A fully abstract semantics
for concurrent graph reduction

ALAN JEFFREY

ABSTRACT. This paper presents a fully abstract semantics for a variant of the untyped A-calculus
with recursive declarations. Wefirst present asummary of existing work on full abstraction for theun-
typed A-calculus, concentrating on ABRAMSKY and ONG’swork on the lazy A-calculus. ABRAMSKY
and ONG'swork is based on leftmost outermost reduction without sharing. Thisisnotably inefficient,
and many implementations model sharing by reducing syntax graphs rather than syntax trees. Here
we present aconcurrent graph reduction algorithm for the A-calculus with recursive declarations, ina
stylesimilar to BERRY and BouDOL'sChemical Abstract Machine. Weadapt ABRAMSKY and ONG’S
techniques, and present a program logic and denotational semantics for the A-calculus with recursive
declarations, and show that the three semantics are equivalent.

Contents

1 Introduction 1
11 Fullabstraction. . . . . . . ... e 1
12 Concurrentgraphreduction . . . . . . .. ... ... Lo 4
13 Full abstractionand graphreduction . . . . . . . ... ... L L. 9

2 Treereduction 13
21 TheA-cadculuswithP . . . .. .. .. . 13
22 Operational SEmantics . . . . . . . ..o e e 14
23 Denotational semantics. . . . . . ... ..l 15
24 ProgramlogiC . . . ... e 17
25 Categorica presentationof D . . . . . ... Lo 20
26 Logical presentationof D . . . . ... oL 26
27 Fulabstraction. . . . . . ... 32

3 Graph reduction 36
3.1 TheA-calculuswith recursive declarations . . . . . .. .. .. .. ... ... .. 36
3.2 Operational semantics . . . . . . . ... 41
3.3 Denotational semantics. . . . . . . .. e 52
34 Programlogic . . . .. .. 53
3.5 Operationa properties: structural equivalence . . . . . .. .. .. ... 57
3.6 Operationd properties: confluence . . . . . . . .. ... oo oL 59
3.7 Operationa properties: independencefromtagging . . . . .. .. ... ... .. 72
3.8 Operationd properties: referential transparency . . . . . . . . . ... ... .. 88
3.9 Denotational properties . . . . .. L. e 93
3.10 Logical properites . . . . . ... 101
311 Fullabstraction. . . . . . . .. 108

4 Conclusions 117
41 Relatedwork . . . . .. 117
42 Futurework . . . ... L e e e 122

Index of authors 128

Index of definitions

A fully abstract semantics for concurrent graph reduction
Alan Jeffrey

School of Cognitive and Computing Sciences
University of Sussex

Falmer

Brighton

BN19QH

UK

adanje@cogs.susx.ac.uk
Computer Science Report 12/93

Thanksto Lennart Augustsson, Matthew Hennessy, Mark Jones,
John Launchbury, Edmund Robinson and Allen Stoughton
for many useful comments.

When used as the name of a programming language,
Mirandais a trademark of Research Software Limited

Copyright © 1993-1994 Alan Jeffrey
Thiswork has been funded by SERC project GR/H 16537.

129



1 Introduction

This paper is about the relationship between two fields of computer science: full
abstraction, and concurrent graph reduction. Full abstractionisthe study of relat-
ing denotational and operational semantics. Concurrent graph reductionis an ef-
ficient parallel implementation technique for non-strict functional programming
languages.

In this paper we apply the techniques of ABRAMSKY (1989) and ONG (1988)
to present afully abstract denotational semanticsfor the concurrent graph reduc-
tion algorithm given in PEY TON JONES's textbook (1987).

In doing so, we use methods from full abstraction, compiler implementation,
and concurrency theory.

1.1 Full abstraction

Full abstraction, originally defined by MILNER (1977), explores the relationship
between an operational semanticsof programminglanguagesanditsmodels. The
operational view of a programming language s given by:

e A set of syntacticterms T, and a subset of terms called programs. The pro-
grams are then given an operational semantics.

o A set of teststogether with an operational definition of when aterm passes a
test. Thisinducesthe testing preorder on termst C u iff every test t passes
is passed by u.

A model of such an operational view is:

o A partialy ordered set (D, <).
e A function [[-] : T — D. Thisinduces the denotational preorder on terms
t Cp uiff [t] < [u].
We can then characterize such models:
e Discorrectifft Couimpliest Cp u.
e Discompleteifft Cp uimpliest Co u.
¢ Disfullyabstract iff it is correct and complete.

For example:

e In PLOTKIN’S (1977) analysis of the typed functional language of Program-
ming Computable Functions (PCF):

o A termis aPCF term, and a program is a closed term. The operational
semanticsis given as areductionst — u between programs.

o A testisaclosing context C[-] of type Bool or Int, together with aconstant
v. A termt passes C[ ] iff CJt] evaluatesto v.

Thisisthen given adenotational semanticsintermsof completepartial orders
and continuous functions. PLOTKIN showed that this denotational semantics
is correct but not complete, and showed that this denotational semantics is
comlete for an extension of PCF with a ‘parallel conditional’ term pcond of
type Bool — Int — Int — Int with the semantics:

[ulo if [tJo=0or [u]c = [V]o
[pcondtuv]o = { [Vlo if [tfjo=1or [ujo = [Vv]o
1 otherwise

If such aterm is added to PCF (and given an appropriate operational seman-
tics) then the semanticsis complete.

InDE NICOLA’S(1985) analysis of HOARE’s (1985) Communicating Sequen-
tial Processes (CSP):

o A termisacsP process, and aprogram is a closed process. The opera-
tional semanticsisgivenasalabelled transition system between programs
P -2 Q, inthe style of MILNER (1989).

o A test is aclosed subgtitution p, a program T, and a specia action w.
A process P passes (p, T, w) iff every maximal computation of P[p] || T
passes through a state P || T’ where T’ can perform w. Thisis HEN-
NESSY's (1988) must-testing equivalence.

Thisisthen given a denotational semanticsin avariant of BROOKES, HOARE
and ROSCOE’s (1984) failures—divergences model. DE NICOLA showed that
this denotational semanticsisfully abstract.

In ABRAMSKY (1989) and ONG’s (1988) analysis of the untyped A-calculus:

o A termisanuntyped A-calculusterm, and aprogramisaclosed term. The
operational semantics is given as leftmost-outermost reduction between
programs M — N.

o Atestisaclosing context C[-]. A term M passesC[-] iff C[M] evaluatesto
weak head normal form, that isa A-term Aw. N.

This is then given a denotational semantics in terms of complete partial or-
ders and continuous functions. ABRAMSKY and ONG showed that this de-
notational semanticsis correct but not complete, and that the completeness
problem can again be reduced to definability, in that there is no untyped A-
calculus ' parallel convergence test’ term P with the semantics:

_[1 ifXlo=[yo=1
[PyZo= { [Z]o otherwise
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and that if such atermisadded (and given an appropriate operational seman-
tics) then the semanticsis complete.

Thispaper isbased on ABRAMSKY and ONG'swork, which is surveyed in Chap-
ter 2. The rest of this section will summarize that Chapter.
Given aninfinite set V, ranged over by x, y and z, the untyped A-calculuswith
P (Ap) isdefined:
M:=Xx|MM |AX.M|PMN

This can be given an operational semanticsM — N with leftmost-outermost re-
duction, that is reduction is allowed on the left of an application, but not on the
right, or inside aA. We then define M} iff M reduces to weak head normal form
(whnf), thatisM —* Ax. N. Our notion of test is then a closing context C[-], and
M passes C[-] iff C[M]{}. Thisinducesthe testing preorder:

MCoN iff C[MJ{impliesC[N]{ for any closing C

This preorder isbased on MORRIS's (1968) extensional preorder, but is based on
leftmost-outermost reduction to whnf rather than full reduction to normal form,
which was studied by BARENDREGT (1984).

The denotational semanticsfor Ap isgiven in theinitial domain isomorphic
toitsown lifted continuous function space:

D~ (D—D),

We can then give a semantics [M] o in D, where 0 : V — D is an environment
assigning a meaning to any free variablesin M. This induces the denotational
preorder:

MCpN iff [M] <[N]
To link the operational and denotational semantics, we present athird semantics,
which can be used as a ‘ stepping stone’. Thisisin the form of a program logic,
with the language of propositions (or COPPO types (BARANDREGT et al., 1983))
@ defined:
Pi=w[PNP[ 09—

We can give an operational characterization of when a closed term satisfies a
proposition |= M : ¢, similar to the operational characterization of HENNESSY—
MILNER (1980) logic:

e =M:wforany M.

e =EM:oAYiff EM:@and =N .

o =EM:o—yiff MyandVN.(=N:@) = (= MN:U).
For example, if Q isaterm which never reaches whnf then:

o Q satisfiesw

o AX.Q satisfies w— w.
e A\X. X satisfiesevery o— @.
o A\xy.xsatisfies every g— (w— ).

This can be generalized to open terms by defining a context " to be alist of the
formxq : @1, ..., % : @, for distinct x;. Then:

¢ X1 I@,.... X Gh |=M:@iff [=M[My/Xq,...,Mn/Xn] : @Whenever |=M; : @.
We can give two other characterizations of the logic:

e A denotational semantics[-] : ®— D.
e A proof syseml =M : @

We can then show that the problem of full abstractionis one of showing that the
three presentations of the logic agree, that is.

Fr=M:o iff TEM:@ iff [@] <[M]]r]

To prove this, we show that the program logi ¢ characterizesthe compact elements
of D, so aiscompact iff 3@. [¢] = a. From thiswe can show:

FEM:o iff [ <[M][]
We can then use some operational reasoning to show:
rEM:@ implies TI=M:@ implies [@] <[M][r]
The presentation in Chapter 2 follows ABRAMSKY and ONG quite closely, al-
though the proofs are self-contained. The main differences are:

¢ We concentrate on the ‘small step’ operational semanticsM — N rather than
the ‘big step’ semantics M}, since this agrees with our treatment of graph
reduction in Chapter 3.

