}kgs

Event 2 Bends “A authenticates to B”

(In the original protocol, the messages were untagged, but
we have provided tags for the reasons discussed in the pre-
vious section.) Abadi and Needham [4] demonstrate that
this protocol is not robustly safe, because message 5 does
not mention A.

The possibility of this attack is made clear when we try
to type-check the protocol. We have types:

WLKey(princ) = Key((WLMsg(princ)))

WLMsg(princ) = (msgz(WLMsgs(princ)) |
msg,(WLMsgy(princ)) |
msgs(WLMsgs(princ)))

WLMsgs(alice) = (nonce:WLNonce(alice, bob))

WLMsg,(bob) £ (alice:Princ, ctext:Un)

WLMsgs(bob) £ (nonce:WLNonce(alice, bob))

WLNonce(alice,bob) = Nonce [end “alice authenticates to bob”]

WLLookup = (princ:Princ) — WLKey(princ)

At this point it becomes clear that the protocol is not well-
typed, since the types are not well-formed: WLMsg(alice)
contains an unbound occurrence of bob and WLMsg 5(bob)
contains an unbound occurrence of alice. Abadi and Need-
ham observe that Message 5 should be changed to:

Message 5> S—B:

{msgS(A, NB)}KBS

and Anderson and Needham [5] observe that Message 3
should be changed to:

Message 3> A—B:

{mSQS(BaNB)}KAS

Finally, our type system makes clear that the encryption of
message 4 is unnecessary, since all the data is of type Un,
and so can safely be sent in plaintext, as suggested by Abadi
and Needham [4]:

B—S:

Message 4’ A,B,{msg3(B,Ng) }ks

The resulting protocol can be type-checked, using types:

WLMsg(princ) £
(msg3(WLMsgs(princ)) | msgs(WLMsgs(princ)))
WLMsgs(alice) £
(bob:Princ,nonce:WLNonce(alice, bab))
WLMsgs(bob) =
(alice:Princ,nonce:WLNonce(alice, bob))

It is routine to rewrite this protocol in the syntax of the spi-
calculus. We can then apply the results of this paper to get:

e The Woo and Lam protocol is effect-free, and hence
robustly safe.

This example has shown that in our type system, it is impor-
tant that all messages contain the names of the principals in-
volved. Our type system enforces Principle 3 of Abadi and
Needham [4]:

If the identity of a principal is essential to the
meaning of a message, it is prudent to mention
the principal’s name explicitly in the message.

This requirement is enforced through the usual requirement
for variables in a program to be correctly scoped: viola-
tions of Principle 3 may be caught because a variable is used
when it is not in scope.

A.3 Otway and Rees’s Key Exchange Protocol

Otway and Rees [32] propose a server-based symmetric-
key key exchange protocol. We cannot verify their protocol
using the type system of this paper, even though (as far as
we are aware) it is correct, since it relies on using nonces
to stand for principal names, which are kept secret, as well
as for freshness. Still, it may be possible to adapt our type
system to deal with this use of nonces; we leave this for
future work.

Abadi and Needham [4] propose a simplification of the

14

protocol, which we verify here:

Messagel A—B
Message2 B — S

A,B.Na
A7 B: NA; Np

Event 1 S begins “initiator A shares Kag with B”

Event 2 S begins “responder B shares Kag with A”

Message3 S—B {msg4(A, B, Kag,Na) } ks,
{msg3(Aa BJ KAB; NB) }KBS

Event 3 Bends “responder B shares Kag with A”

Message4 B—A {msgy(A,B,Kas,Na) bkss

Event 4 Aends “initiator A shares Kag with B”

We can allocate types to this protocol:

ORKey(princ) =
Key((msgs(ORMsgs(princ)) | msgs(ORMsgy(princ))))
ORMsgs(bob) £
(alice:Princ,bob’:Princ, sKey:SKey,
nonce:ORNonces(alice,bob, sKey))
ORMsg,(alice) =
(alice’:Princ, bob:Princ, sKey:SKey,
nonce:ORNoncesz(alice,bob, sKey))
ORNonces(alice, bob, sKey) =
Nonce [end “responder bob shares sKey with alice”]

ORNonceg(alice, bob, sKey) =
Nonce [end “initiator alice shares sKey with bob™]

ORLookup =
(princ:Princ) — ORKey(princ)

We can then apply the techniques of this paper to show
that this modified protocol is robustly safe. This typing
makes it clear that Bob’s name is not required in Message
3 and Alice’s name is not required in Message 4, and these
names could be dropped without compromising the corre-
spondence assertions.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the
ACM, 46(5):749-786, September 1999.

M. Abadi and B. Blanchet. Secrecy types for asymmetric communi-
cation. In Foundations of Software Science and Computation Struc-
tures (FoSSaCs 2001), volume 2030 of Lectures Notes in Computer
Science, pages 25-41. Springer, 2001.

M. Abadi and A.D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Information and Computation, 148:1-70, 1999.

[2]

[3
[4] M. Abadi and R. Needham. Prudent engineering practice for cryp-
tographic protocols. |EEE Transactions on Software Engineering,
22(1):6-15, 1996.

R. Anderson and R. Needham. Programming Satan’s computer. In
J. van Leeuwen, editor, Computer Science Today: Recent Trends and
Developments, volume 1000 of Lectures Notes in Computer Science,
pages 426-440. Springer, 1995.

M. Bellare and P. Rogaway. Entity authentication and key distribu-
tion. In Advances in Cryptology: CRYPTO’93, volume 773 of Lec-
tures Notes in Computer Science, pages 232-249. Springer, 1994,

[5]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. Bolignano. An approach to the formal verification of crypto-
graphic protocols. In Third ACM Conference on Computer and Com-
munications Security, pages 106-118, 1996.