¢ We make no use of applicative bismulation.

e The proofs are more concrete, and do not use all of the abstract machinery of
ABRAMSKY’s (1991) domain theoryin logical form. The interested reader is
highly encouraged to read that paper for less ad hoc proofs.

We shall follow the same outline in Chapter 3 when we prove full abstraction for
concurrent graph reduction.

1.2 Concurrent graph reduction

Graph reductionisan efficient implementati ontechnique for non-strict functional
programming languages, such as AUGUSTSSON’s (1984) Lazy ML, FAIRBURN'S
(1982) Ponder, JONES's (1992) Gofer, TURNER'’S (1985) Miranda, and Haskell
(HUDAK et al., 1992).



It was developed by WADSWORTH (1971) as an implementation of leftmost-
outermost reduction. He observed that |eftmost-outermost reduction can take ex-
ponential time to evaluate an expression, dueto loss of sharing information. For
example, if we define;

I=Ax.x A=M.xx MN=N  M"IN=M(M"N)
Then the evaluation of A™?1| —* | is.
A = (AMD(AM]) =22 |(AM) — AT =22
Thus, A"l takes 2" — 2 reductions to terminate. This exponential blow-up is
caused by copying A"l in the reduction A™?1| — (A" [)(A™I), and can clearly be

seen if we draw the syntax trees for this reduction, where ‘@’ denotes function
application:

! ! |
@ _ (@ 2. (@ b _aad
®

This inefficiency is caused by the implementation of (3-reduction with substitu-
tion. When we reduce (Aw. M)N — M[N/w], we make a separate copy of N for
each occurrence of win M, and each copy then hasto be reduced separately. We
can remove this inefficiency if, rather than copying terms, we copy pointers to
terms, that iswe reduce syntax graphs rather than syntax trees. For example, the
graph reduction of A" is, where ‘[’ denotes a pointer or indirection node:

}

— @ (Graph building)
& @)
{
— @\ (@-updating)
© @
{
—5n @\ (Induction)
® O
5

— @ (@-updating)

® O

— d) (O-updating)
— é (Garbage collection)

These steps are:

e Graph building, where we expand the definition of A™1| and turn it into a
graph.

e Application updating, (or B-reduction) where we apply the function A.

e By induction, we evaluate A"l to | in 5n steps.

¢ Application updating, where we apply the function| to produce anindirection
node.

¢ Indirection updating, since the indirection node points to a node already in
whnf, we can copy it.

e Garbage collection, where we remove any unwanted nodes.

Since each step of a graph reduction involves a small number of nodes in the
graph, thereis afine grain of granularity and thus much scope for concurrency.
In our simplified view of concurrent graph reduction, we will add aflag to each
node of the graph indicating whether it is currently under evaluation. Thus each
node s either of the form:

¢ M representing atagged node which is being eval uated.
¢ ?M representing an untagged node which is not.

For example, the reduction of A™+1| carried out by one processor is:

!

) (Graph building)



{
— (@-updating)
@)
()

— =S (Spine traversal)
¢ @)

—6n @\ (Induction)
¢ (D

@ (@-updating)
¢ (D

- @ (O-updating)
O,

- é (Garbage collection)

The new reductionis:
e Spinetraversal, where we tag an untagged node that is needed.

We now have anumber of possible graphsfor each A-cal culusterm, depending on
which nodes we wish to tag. There are (at least) two approaches to determining
how many nodes should be tagged:

e Sequential reduction is achieved by initialy only tagging one node in the
graph, and not allowing graph building to introduce new tagged nodes. This
means that (apart from garbage collection) there will only be one reduction
possible at any one moment, and so we are using the tagging information only
to record the spine stack of the graph (PEYTON JONES, 1987, Ch. 11).

¢ Concurrent reduction isachieved by initially tagging anumber of nodesinthe
graph. These nodes can then be evaluated concurrently, and so we are using
thetagging information to record the blocking information of the graph (PEY-
TON JONES, 1987, Ch. 24).

If we decide to use concurrent reduction, there are (at least) two approcahes to
determining which nodes should be tagged:

e Strictness analysis (PEYTON JONES, 1987, Ch. 22) is an automated way of
determining which nodesinagraph are guaranteed to be used. Any such node
can always be tagged. Strictness analysisisin general undecidable, so any
practical algorithm will fail to tag some nodes, but any nodes that are tagged
are guaranteed to be used.

e Program annotation (PEY TON JONES, 1987, Ch. 24) placesthe burden of de-
ciding which nodes to tag on the programmer. For example, thisisthe ap-
proach taken in Part 3 where we allow two forms of recursive declaration:
tagged recx:=!Min N and untagged recx := ?M in N. Thisis obvioudy the
simplest approach for the compiler writer (and semanticist!) to take.

Aswell as acyclic graphs, we can allow cyclic graphs, which allow for more effi-
cient recursive programs. For example, rather than implement the fixed point of
M asY M, we could use the cyclic graph:

O
()
o

However, this presents a semantic problem not present in the A-calculus, since'Y |
diverges, whereas the cyclic fixed point deadl ocks since:

Such terms are called black holes, and one design decision in a semantics is
whether or not to identify divergence and deadlock. Here, we will identify them,
although in the author’s (1993) semantics, they were distinguished.

Another semantic problem caused by concurrent graph reductionisthat it is



not confluent (or Church—Rosser), since by spine traversal:

o
&

e

but thereis no graph G such that:
Y

HP (2
Thisis unfortunate, since confl uence is a very useful way of proving properties

of operational semanitcs. However, we shall see in Section 3.6 that thereisare-
duction strategy for concurrent graph reduction which is confluent.

@?&

@B
@
Ga6,

and by garbage collection:

ﬁ%-
" @e

528
®

1.3 Full abstraction and graph reduction
We have now seen:

¢ A well-developed theory of fully abstract semantics.
¢ A well-developed practice of concurrent graph reduction.

However, there has been littlework on relating these. There have been a number
of proofs of correctness for graph reduction, which will be discussed further in
Chapter 4:

¢ WADSWORTH (1971) showed that graph reduction of a A-cal culus term con-
verges iff tree reduction converges. Since every tree context is a graph con-
text, this means that the testing model for graph reduction is correct for tree
reduction. However, not every graph context isatree context, and so thisdoes

not show that the testing model for graph reduction is fully abstract for tree
reduction.

e BARENDREGT et al. (1987) generalized WADSWORTH’sresult to an arbitrary
graph rewriting system. There has since been much work on relating graph
reductionto treereduction, for examplethe correctnessresults of KENNAWAY
et al. (1993a) and the other papersin sSLEePet al.’s(SLEEP et al., 1993) book.

¢ LESTER (1989) hasshown that adenotational semanticsfor thetyped A-cal cu-
lusiscorrect for the operational semantics of JOHNSSON's (1984) G-machine

e LAUNCHBURY (1993) has shown that correct semantics for graph reduction
including black holes can be given in the semanticdomain D ~ (D— D), .

e PURUSHOTHAMAN and SEAMAN (1992) have shown that a denotational se-
manticsfor PCF with sharing is correct for an operational semantics with ex-
plicit closures.

e Theauthor (1993) has shown that avariant of the semanticsgivenin Chapter 3
is correct for tree reduction.

However, there have been no proofs of full abstraction for concurrent graph re-
duction. In this paper, we will follow ABRAMSKY (1989) when he said:

Since current practiceis well-motivated by efficiency considerations and
isunlikely to be abandoned readily, it makes sense to seeif agood mod-
ified theory can be devel oped for it.

In Chapter 3 we present aformal treatment of concurrent graph reduction, based
on BERRY and BOUDOL's (1990) Chemical Abstract Machine (CHAM). Thisse-
manticsincludes:

¢ Tagged and untagged nodes.
¢ Garbage collection.
¢ Deadlocked graphs.

We also present a denotational semanticsin D ~ (D — D), in which:

¢ Whether anode istagged or not isirrelevant.
e Garbage collection is semantically unimportant.
¢ Deadlock and divergence are identified.

Wewill then apply the techniques of Chapter 2 to show that this semanticsis cor-
rect, and that by including parallel convergence nodesin the syntax, the semantics
iscomplete. Inorder to show this, we give aprogram logic and proof system sim-
ilar to ABRAMSKY and ONG'’s, and use this as a bridge between the operational
semanticsfor graph reduction and the denotational semantics.

Inorder to carry out thisproof, we have to show anumber of subsidiary results
about concurrent graph reduction:

10



e Garbage collection is semantically unimportant, so a graph can converge iff
it can converge without garbage collecting. One would expect thisto be true,
since garbage collection is introduced only because of memory limitations.

e Tagging issemantically unimportant, so a graph can converge irrespective of
whether its nodes are tagged or not. In particular, this means that concurrent
evaluation is semantically equivalent to sequential evaluation.

o Referential transparency, which means that it is semantically unimportant if
agraph contains a copy of anode, or a pointer to a node.

There are anumber of applicationsfor afully abstract semantics:

VERIFYING COMPILER OPTIMIZATIONS. A number of compilersof non-strict
functional languages, notably JOHNSSON's (1984) Lazy mL compiler for the G-
machine, make use of optimizations. Many optimizers, notably peephole opti-
mizers (PEYTON JONES, 1987, Ch. 20) replace one small term with another se-
mantically equivalent, but more efficient term. If a semanticsis correct, then we
know that any such optimization will have the same operational behaviour in all
contexts.

Unfortunately, if the semanticsis not complete, then there may be valid op-
timizationsthat are not semantically equivalent, and there is atemptation for the
compilerwriter to use ad-hoc reasoning tojustify asemantically invalid optimiza-
tion, on the grounds that the semanticsistoo fine. If the semanticsis fully ab-
stract, then such reasoning is invalid, since we can always find a context which
will distinguish inequivalent terms.

ANALYZING OTHER MODELS. Given acorrect model, we know that any finer
model must also be correct. For example, we might extend a denotational model
to include sharing or strictness analysis, and we know that the resulting model
will still be correct.

Similarly, given acompletemodel, we know that any coarser model must also
be complete. For example, MYCROFT's (1981) abstract interpretation for strict-
ness analysisisacoarser model than the standard denotational model. Thusif the
standard model is complete, then we know that the abstract interpretationisalso
complete, without having to perform any operational reasoning.

PRODUCING DISTINGUISHING FORMULAE. |f adenotational semanticshasan
equivalent program logic, we can use it to produce di stinguishing formulae. That
is, given two denotationally distinct terms, we can find alogical formula which
one satisfies and the other does not.

Such distinguishing formulae can be used in proof toolsto provide aform of
debugging: if thetool proves that two terms are different, it can report thisto the
user along with a distinguishing formula which shows why the terms are differ-
ent. Thisinformation isinvaluable when using a proof tool as part of the design

11

process, rather than as post hoc verification. Distinguishing formulae have been
used in process algebra tools such as the Concurrency WorkBench (CLEAVE-
LAND et al., 1989) and TAV (LARSEN et al., 1989).
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2 Treereduction

This Chapter presents a summary of existing work on fully abstract models
for leftmost-outermost reduction of the untyped A-calculus. It concentrates on
ABRAMSKY (1989) and ONG's (1988) work on the lazy A-calculus, but also
includes material from ABRAMSKY (1991), BARENDREGT (1984), BARAN-
DREGTet al. (1983) BouDOL (1992), PIERCE (1991) and PLOTKIN (1983).

2.1 TheA-calculuswith P

In this Chapter, we will discuss the theory developed by ABRAMSKY and ONG,
based on leftmost-outermost reduction. This is the semantic basis of the non-
strict functional languagessuch as AUGUSTSSON’s (1984) Lazy ML, FAIRBURN'S
(1982) Ponder, JONES's (1992) Gofer, TURNER’S (1985) Miranda, and Haskell
(HUDAK et al., 1992).

In the untyped A-calculus, al expressions are functions, and these functions
take functions as inputs, and return other functions. We can regard this asa pure
theory of computation, abstracted away from considerations of data.

The untyped A-calculus has three forms of expression:

o A freevariablex.
e An application MN.
e An abstraction Ax. M.

Such termsare sequential and the only form of computationis 3-reduction, where
an abstraction is applied (Ax. M)N — M[N/x]. Following PLOTKIN (1977) we
would expect that finding a fully abstract semantics will be much simpler if we
add some form of parallel computation. There are a number of possible paral-
lel combinators one can add: PLOTKIN used ‘parallel conditional’, ABRAMSKY
and ONG used ‘parallel convergence’, and BouboL (1992) used ‘parallel join'.
Wewill follow ABRAMSKY and ONG, and extend the A-calculusto the A-cal culus
with P, and add:

e A parallel convergencetest PMN.

Wewill show below that we canimplement BouDOL’s (1992) parallel join using
P. Such atest will converge to the identity function iff either of its arguments
converges. Such atest issimilar to AUGUSTSSON's (1989) oracular choice ex-
cept that AUGUSTSSON'’s choice returns aflag indicating which of its arguments
terminated, thus introducing nondeterminism. We would like to preserve deter-
minism (reflected by confluence, discussed in Section 3.6) and so we will use the
weaker ‘parallel convergence’ test. In summary:

DEFINITION. LetV beaninfinite set of variablesranged over by x, yand z. Then
Np is defined:
M:=x|MM|Ax.M | PMM

M isinweak head normal form (whnf) iff M = Ax. N.

Let fvM be the free variables of M.

A closed term (or program) hasfvM = 0.

A context C[] is a syntactic term with a number of ‘holes’ represented by -.
C[M] isCJ:] with each holefilled by M. C[-] isclosing for M if C[M] is closed.
A substitutionisafunction p : V — Ap whichisamost everywhere the iden-
tity. Let (My...Mp/X1...X,) be the substitution p such that px = M; if X=X
and px = x otherwise.

o Let M[p] be M with any free variable x replaced by px, with appropriate a-
conversion to avoid capture of free variables. |

EXAMPLES.

| = AXx. X isthe identity combinator.

K = Ax. Ay. xisthe constant combinator.

Y M = (Ax. M(xx))(Ax. M(xx)) isthe fixed point of M.

A = A\x. xxisthe diagonal combinator.

Q = AAisthe divergent combinator which never converges.

Y = (AX.Ay. xx)(Ax.Ay.xx) isthe ogre combinator which always converges.
AVX.M = Ax. PxxM isastrict(or call-by-value) abstraction.
J=Y(AX.Ay.Az. (Pyz(Aw. x(yw)(zw)))) isthe join combinator.

M =Y (AX.AVy. AVz. Aw. Xx(yw)(2w)) is the meet combinator.

A = AX.Ay.AVz.y(zX) isthe arrow combinator. |

2.2 Operational semantics

Computationin the untyped A-cal culusisrepresented by B-reductionsof theform
(AX.M)N — M[N/x], and the various operational semantics for the untyped A-
calculus differ only in where 3-reduction can take place. In the standard theory
presented by BARENDREGT (1984), B-reduction can take place anywhere in a
term, whereas in ABRAMSKY and ONG's theory, reduction can only take place
on the left of an application, and outside an abstraction. For example, |1 — |, and
1M — IM, but M(11) £ Mland Ax. (11) £ Ax.1.

The operational semanticsfor the A-calculuswith P isthat of the untyped A-
calculus, with the additionthat PMN — 1 iff M or N isinwhnf, and that reduction
isallowed inside either argument of P. Thisallows for interleaved concurrency,

14



sinceif M — M’ and N — N’ then:
PMN — PM'N
! !
PMN' — PM'N’
From this operational semantics, we can define the may testing preorder where a
testisa closing context C[-] and M passes C[] iff C[M] converges. In summary:

DEFINITION. — isgiven by axioms:
(B (AX.M)N — M[N/X]
(Pa) P(AX.M)N — |
(Pb) PM(AX.N) — I

and structural rules:

M— M’ M — M’ N— N
@) gn=wn PYrun=rpwn PR PN PN

M | N iff M —* N and N isin whnf.

M iff IN. M N.

M1} iff =3N. M N.

M Co N iff C[M]{} = C[N]{ for any closing context C. O

EXAMPLES.

IM — M.
KMN —2 M.

YM — M(YM).

AM — MM.

Q— Q, 0 Qf.

Y—AX.Y,0 Y| and YM =2 Y.

If Ny then (AYx. M)N —* M[N/X]. Otherwise (AYx. M)N.

If M{} or NJ} then JMNJ} and JMNO —* J(MO)(NO).

If M1+ and N1} then J MN{.

If My and NJ} then MMNJ} and MMNO —* M(MO)(NO).

If M1 or N{} then M MN1.

If O} then AMNO —* M(ON). Otherwise AMNOft. O

2.3 Denotational semantics

The denotational semantics for Ap is given in the domain D that is isomorphic
to its own lifted continuous function space. Thus, any element of D iseither L
(representing a divergent term such as Q) or a continuous function from D to D
(representing a convergent term such as Ax. M). This semantics identifiesall di-
vergent terms, and di stingui shes divergent and convergent terms. In particular, Q
and Ax. Q are distinguished, since the former divergeswhilst thelatter converges.

15

DEFINITION. D istheinitia solution of:
D~(D—D),
whereif X andY are w-cpos.

e X, is X with a new bottom element.
e X—Y isthe continuous function space from X to Y.

This definition will be clarified in Section 2.5. Let the w-continuous functions
unfold : D— (D— D), andfold : (D— D), — D form thisisomorphism. O

In Proposition 5 we shall show that D is a complete lattice and so every set of
elements A C D hasajoin or least upper bound \/ A. In particular, this means
that:

Thereisatop element T = \/D.

Thereis abottom element L = \/ 0.

Every pair of elementshasajoinav b= \/{a,b}.

Every pair of elementshasameetaAb=\V{c|a>c <b}.

We can then define the denotational semantics of aterm M to be [M] o, where
0.V — D isan environment used to bind any free variablesin M. For example,
[X]o = ox

DEFINITION. Let > =V — D. Then define [M]] in ¥— D as:
[X] = readx
[MN] = split(apply o [M])[N]
[[Ax. M] = fold o lift o fn X[M]]
[PMNT] = split(fork o[M])[N]
where:
read X0 = OX
split fgo = fo(go)
fnxfo = f oupdateox

L ifa=b=1
forkab = {fold(liftid) otherwise

fbif unfolda=Ilift f

applyab = { L otherwise

a ifx=y

updateoxay = { ay otherwise

Define [p] inZ—Z as:
[plox = [px]o
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Then M Cp N iff [M] < [NJ. O

We have presented this semantics using higher-order functions such as split and
apply, since this makes the denotational reasoning in Section 3.9 simpler. Ex-
panding out the definition, we have a semantics which may be more familiar:

[X]o = ox
[MN]o = apply([M]o)([N]o)
[Ax.M]o = fold(lift(fn X[M] 0))
[PMN]Jo = fork([M]o)([N] o)
EXAMPLES.
e [IM] = [M].
o [KMN] = [M].
e [YMJo istheleast solution of a = apply([M]o)a
o [Q]=1L.
o« [V=T.
e [(AYx.M)NJais L if [N]Jo= L, and[[(Ax. M)N]o otherwise.
e [JMN] = [M] v [N].
e [MMN] = [M] A[NT.

¢ [AMNQJaois L if [O]o= L, and [N(OM)]o otherwise. O
ProposITION 1. [[M[p]] = [M] e [p]
PROOF. An induction on M. O

2.4 Program logic

In order to show that D isfully abstract, we need to find alink between the deno-
tational and operational semantics. We will use a program logic @, with propo-
dtions:
e w, whichissatisfied by any closed term.
e AU, which issatisfied by any term that satisfies @ and .
e @— U, which is satisfied by any term that converges, and that when applied
to any term satisfying @ the result satisfies .

For example, a closed term satisfies y = w— w iff it converges. The definition
of ‘satisfaction’ can be generalized to open terms by saying that M satisfies @in
the context (Xq : @,..., X : @) iff M satisfies @ whenever x; is bound to aterm
satisfying @.