M. Burrows, M. Abadi, and R.M. Needham. A logic of authentica-

tion. Proceedings of the Royal Society of London A, 426:233-271,
1989.

E. Cohen. TAPS: A first-order verifier for cryptographic protocols.

In 13th Computer Security Foundations Workshop, pages 144-158.
IEEE Computer Society Press, 2000.

S. Dal Zilio and A.D. Gordon. Region analysis and a T-calculus with
groups. In Mathematical Foundations of Computer Science 2000
(MFCS2000), volume 1893 of Lectures Notes in Computer Science,
pages 1-21. Springer, 2000.

D. Dolev and A.C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 1T-29(2):198-208, 1983.

A. Durante, R. Focardi, and R. Gorrieri. A compiler for analysing
cryptographic protocols. ACM Transactions on Software Engineer-
ing and Methodology, 2000. To appear.

R. Focardi, R. Gorrieri, and F. Martinelli. Message authentication
through non-interference. In International Conference on Algebraic
Methodology And Software Technology (AMAST2000), volume 1816
of Lectures Notes in Computer Science, pages 258-272. Springer,
2000.

D.K. Gifford and J.M. Lucassen. Integrating functional and impera-
tive programming. In ACM Conference on Lisp and Functional Pro-
gramming, pages 28-38, 1986.

D. Gollmann. What do we mean by entity authentication? In 1995
IEEE Computer Society Symposium on Research in Security and Pri-
vacy, pages 46-54, 1995.

L. Gong, R. Needham, and R. Yahalom. Reasoning about beliefs in
cryptographic protocols. In 1990 IEEE Computer Society Symposium
on Research in Security and Privacy, 1990.

A.D. Gordon and A. Jeffrey. Typing correspondence assertions for
communication protocols. In Mathematical Foundations of Pro-
gramming Semantics 17, Electronic Notes in Theoretical Computer
Science. Elsevier, 2001. To appear.

A.D. Gordon and D. Syme. Typing a multi-language intermediate
code. In 28th ACM Symposium on Principles of Programming Lan-
guages (POPL’01), pages 248-260, 2001.

O. Grumberg and D.E. Long. Model checking and modular verifica-
tion. ACM Transactions on Programming Languages and Systems,
16(3):843-871, 1994.

J.D. Guttman and F.J. Thayer Fabrega. Authentication tests. In 2000
IEEE Computer Society Symposium on Research in Security and Pri-
vacy, 2000.

J. Heather. ‘Oh! ...lIs it really you?” Using rank functions to verify
authentication protocols. PhD thesis, Royal Holloway, University of
London, 2000.

J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw
attacks on security protocols. In 13th Computer Security Foundations
Workshop, pages 255-268. IEEE Computer Society Press, 2000.

J. Heather and S. Schneider. Towards automatic verification of au-
thentication protocols on an unbounded network. In 13th Computer
Security Foundations Workshop, pages 132-143. IEEE Computer
Society Press, 2000.

M. Hennessy and J. Riely. Resource access control in systems of
mobile agents. In 3rd International Workshop on High-Level Con-
current Languages, volume 16(3) of Electronic Notes in Theoretical
Computer Science. Elsevier, 1998.

T. Lindholm and F. Yellin. The Java™ Virtual Machine Specifica-
tion. Addison-Wesley, 1997.

15

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

G. Lowe. A hierarchy of authentication specifications. In 10th Com-
puter Security Foundations Workshop, pages 31-43. IEEE Computer
Society Press, 1995.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using CSP and FDR. In T. Margaria and B. Steffen, editors,
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96), volume 1055 of Lectures Notes in Computer Science,
pages 147-166. Springer, 1996.

J.M. Lucassen. Types and effects, towards the integration of func-
tional and imperative programming. PhD thesis, MIT, 1987. Avail-
able as Technical Report MIT/LCS/TR-408, MIT Laboratory for
Computer Science.

W. Marrero, E.M. Clarke, and S. Jha. Model checking for security
protocols. In DIMACS Workshop on Design and Formal Verification
of Security Protocols, 1997. Preliminary version appears as Techni-
cal Report TR-CMU-CS-97-139, Carnegie Mellon University, May
1997.

R. Milner. Communicating and Mobile Systems: the T=Calculus.
Cambridge University Press, 1999.

G. Necula. Proof-carrying code. In 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 106—
119. ACM Press, 1997.

D. Otway and O. Rees. Efficient and timely “mutual authentication”.
Operating Systems Review, 21(1):8-10, 1987.

L.C. Paulson. The inductive approach to verifying cryptographic pro-
tocols. Journal of Computer Security, 6:85-128, 1998.

B. Pierce and E. Sumii. Relating cryptography and polymorphism.
Available from the authors, 2000.

S.A. Schneider. Verifying authentication protocols in CSP. IEEE
Transactions on Software Engineering, 24(9), September 1998.

C. Skalka and S. Smith. Static enforcement of security with types. In
P. Wadler, editor, 2000 ACM International Conference on Functional
Programming, pages 34-45, 2000.

D.X. Song. Athena: a new efficient automatic checker for security
protocol analysis. In 12th Computer Security Foundations Workshop.
IEEE Computer Society Press, 1999.

F.J. Thayer Fabrega, J.C. Herzog, and J.D. Guttman. Strand spaces:
Why is a security protocol correct? In 1998 IEEE Computer Society
Symposium on Research in Security and Privacy, 1998.

T.Y.C. Woo and S.S. Lam. Authentication for distributed systems.
Computer, 25(1):39-52, 1992.

T.Y.C. Woo and S.S. Lam. A semantic model for authentication pro-
tocols. In IEEE Symposium on Security and Privacy, pages 178-194,
1993.