DEFINITION. ® isdefined as:
P=w|PAP| 90—
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For closed terms M, |= M : @is defined by axiom:
() EM:w
and structural rules:

EM:i¢ Mg My YN.EN:@= |=EMN:Y
(AD) EM:oAY (=1) EM:ip—y

Acontext I isalistX;: @, ..., %n: @ With distinct x;.

o Letwv(Xy:@n,..., X @) ={X1,...,Xn}-

o Let (I x:0A)(X) =@ and N (X) = wwhen x ¢ wv .

o Let |=p:Tiff ¥X. = p(X) : T(X).
ThenT =M :@iff Vp.(=p:T) = (=Mp]: 9. O
In addition to the operational interpretation of ®, we can provide a denotational
interpretation, by giving a semantics [[¢] in D for each proposition @.

e The semanticsof wis_L.

e The semantics of A Y isthejoin of @and .

e The semantics of @—  isafunction which returns Y whenever it is applied
to an element that satisfies ¢.

For example, [[y] = [KQ] = L — L. Note that this relied on any a and b from
D having ajoin aVv b. Thiswill be shown in Section 2.5.

DEFINITION. [[¢] in D isdefined:
[w] =L
[ony] = [¢] v W]
[o— Wl = [[¢] — [wI
where (for w-compact a and b, defined in Section 2.6):

(a= b)c= bifa<c
] L otherwise

a— b = fold(lift(a=- b))
The environment [I'] is defined as [Tx= [T (X)]. O

For each proposition ¢, we can also define aterm M, with the same denotational
semanticsas @. Thisisthe coreof the expressiveness result that allows usto show
that D isfully abstract for Ap. Note that we use the P combinator in defining M,
and so this proof of full abstraction relies on the existence of P.

DEFINITION. Define My as.
Mw: Q
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Mary = I MMy
Migng)—x = MMo-xMy—x
Mig-p)—x = AMgMy-x
We can show by induction on @that [Mg]o = [q]. O

A third interpretation of ® isasa proof system for propositions” - M : @. This
isfirst given asapreorder F ¢ < |, which characterizeswhen y is arefinement
of @. In Section 2.6 we shall seethat - @ < W iff [W] < [@].

DEFINITION. The preorder < isgiven by axioms:

(1D) Fe<o

(o) Fe<w
(AEQ) FeAP< @
(AED) FeAP < Y
(—w) Fo—w<w—w
(

—A) F(@=W)A(@—X) < 9—(PAX)
and structural rules:

Fe<y<X (/\I)HPSUJ Fe<X
Fo<x Fe<(WAX)
(<) LI FU<W
T He—=y) < (¢ =)
LetFo=yiff Fe< P <@and FT <AIff ¥x. FT(X) <A(X). a

For exampl e, we can show that A iscommutative, associative, idempotent and has
unitwintheequivalencel- @= . Thepartia order - @< Y isusedin defining the
proof system ™ =M : @, sinceall of thestructural rules(such asCcuT, WEAKENING
and CONTRACTION) can be given by one rule (<). The proof system induces a
preorder on termsgiven by M CgN iff N satisfies any property that M satisfies.

(TRANS)

DEFINITION. The proof syssem ' - M : @isgiven by axioms:
(o) FM:w
(D) x:@kx:@

and structural rules:

FTEM:@ THEM:y Fr<A AFM:@ @<y

) = FEM(ory) (<) FEM:
(_)E)Fr—M:(p—up NN=N:o@ (—1) Mx: oMy
M=MN:yp rMN-ax.M:e—y

NrN=M:y MNE=N:y
P& FEPMN: p— o PO FERMN: =
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ThenM CgNiffTFM:@=THFN:@foral ' and @ O
EXAMPLES.

Fl:o—a@

FK:o—yp—ao.

rNEYM:giff Fop=worFrEM:p—@andl"'=-YM : (.

FQ:w

FY:a@

Ifr,x:@oFM:WwthenT = AYX. M : (QAY)— .

FJio—y—(oAY).

FM:o—o0o—Q.

FALe—=(W—=X) = (o= W) =X o
In Section 2.7 we show that the problem of full abstraction reduces to one of
showing that ™ = M : @iff T |=M : @iff [@] < [M][I]-

2.5 Categorical presentation of D

In Section 2.3 we asserted the existence of adomain D ~ (D — D), which we
used to give the denotational semanticsfor Ap. In thissectionwe shall justify this
assertion, by showing that such adomain must exist. Thissectionisasummary of
PIERCE’S(1991) summary of PLOTKIN'S (1983) Pisa Notes, and can be omitted
by readers familiar with domain theory.

The reason why we need a domain isomorphic to its own function space is
because of termslike Y M which provide ameans of defining recursive functions.
We said that the semantics of Y M was:

[Y M]o istheleast solution of a = apply([M]o)a
To show that such a solution must exist, we present it as the limit of the sequence
ag < a1 < ---where:
a=1  an1=apply([M]o)an
Thatis
an = (apply o [M]Jo)"L

However, we cannot always find afixed point to afunction f by defining a to be
the limit of the sequence f" L. For example if we define the function odd on the
real interval [0,1] as:
_J(+x)/4ifx< 3
oddx= { (1+x)/2 otherwise

then the sequence odd"0is 0, .3, ... which haslimit 1, but thisis not a fixed

point of odd sinceodd(%) = %. In order to bar functionslikethis, we shall restrict
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ourselves to w-continuous functions, that isif:
aisthelimitofag<a < ---

then:
faisthelimitof fag < fa; < - --

For example, this bars the odd function since:
5 isthelimitof 0< 7 <5<+
but:
3; ik el 3 o 7
7 isnotthelimitof 7 < g <& < -+

1
We define the denotational semanticsof Ap inD ~ (D— D), . Toshow that such
aD must exist, we present it asthelimit of asequence of finitedomainsDg, D4, . . .
where;

Do=1 Dn+1:(Dn—’Dn)J_
This can aso be presented as the fixed point of afunctor F between domains:
FDj = (Di —Di) L = Dit1

Then in order to show that D exists, we show that F is continuous. In order to do
this, we present:

¢ A notion of domain, such that the one-point domain 1 isadomain, and F isa
functor between domains.

e A notion of order between domains with least element 1 and where every
chain of domains has alimit.

¢ A notion of continuous functor between domains, such that F is continuous.

Following PLOTKIN (1983), wewill use the category of w-cpo’swith embeddings
as the appropriate notion of ordered domains. Since F is a continuous functor, it
must have aleast fixed point, which we will use as our definition of D.

Therest of this section will present the technical details of this construction.
We shall begin with a short reminder of some simple category theory. Interested
readers should consult MAC LANE’s (1971) or PIERCE’s (1991) textbooks.

DEFINITION. A category C is.

aclass of objectsobjc.

aclassof arrows arr C.

adomain object dom f for each arrow f.
acodomain object cod f for each arrow f.

an identity arrow id , for each object A.
acomposite arrow f o g whenever dom f = codg.

such that:
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e cod(idy) = dom(idy) = A.
e cod(fog)=codf anddom(fog) =domg.
e o isassociative with unit id.

We shall write:

e Ainc iff Aisanobjectinc.
e fidomf—codfinciff fisanarrowinc.

A category issmall if obj ¢ and arr ¢ are sets. O
EXAMPLES. sET isthe category where:

e Objectsare sets.
e arrows are functions.

A preorder isasmall category where:

¢ objects are members of the preorder.
o for any objects A and B there is at most one arrow f : A— B, and we write
A<Bfor3df : A—B.

A poset isapreorder whereif f og=idthen f =g=id.

0 isthe poset with no objects.

listhe poset with one object 0.

2 isthe poset with two objects0 < 1.

wisthe poset with objects0< 1 < ---

w+ 1isthe poset with objects0< 1 < --- < w.

If ¢ isacategory then ¢, isthe category with:

e objects | and lift Afor each Ain c.
e arrows!A: L —Aandlift f : liftA—liftBforeach f : A—Binc.

If c and D are categoriesthen ¢ x D isthe category with:

e objects (A, B) for each Ain c and Bin D.
e arrows(f,g): (A B)— (A',B')foreach f :A—A'incandg: B—B'inD.

In each case, the domain, codomain, identity and composition should be evi-
dent. a

DEFINITION. A functor F : ¢ — D has

e anobject FAin D for each Ain c.
e anarow Ff:FA—FBinDp foreach f : A—Binc.

such that:
o F(idy) = idea.
e F(fog)=FfoFg. O
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EXAMPLES. lift : ¢ — ¢ isafunctor since we have:

e anobject lift Ain ¢, for each Ain c.
e anarrow lift f : lift A—lift Bforeach f : A—Binc.

If F:c—pisafunctorthen F, : ¢, — D isthefunctor with:

e objectsF; L = 1 and F(lift A) = lift(FA) .

o arrowsF, ('A) = (FA) and F (lift f) = lift(F f).
If ¢ and D are posets, then F : ¢ — b isafunctor iff F is amonotone function.
Let POSET be the category with:

e Objectsare posets.
e arrows are monotone functions.

In each case the identity and composition properties should be evident. |

DEFINITION. L istheinitial object of ¢ iff thereisaunique arrow 'A: 1 — A
for every object Ain c. O

ExAMPLES. Many of these categorical definitions have PoseET equivalents:

Qistheinitial object of SET.

Oistheinitial object of PosET.

Theinitial object of aposet isitsleast element.

A poset has an initial object iff it is pointed.

Theinitial objectof ¢ is L. a

DEFINITION.

e An w-chainin c is a set of objects {Aj in ¢ | i in w} and a set of arrows
{f! :A—Ajinc i< jinw} suchthat fko f = k.

¢ A coconeof such an w-chainisan object Ain ¢ and aset of arrows of theform
{fi:A—Ainc|iinw} suchthat fjo f! = f;.

¢ Thecolimit of such an w-chainisacocone {f; : Ay — Ain ¢ | i in w} such that
for any other cocone {g; : Ay — Bin ¢ | i in w} thereisaunique f : A—Bin ¢
suchthat f o fj = g;.

¢ A category has all w-colimitsiff every w-chain has a colimit.

e F:c—D preserves w-colimitsiff whenever {fi : Aj — A} is the colimit of
{f): A'— Aj} then {Ff; : FA/— FA} isthe colimit of {F f! : FA/ —FAj}.

¢ A~Binciffwecanfind f : A—Bincandg: B— Ainc suchthat fog=id

andgo f =id.
¢ Aincistheinitia fixed pointof F : ¢ — ¢ iff A~ FAandfor any other B~ FB
thereisaunique f : A—B. O

ExAMPLES. Many of these categorical definitions have POSET equivalents:
¢ Anw-chainisaset of elements {Xp < x; < ---}.
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A cocone of an w-chain isan upper bound.

The colimit of an w-chain Cisitsjoin (or least upper bound) \/ C.
A pointed poset has all w-colimitsiff itisan w-cpo.

A function preserves w-colimitsiff it is w-continuous.
x>yiff x<y < x thatisiff x=y.

Theinitial fixed point of afunctionisitsleast fixed point.

For example, w+ 1isan w-cpo, but wisnot, sincethew-chain{0<1<2< -}
has no least upper bound. Let wcpo be the category with:

¢ (W-Cpo'sasobjects.

¢ (-continuous functions as arrows. |
PROPOSITION 2. If ¢ hasan initial object and all w-colimits, then any functor
F : ¢ — ¢ which preserves w-colimits has an initial fixed point.
PROOF. Let C be the w-chain:

{(FUDF L) FlL—=FlL]i<j}

An adaptation of the usual proof of TARSKI's fixed point theorem shows that
the colimit of C is the initial fixed point of F. For a discussion of TARSKI'S
fixed point theorem, see atextbook such as (DAVEY and PRIESTLEY, 1990). See

also (LASSEZ et al., 1982) for ashort discussion of the history of fixed point the-
orems. |

This alows us to find the fixed point of any functor that preserves w-colimits
of a category with an initial object. Unfortunately, wcpo does not have an
initial object, and there is no obvious definition of a ‘function space’ functor
(=) : wcPo?— wepo. However (—) can be defined in the subcategory of wcpo
where all the arrows are embeddings, so we shall usethisas our category for solv-
ing domain equations:

DEFINITION. Anembeddingisan arrow e: A— Bin wcpo such that we canfind
eR:B— Ain wcro with:

eoeR<id eRoe=id
Let wcpPoOE bethe category with:

e w-Ccpo'sasobjects.
e embeddings as arrows. O

EXAMPLES. Theidentity function isan embedding, with:
id® = id
Ife: A—Band f : B— C areembeddings, then f o e: A— C isthe embedding
with:
(fog)R=elo iR
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Thearrow eRisuniquely defined, soif e: A— Bin cPoE and f : B— Ain WCPOE
then:

(eof <id,foe=id) implieseR = f
()1 : WCPOE — wcPOE is thelifting functor with:

e A, in WCPOE for Ain WCPOE.
e e A —B,inwcpoEfore: A—Bin WCPOE.

A weproE — wepoE? isthe diagonal functor with:

e AA= (A A)in wcpPoE? for Ain WCPOE.
o Af=(f,f):AA— ABin wcPoE? for f : A— Bin WCPOE.

(—) : wcPOE? — wCPOE is the w-continuous function space functor with:

e (A—B)in wcpoE for (A, B) in WCPOE.

e (e—f):(A—B)— (A —B)inwcrorfor(e f): (A B)— (A B)in wcPoE.

where e— f isdefined:
(e—f)g= fogoel
(e— f)Rg=eogo fR
listheinitial object in WCPOE. O

DEFINITION. A cocone {& : Al — A in WCPOE | i in w} is determined iff
V{goelR|iinw} =id. =
PROPOSITION 3. Any determined cocone isa colimit.
PrROOF. Let {g : A — A |iin w} be a determined cocone of an w-chain
{e :A'—A;|i < jin w}. Thenfor any other cocone { fi : Ai — B | i in w}, define
g:A—Bas
g= V{ficel|iin w}

g = V{eo fR|iin w}
Then we can show that g is the unique embedding such that go g = fij. Thus
{e:A—A|iinw} isacolimit. O
PROPOSITION 4. Any w-chainin wcpPOE has a determined cocone.

PROOF. Let {eij :A —Aj | i< j} bean w-chain. An instantiation of this chain
isafunction f such that:

domf=w fieA  &R(fj)=fi
then define:
A= {f | f isaninstantiation}
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with the pointwise ordering. Thisisan w-cpo, with join:

V{fi[iinw}j=V{fij|iinw}

Then define:
. feaifi<]
8l = {e'jRa otherwise
e’f = fi
We can show that {e : Aj — A|iin w} isadetermined cocone. O

DEFINITION. D isthe determined colimit of the c-chain:
Do=1
Dit1 = (Di—Di)1
with g : Dj — D in wcpPOE given by Proposition 4. Then D isthe initia fixed
point of the functor (), o (—) o A given by Proposition 2. O
2.6 Logical presentation of D

In Section 2.5, we gave an abstract presentation of D, using the category of w-
cpo’swith embeddings. In this section, we provide a concrete presentation of D,
similar to scoTT's(1982) information systems. Following ABRAMSKY's (1991)
domain theory in logical formwe use the program logic @ as an alternative pre-
sentation of D. In particular, we show that the w-cpo of filters of @ isequivalent
toD.

DEFINITION. W C @ isafilter iff:

s WEW.
e lfopeWandoe< Ytheny e V.
o IfoPeWthenpAnp e W.

Let Filt ® be the w-cpo of filters, ordered by C. a

Then we can show that Filt ® isisomorphic to D. In proving this, it is essentia
that D is algebraic, that is every element of D is determined by its w-compact
approximations.

DEFINITION. An element a is w-compact iff, for any w-chainC:
a<VyCimpliesiceC.a<c

Letka= {b< a|bisw-compact}. D isalgebraic iff every aisthejoin of ka.
O

Therest of this section shows that ® precisely characterizes the w-compact ele-
mentsof D, and since D isalgebraic, Filt @ isisomorphicto D, that is:

26



o Fo<yiff [o] <[]
¢ aisw-compactiff 3p.a=[[q].
e D~Filtd.

In Section 2.4 we gave a semantics [[-]] : ® — D, which assumed that every pair
of elementsin D had ajoin. We shall now show that this assumption isjustified.
In fact, we shall show that D is acomplete lattice.

DEFINITION. D isacompletelatticeiff every subset of D hasajoin. |
PROPOSITION 5. D isa complete lattice.

PrRoOOF. We can show by induction on n that each Dy, is a complete lattice, since
Do = lisacompletelattice, and Dp41 hasjoin \/,, ., defined:

Vor A 1 ifAC{Ll}
ML ift(Vipyr A) otherwise

where:
VinprAb=Vp{fb|lift f € A}
Then D has
VA= V{en(Vnel[A) | nin o}
From thiswe can show that D isa completelattice. O

From the definition of \/,,, apply respects arbitrary joins, that is:
apply(VA)b = V{applyab|a € A} @

but in general, w-continuous functions do not necessarily respect arbitrary join,
for example:

((avb)y= T)avb)=T# L =1v1l =(((avh)=T)a)v(((avb) = T)b)
However, w-continuous functions do respect countable directed joins.

DEFINITION. A C D isdirected iff any a,...,a, € A have an upper bound in
A. O

ProPOSITION 6. If B iscountable and directed then f(\/B) = \/(f[B]).

PROOF. For any directed B={bj; | i in w}, letthew-chanChbeci=byV---Vbp.
Then we can show that f(\/B) = f(\/C) and \/(f[C]) = V(f[B]), so the result
follows from f being w-continuous. |

We can then show that a is w-compact iff thereis some n such that a comes from
Dy, that isiff a has depth n.

DEFINITION. a has depth niff e,(eRa) = a. 0

PROPOSITION 7. aisw-compact iff a has depth n for some n.
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PROOF.

= SinceD isdetermined, a < \/{e(ela) | iin w}, sosince aisw-compact there
isan n such that a < en(efa) < a, so a has depth n.

< If ahasdepth nand a < \/ C for some w-chain C then

a = e(effa) < en(€f(VC)) = en(V(eFIC))
Since Dy, is finite, €X[C] is finite. Since C is an w-chain, eR[C] is an w-
chain. Since eR[C] is afinite w-chain, it hasatop eRb for someb € C. Then
a< en(V(eR[C])) = en(eRb) < b. Thus, ais w-compact. o

We can use thisto show that D is algebraic.
PROPOSITION 8. D isalgebraic.

PROOF. By Proposition 7, ka = {g(ela) | i in w}, so since D is determined,
a=V(ka). |

Infact, we can prove a stronger statement than this, namely that D is prime alge-
braic, that is every element of D is determined by its w-compact prime approxi-
mations.

DEFINITION. aisprimeiff, for any finite B C D:
a<yB=3beB.a<b

Letkpa={b e ka|bisprime}. D isprime algebraic iff every aisthejoin of
kpa. O

We can show that a is w-compact prime iff a= b~ ¢, b is w-compact and c is
w-compact prime or c = L. For example, L +— L isprime, but L isnot, since
1<Vvo.

PROPOSITION 9.

Ifb# 1 thena<applybciff (c—a) <bh.

If a— b has depth nthen b= L or aand b have depth < n.
a=V{b—~c|b—c<a}.

ForanyB#0,a— \/B=\{a—b|be B}.

a— b isw-compact.

If bisprimethena— bisprime.

If aisw-compact primethena=bw—c.
Ifa—bisprimethenb= 1 or bisprime

NG~ WNE

Thusais w-compact primeiff a= b~ c and c isw-compact primeor c= L.
PROOF.

1. Follows from the definition of —.
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2. Follows from the definition of depth.
3. Ifa= L then:

a=1=Vy0=V{b—c|b—c<a}
Otherwise, we can show that for any d:
applyad = apply(V{b—c|b—c< a})d

andsoa=\{b—c|b—c<a}.
. Ifa— b <\ Cfor an w-chainC C D, then:

b= apply(ar— b)a < apply(\VC)a= V{applyca|ce C}
Since b is w-compact thereisac € C such that b < apply ca so:

a—b<a—applyca<c

Thusa— b is w-compact.
. Ifa— b < \/Aforafiniteset A C D, then:

b= apply(a— b)a < apply(V A)a= V{applyca|c € A}
Since b isprime, thereisac € A such that b < apply ca, so:

(a—b) < (a—applyca) <c

Thusa— bisprime.

. LetA={b—c|b—c<a},soa= VA Letay,ay,...beanenumerationof A,
andletC ={c; | iin w} bethew-chainwhereci=ayV - -Va. Thensinceais
w-compactanda < \/ A=\/Cthereisac; e Csuchthata<ci=ayVv---Vag.
Sinceaisprime, thereisa j <isuchthata<aj=bj—cj <a

. Forany c:
apply V{a—b|be B}c
= V{apply(a— b)c| b € B} (Ean 1)
_JVBifa<c .
o {L otherwise (Defnof —)
= apply(a— VB)c (Defn of —)

ThensinceB# 0, \/{a—b| b€ B} # L, and so by part 1:
V{a—b|beB} =(a—VB)

. Letb=\/Bfor finite B. If B=0thenb= L. Otherwise:
a—b=a—\VB=V{a—c|ce B}
sosincea—bisprimethereisac € Bsuchthata—b=a—csob=c. Thus
bisprime. |
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We can use this to show that D is prime algebraic.
PrRoPOSITION 10. D isprime algebraic.

ProoF. Using Proposition 9 we can show by induction on the depth of a that for
any w-compact a that:

a=\V{b—~c|b—c<acisprime} =V(kpa)
Then since D isalgebraic:
a=V(ka) = V{V(kpb) | b€ ka} = V(kpa)
ThusD isprime algebraic. O

We have shown that every w-compact element is determined by its prime approx-
imations, and so is of the form:

a=a—byVv---vay— b,

Notethat L iscovered by the case when n = 0. By examination of the semantics
of ® we can seethat ¢ can alwaysbe given in the form:

[0l = [or—Wa A Agh— W]
Note that w is covered by the case when n = 0. This allows us to show that our
denotational semantics for ® characterizes precisely the w-compact elements of

D. We will show this by proving a normal form result for propositions, using
factored propositions for the normal form.

DEFINITION.

o @isfactored iff Q=@ A-- A @, and each @ isprime.
e Qisprimeiff e=yor o=y — X, Yisfactoredand x isprime.

@ can be factored iff there isa factored  such that - @ = . O
PrROPOSITION 11.

1. Any @ can be factored.

2. [¢] isw-compact

3. Ifpisprimethen @] isprime.

4. If aisw-compact prime then Jprime @.a = [[¢].
5. If ais w-compact then Ifactored @.a= [[¢].

PROOF. Parts 1, 2 and 3 are an induction on @. Parts 4 and 5 are an induction on
the depth of a.

1. Aninductionon @.
2. Follows from Proposition 9.
3. Follows from Proposition 9.
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4. By Proposition 9, a= b+— c where cisprimeor c= L. If c= L then
[V = L— L =b— L =a. Otherwise, b and c have smaller depth than a,
s0 by induction we can find factored @ and prime W such that [J¢] = b and
[w]=c. Then[o— Y] =b—~c=a

5. Find w-compact primesa; suchthata=agV - -- V an. By part 4 we can find
prime @ such that [@] = &. Then[@A - A@ =a O

We can then show that the inequational theory + ¢@ <  is sound and complete
for the denotational semantics of ®. This uses factored propositions asa normal
form.

PrRoPosSITION 12, F g < @iff [¢@] < [W]-
PROOF.
SOUNDNESS (=-). Aninduction on the proof of -y < @.

COMPLETENESS («=). We first show by induction on ¢ and  that if @ and
arefactored and [[¢] < W] then - < @. Then for any @and , by Proposi-
tion 11 we canfind factored ¢f and §’ suchthat - @=¢ and -y = /. Then
by soundness, we have - o= ¢ < /' = . |

Finally, we can show that the filters of ® form a concrete presentation of D.
PROPOSITION 13. D ~ Filt®.
PROOF. Define con : D— Filt(®) and abs : Filt(®) — D as:
cond = {@| [¢] <d}
absW = V{[U] | W€ W)
Then we can show that con and abs form an isomorphism. a

In particular, the semantics of any term M can be given in terms of the proposi-
tionsthat M satisfies.

ProPosITION 14. [M]o=V{[d | [¢] < [MI[r]. [F] < o}.
PrROOF. Follows from Proposition 13. O

2.7 Full abstraction

In this section we shall show that D is fully abstract for Ap. We shall do thisin
three parts:

e Weshowthat '+ M : @iff [@] < [M][I, thus showing that the proof system
issound and complete for the denotational semantics. ThisisProposition 15.

e Wethenshow thatif T M : @thenl |=M: ¢ and that if I |= M : @then
[@] < [M][r]. Thusthe three presentations of the logic are equivalent. This
is Proposition 18.

31

o Finally, we show that full abstraction is gained by proving the three logical
presentations to be equivalent. Thisis Proposition 19.

The rest of this section provides proofs of these Propositions. Thisis a specific
instance of ABRAMSKY’s (1991) domain theory inlogical form.

First, we give a sketch proof that the proof system for Ap issound and com-
pletefor D.

PrROPOSITION 15. T+ M : @iff [¢@] < [M][TT.

PROOF.

SOUNDNESS (=). Aninduction on the proof of ' =M : @.

COMPLETENESS (<=). Aninduction on M. The difficult cases are:
o If [@] <[[MN][I] then

[l
< apply(IMIFDINTICD (Hypothesis)
= apply(IMIIFD(V{lel | [@] < [NIIF]}) (D isalgebraic)
= V{apply(IMIITDIW] | [w] < INIIFT} (Continuity)

0 since [[@] iscompact thereisay such that:

[wl <INIITD [l < apply(IMITFIIWE
If [MJ[[T]= LthenF @=wsol - MN: @ Otherwise [M][I'] # L so
[W— @] <[M][r] sobyinductionT -N:pandl =M : Y— ¢@and o
FHMN: Q.

o If [q] <[[Ax.M][IT] then:

[
< [Ax.MJ[r] (Hypothesis)
=V{[w—x] | [w—x] < [Ax-M][rT} (Propn 9.3)
=V{[w—xI | Ix] <apply(IAx. MIITT)[wW} (Propn 9.1)
= V{[w—xI | IX] < [M][(update[TIx[w])}  (Defn of [Ax. M)
=V{[w—=x]|Ix] < M][vx.T,x: W]} (Defn of update)

Since @is compact we can find ; and x; such that
[o] < [Wri—=Xal V- VIwn—=xa]  [xI < [MIIvx.T,x: gi]
Then by Proposition 12:
FPr—=XaA- Aln—Xn < @
andsoforeach1<i<n;
[xil < MI[vx. T, x: Wi
= W.IXxigEMy (Induction)
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= UWX.TEAX. MY —Xi (—1)
=T MM Y —X (<)

Thusby (A1) and (<), T FAX.M: @. |

This has tied together the denotational and proof theoretic presentations of the
logic, and we can start to link these with the operational presentation. To begin
with, we show that the denotational semantics respectsthe operational semantics
(following BARENDREGT's definition of A-theory we might call such amodel a

Np-theory).
PRoPOSITION 16. If M — N then [M] = [N]
PrRoOF. An induction on the proof of M — N.

O

Thishas animmediate corollary, which isthat convergent termsdo not have L as

their semantics.
ProPOSITION 17. If M{} then [M]L # L.

PROOF. If M |} AX. N then by Proposition 16, [M] L = [AX. N L # L. a

Thisis enough to show the equivalence of the three logical presentations. Note
that relating the operational and denotational presentati ons requiresthe existence

of the terms My, and hence the P combinator.

PROPOSITION 18. (TFM: @) = (T =M : @) = ([¢] < [M][I])

PROOF.

SOUNDNESS (1 =-2). Aninduction on the proof of ' - M : @.

COMPLETENESS (2= 3). Wefirst show the case when M is closed, by induc-
tionon @. Theonly difficult caseiswhen |= M : — Y, so M{} and by Propo-

stion17 [M]L # L so:

Mol = [9]
=> FMy:0 (Propn 15)
= =My:0@ (Soundness)
= MMy ¢ (Defn of |=)
= U] < [MMg]L (Induction)
= [W] < apply(IM]L)[¢] (Defn of [MN])
= ¢l — [W] < [M] L (Propn 9.1)

= [o—y] < [M]L

(Defn of [o— )

If M isopen, and I |= M : @then define p as p(x) = Mr(y. Then:
[el L =1r]
= Fp:T (Propn 15)
= E=p:T (Soundness)
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= =Moo (Defn of =)
= [4¢] < [M[p]]L (Above)
= @] < [M]([p]L) (Propn 1)
= [ <[M][r] (Defn of p)
Thus we have compl eteness. O

We can then use the equivalence of the logical presentationsto show full abstrac-
tion.

PropPosITION 19. MCoNiff M CgNiff M Cp N.
PROOF.

(MEoN= M LCpN) Wefirst prove by structural inductionon ¢@that if M Co N
and [q@] < [M][r] then @] < [N]J[IT]. The only difficult case is when we
have = @ — X, in which case [N] '] # L and so:

[w—x] < [M][r]

= apply[W— X][W] < apply([MIIFT)[W]
= [x] < apply(IMIIT) [w]

= [IXI < apply(IMIITD(IMyIITD (Mg]lo = [[¢l)
= [X] < MMy][r] (Defn of [MNT)
= [x] < [INMy][r] (Induction)
= [X] < apply(INJ[FD(IMy]IT) (Defn of [MN])
= [x] < apply(IN][FT)IW] (IMgllo = [[¢0)

(Monotonicity)
(Defn of [w— x])

= [w—x] < [NJ[T] (Propn 9.1)
Thusfor any o:
[M]o
= V{49l | [@] < [MIT.[] < o} (Propn 14)
< VATl | 9] < IN]LFT,[F] < o} (Above)
= [N]lo (Propn 14)

Thusif M Co N then M Cp N.
(MEp N= MLCpN) Forany closing context C, if M Cp N then:

CMIY
= |=C[M]:y (Defn of |=)
= [yl < [CM]] L (Propn 18)
= [Vl < [C[N]]L (Hypothesis)
= [=C[N]:y (Propn 18)
= = CINJJ (Defn of |=)

Thusif M Cp N thenM Cgo N.



(MEpN=MELgN) Forany I and @, if M Cp N then:

FrNEM:o
= [¢] < [M][r] (Propn 18)
= [¢] < [NIIr] (Hypothes's)
=TEFM:0@ (Propn 18)

Thusif M Cp N thenM CgN.
(MEsN=MLCpN) Foranya,if M CgN then:

[M]o
= V{[4 | [¢] < [M]r].[r] < o} (Propn 14)
=V{ld |TFM:q[r] <o} (Propn 18)
<VAl@] [TEN: @[] < o} (Hypothesis)
= V{[¥ | [o] < [N][r].[F] < o} (Propn 18)
= [N]o (Propn 14)
Thusif M CgNthenM Cp N. O

Thuswe have shown that D isfully abstract for |eftmost-outermost tree reduction
of the untyped A-calculus with P.
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3 Graph reduction

In this Chapter we present a formal model of concurrent graph reduction. To do
this, we:

Define an untyped A-cal culus with recursive declarations.

Show that recursive declarations can be regarded as graphs.

Provide an operational semanticsfor declarations, based on BERRY and BOU-
DOL’s (1990) Chemical Abstract Machine.

Define a denotational semanticsand a program logic.

Show how the proof techniques from Chapter 2 can be adapted to show the
denotational semanticsto be fully abstract.

In doing so, we need to show some operational propertiesabout concurrent graph
reduction:

¢ Although concurrent graph reduction isnot confluent, we can find a semanti-
cally equivalent reduction strategy which is confluent.

¢ We can show that the concurrent behaviour of our graph reduction model is
unimportant, by showing a semantically equivalent reduction strategy which
models one-processor execution.

¢ We can show referential transparency for the operational semantics, using
simulation between graphs.

Thus, the fully abstract model for the A-calculus with P isalso fully abstract for
the A-calculus with recursive declarations.

3.1 The A-calculus with recursive declar ations

The A-calculus with recursive declarationsis an extension of the A-calculuswith
P, to include mutually recursive declarations such as:

rec(x:= ?M,y:= ?N) in x@Qy

which means declare x to be M, declarey to be N, and apply x toy. Terms from
the A-calculus with rec are;

e [Ixisanindirection pointing to x.

¢ X@y is an application applying the function pointed to by x to the argument
pointed to by v.

¢ xvyisafork which evaluates the terms pointed to by x and y and returns the
identity function if one of them reaches weak head normal form. Semanti-
caly, thisis Pxy from Ap.

¢ AX.M isan abstraction.



e recDin M isarecursive declaration of D in M.
Recursive declarations are:

¢ X:=!M isantagged node declaring x to be M, and that M should be eval uated
immediately.

e X:= ?M isan untagged node declaring x to be M, and that M should not be

evaluated until it is needed.

€ isthe empty declaration.

e D, E isthe concatenated declaration of D and E.

e vX.D isthe declaration D with alocal variable x.

For example, the term:
recx:= ?M,y:= N in x@y

declaresx to be M and y to be N, then appliesx toy. This can be contrasted with
the term:

recX:=!M,y:=INin x@y

which is semantically equivalent, but allows evaluation of M and N to be per-
formed concurrently. Thisissimilar to the annotation of nodes described by PEY-
TON JONES (1987, Ch. 24). In the declaration:

X1 =My, Xm = M, Y1 = N YR = N

the terms M; are tagged, and so they can all be evaluated concurrently, whereas
thetermsN; are untagged, and so are eval uated when they are needed. All decla-
rations are considered to be recursive, for example:

X:=1Ay.x
declaresaterm which reachesweak head normal form, is given an argument, and
returnsitself. It has the same semantics asthe ogre Y'in Ap.

We have allowed local variablesin declarations, for example, the local decla-
ration local x=?M in y = ?N can be implemented as:

vX. (X:=?M,y:=N)

We will see below how this can be generalized, so we can define local D in E in
this language. The handling of local variables here is similar to scope in MIL-
NER’s (1991) polyadic tecalculus, and indeed has a very similar operational se-
mantics.

Wecanthink of declarationsasavariant of HUGHES' (1984) supercombinator
code. For example, the supercombinator code:

X = AW. WW

y=M
$PROG = xy
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can be given as the declaration:
vxy. (SPROG := Ixy,x:= 2Aw. ww, y := ?M)
In summary:
DEFINITION. Lam and Dec are defined:
M= 0Ox|x@y | xVy|AX.M |recDin M
D:i=x:=IM|x:=?M|€g|D,D|vx.D
Let D = E mean D and E are syntactically identical. O
EXAMPLES. Given avector X = X; .. .Xn, We can define:
vK.D=VX;..... VXn. D
We can implement a‘black hole’ term as:
O = recx:=!0xin X
We can implement the A-calculus with P as (for fresh x and y):
X =[x
MN = recx:=!M,y:= N in X@Qy
PMN = recx:=IM,y:=INin xvy
We shall seelater that this has the same semanticsas Ap. O

Unfortunately, at the moment, there is nothing to prevent inconsistent declara-
tionssuch as:

X:=IM,x:=IN
or declarations with dangling pointers such as:
vy. (x:=10y)
Wewould liketo avoid such terms, since their semanticsisby no meansobvious.

Wewill achieve this by restricting our attention to well-formed expressions, with
no inconsistency or dangling pointers.

DEFINITION. The written variables of adeclaration are;
wv(x:=M) = {x} wve=0
wv(D,E) = wwDUwvE wv(vx.D) =wvD\ {x}

An expression is well-formed iff:

¢ every subexpression of theform D, E haswvDNwvE = 0.
e every subexpression of the formvx. D hasx € wvD.

From now on, we shall only consider well-formed expressions. |
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EXAMPLES.

e X:=!M,y:=IN iswell-formed.

e X:=IM,x:=INisnot.

e x:=IM,vx.(x:=N) iswell-formed.

e VX.(x:=!M,x:=IN)isnot.

o x:=!M,vx.(y:=!N)isnot. |

Similarly, we can define the read variables and free variables of an expression.
DEFINITION. The read variables of an expression are;

rv(0x) = {x} v(x@y) = {x,y}
rv(xvy) = {xy} rv(AX. M) = rv M\ {x}
rv(recDin M) = (rvMUrvD)\wvD
rv(x:=M)=rvM rve=0

rv(D,E) =rvDUE rv(vx.D) =D\ {Xx}
The free variables of an expression are;
fvM=rvM fvD=rvDUwvD
A declarationisclosed iff ry D C wvD. O

Inimplementationterms, the read variables of adeclaration are the pointers|ead-
ing out of it, and the written variables are pointersleading intoit. For example, x
isapointer into x := !0y and y isa pointer out of it.

DEFINITION. A renaming isafunction p : V — V which is ailmost everywhere
theidentity.

¢ Let M[p] be M with any read variable x replaced by px.
¢ Let D[p] be D with any read variable x replaced by px.
o Let [p]D be D with any written variable x replaced by px.

In each case we apply appropriate a-conversion to avoid capture of free vari-
ables. O

EXAMPLES. Some example renamings are;

(x:=10x)[y/x] = (x:=10y)

[y/X(x:=10x) = (y:=10x)

[y/X(x:=10x)[y/x] = (y:=!0y)
We can a-convert alocal variable (when y isfresh):
vx.D a-convertsto vy.([y/x|D[y/x])
For example:
vx.(x:=10x) o-convertsto vy.(y:=!0y)
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If wv D and wv E are digoint then we can define alocalized declaration as.
localDin E =v(wvD).(D,E)
This can be generalized to any declarations D and E by a-converting the written
variablesof D first. If wwD = {x3,...,Xn} andys, ..., yn arefresh then:
local Din E = vy. ([y/X|D[y/X], E[y/X])

for example:

local(x:= ?20x) in (X:=1Aw.X) = vy. (y:= 20y, x:= 1Aw.Yy)
We shall see in Section 3.3 that x := !(recD in M) is semantically equivalent to
localDin (x:=!M). |

DEFINITION. We can draw a declaration as a graph, in the fashion of MILNER’S
(1989) flow graphsfor ccs. A declaration x := !M with read variablesys, ..., ¥n

can be drawn:
X

Y1+ ¥n
Similarly, adeclaration x := ?M can be drawn:

X

Y1+ Yn

When M is Oy, y@z or yvz we will usually elide the read variables, drawing
x:= 10y, x:=ly@zand x:=lyvzas

X X X
y y z y z

A declaration € can be drawn as the empty graph.

A declaration D, E can be drawn by superimposing D on E.

A declaration vx. D can be drawn by drawing D and erasing any occurrence
of x.

Whenever we have the same variable being read and written in a graph, we
will draw an arrow from the read variable to the written variable. O

EXAMPLES. The application of A to M can be drawn:

X VyZ. X

X= Ve () (x:=ly@z (@)
yi=IA y, z yi=IA

MG @ mw ® @



The application of M to itself, with sharing can be drawn:

X X
e S G, S
v::?Dz: @ uffi)Dz @ @
z:="M vi="z,
z:="M)

()

A cyclic graph can be drawn:

x =10y, .
y:= !0y ; X lDy,;
y:=1!0y)

We shall seethat such tight cyclic graphs give rise to deadl ock. |

)

3.2 Operational semantics

We will give our operational semanticsin two parts, based on BERRY and BOU-
DOL’s(1990) Chemical Abstract Machine. We shall first define asyntactic equiv-
alence = on declarations, and then define an operational semanticsupto=. This
allows usto abstract away from syntactic details such as associativity of concate-
nation, and present the ‘bare bones' of the operational semantics.

A similar approach has been taken by MILNER (1991) in presenting the T+
calculus, and we shall follow his example more closely than that of BERRY and
BOUDOL.

The syntactic equivalence D = E is given by:

¢ Concatenation rules which say that concatenation is an abelian monoid with
unit €.
e Scope rules which give properties about local variables:

o Local variables can be a-converted.

o Theorder of declaration of local variablesis unimportant.

o The scope of alocal variable can migrate when this does not cause the
capture of free variables.

These rulesfor local variables are the same as MILNER's (1991) scope rules
for the T-cal culus, except that we omit vx.vx. P = vx. P, sincethe declaration
vXx.VvX. D is not well-formed.

¢ A forkrule saying that fork is commutative.
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e Congruenceruleswhich say that = isan equivalencerelation, andisrespected
by concatenation and local variables.

Many of these equivalences were implicitly used when we drew declarations as
graphs. For example, D, (E,F) = (D,E), F corresponds to the fact that super-
imposition of graphs is associative. The only axiom which equates declarations
with different graphsis (Vcomm), which says that fork is commutative, and so
we shall not distinguish between:

FONOY

™ W ® ™

This axiom halves the number of rules required for fork.
DEFINITION. If z ¢ fv D then = is given by axioms:
(Aassoc) D,(E,F)=(D,E),F

(coMmm) D,E=E,D
(unIT) D,e=D
(a) vx.D =vz.([z/X|D[z/X])
(vswaP) vx.vy.D=vy.vx.D
(vMIG) D,vz.E =vz.(D,E)
(vecoMmm) x:=Hyvz) = x:=1(2vy)
(REFL) D=D
and structural rules:
(symm) b=E (TRANS) D=E=F
E=D i D=F
D=E D=E D=E
©eF=eFr ®Eb=rfe "V wD=wE
Notethat if D=E thenrvD = rvE and wvD = wvE. O

We can use the equivalence = to smplify the operational semanticsfor graph re-
duction. Thiscan be given as eight axioms and three structural rules. The axioms
can be broken down into four phases:

¢ Graph building, in which arecursive declarationis expanded into agraph, for
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example:

i ®
e Spinetraversal, in which an untagged node pointed to by a tagged node be-
comes tagged, for example:

H

There are three axioms, depending on whether the tagged node is an indirec-
tion, an application, or afork.

¢ Updating, in which anode pointing to an abstraction is updated, for example:

X X

@ (@
O B O ®

There are three axioms, depending on whether the node is an indirection, an
application, or afork.

e Garbage collection, in which a sub-graph with no incoming pointers is re-
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moved, for example:

X
.
) @
- @ @
- (1)
These phases are not sequential, and there may be more than one axiom which

can be applied at any one point. Since each axiom uses asmall number of nodes,
there is much scope for concurrency, for example:

®® & &
! !
M
:

The operational semantics — is first given by an operational semantics+—, and
— isdefined as=—=.



DEFINITION. — isgiven by axioms.

(BUILD) x:=!(recDin M) — localDin (X := M)
(OTRAV) x:=10y,y: =M~ x:=!0y,y:=IM
(@TRAV) X:=ly@zy:=?™M — x:=ly@zy.='M
(VTRAV) X:=lywzy: =M x:=lyvzy:=M

(Oupb) x: =10y, y:=1AW. M — x:=IA\w. M,y := IAw. M
(@upp) x:=ly@zy:=AW.M — x:=!M[z/w],y:=!Aw.M
(vupp)  x:=lywzy:=IAw.M— x:=!lLy:=1Aw. M
(y) v(wvD).D+— ¢
and structural rules:
D—E D— E D—E
WoFoeErFr WEborFE VDo wE

Notethat if D — E thenrvD D rvE and wv D = wv E.

D—EiffD=—=E.

D-CEiffD=E,andD ="t Eiff D —-—"E.

D—*Eiff3n.D —="E.

D—SEiffan<i.D—="E. ]

ExXAMPLES. In the graph building phase, we take a term containing a recursive
declaration and build a graph from it:

x:=!(recDin M) — local D in (X := M)
For example, the deduction:

X:=1AM
= x:=(rec(y:=1A,2:= M) in (Y@2)) (Defn of AM)
— local(y:=1A,z:= M) in (x:= ly@2) (BUILD)
= vyz. (x:=ly@zy:=1Az:=?M) (Defn of local)

can be drawn graphically as.

X

(@)

X
-

Similarly, the deduction:

vz.(x:=1zz,z:= M)
= vz. (x:=(rec(u:=10z,v:= ?0z) in (U@V)),z:= M) (Defn of z2)

— vz. (local(u:="10z,v:=?0z) in (X:=lu@v),z:= ?M) (BUILD)
= vz.(vuv. (u:="10zv:= 2z x:=u@v),z:= M) (Defn of local)
= vuvz. (u:=10z,v:= "z x:= lu@v, z:= M) (vmiIg)
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can be drawn graphicaly as.

x
@@
?
k)

We can build cyclic graphs, for exampl e the deduction:

xX:=10
= x:=!(rec(y:="!0y) in (Oy)) (Defn of U)
— local(y:=!0y) in (x:=10y) (BUILD)
= vy. (x:=!Oy,y:=10y) (Defn of local)

can be drawn graphically as.
X

(@
® "o
Note that thisaxiom can only be applied to tagged declarationsx := !(recD in M)
and not untagged declarations x := ?(recD in M). Inimplementation terms, this
is because we only build a graph for terms currently under evaluation.

In the spine traversal phase, we find a tagged node which points to an un-
tagged node, and tag it. Thus we have three axioms, depending on the form of

the tagged node:
X X
x:=10y,y:=M
—xo=10yy:=M Y T Y
OENO

X X
X:=ly@zy.=?M .
— X:=ly@zy:='M
() ()
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x—yvzy_ ™M

S)
W@ @

Note that since we are modeling lazy evaluation, we have:

X:=ly@z,z:=?M ‘\ \
e Xi=1ly@z,2:='M adhd

Thisphaseis called ‘ spine traversal’ because there will often be a‘spine’ of un-
tagged indirection, application, and fork nodes, which will al be tagged. For ex-
ample:

This phase terminates when we reach a tagged function Aw. M, asin the above
example, and we can perform updating. We have three axioms, depending on
which kind of node is pointing to the function. If it is an indirection node, we
make a copy of the function. Since the function is already in weak head normal
form we are not losing any sharing:

x:=!0y,y:=1A\w.M »—>
— X:=1Aw.M,y:=1Aw.M y

If we have an application node pointing to afunction we can perform (3-reduction.
Thisisthe ‘work’ of the operational semantics, and we can regard the other rules
as manipulation to produce a graph where 3-reduction can take place. Note that
since we are using renaming rather than substitution to model 3-reduction, we
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have model ed sharing:

X

y T2

i}

X:=ly@zy:.='A\w.M
— X:=IM[z/W],y = IAw. M

For example:

vyz. (x:=ly@zy:=1A,z:= M) &
—Vyz. (X:=lzz,y:= 1A 2:= M) ‘
OO ()

If we have afork node pointing to a function we can return the identity function,
in the same way asthe Ap rulefor P.

X:=lywzy:=1Aw.M

x—'ly—')\wM

The final phase is garbage collection where any subgraphs with no incoming
pointers are removed. This corresponds to the last axiom:

viwvD).D+— ¢
For example, the deduction:
wyz. (x:=lzz,y:= 1A 2:= M)

= vyz. (y:=1Ax:=1zz z:=?M) (comm)
=vzy. (y:=1AXx:=1z2z,2:=7M) (VswaP)
= vz. (vy.(y:=1A),x:=1zz z:= M) (vmIG)
—Vvz.(g,x:=1zz,z:= M) )
=vz. (x:=1zz,z:=M) (UNIT)

can be drawn graphically as.

X X

i

Note that although we have presented these phases sequentially, they can be car-
ried out in any order. Since most of the axioms involve very small graphs, con-
taining three or fewer nodes, we have a very small granularity and thus much
scope for concurrency.

48



However, the axiom for garbage collection involves graphs of arbitrary size, — vuvz. (x:=!w,u:=1Av:=?0zz:=A) (@upD)
and so has much larger granularity, and so less scope for concurrency. In imple- — (x =lw,v:=7?0zz:=4A) )
mentation terms, this corresponds to the fact that much less concurrent graph re- — wz. (x:=1t@u,t:=!0v,u:=?0v,v:= 20z, z:= |A) (BUILD)
duction can take place during garbage collection. Indeed, many graph reduction — wz. (x:=1t@u,t:=!0Ov,u:=?0v,v:=10z z:= A) (OTRAV)
engines suspend graph reduction completely during garbage collection. — wz. (x:=1t@u,t:=10v,u:=?0v,v:=1A,2:=IA) (Oupp)

We can combine these phases together to reduce any graph, for example the — (x =1t@u,t:=!0v,u:=?0v,v:=4A) )
deduction: —

X:=1AM This can be drawn graphically:

= X:=l(recy:=1A,2:=?Min y@2) (Defn of AM) X y «
— localy:=1A,z:= Min xX:=ly@z (BUILD)
= vyz. (X:=ly@zy:= A z:= M) (Defn of local) @ @ @
— Yz (X:=lzz,y = 1A 2:= M) (@uprp) X X
= vz.(x: :'zz,vy.(y:: IA),z:=?M) (vmiG) @ - @ @ - @ @ - @
—Vz.(X:=1zz,€,2:= M) B®
=vz.(x:=1zz,2:="M) (UNIT) @ @ @
= vz. (x:=Yrecu:= 10z v:=20zin u@v),z:= ?M) (Defn of z2)

(

— VZ. (localu:=10z v:=?0zin X:= lu@v, z:= M) (BUILD) > -
= vz. (vuwv. (x:=lu@v,u:="10zv:=70z),z:=?M)  (Defn of local) @ @
= .(x:=lu@v,u:="'0z,v:=?0zz:=?M ( )
Ve (X 1.4 1D v = 70 = 1) (@) ®» @ O @
can be drawn graphically as. - @ - -
I
Gaw) - ) , , () ()
X
=
w @
- @ @ @ - -® @- -
()
()

These steps are: graph building, [3-reduct|on, garbage collection, graph building

and spine traversal. We thus have: Thusx :=1Q isdivergent. This can be contrasted with the deduction:
x:=1Q (x:=10) = vy. (x:=lyy:=ly) A
= x:=1AA (Defn of Q)
—=*vuvz. (x:=lu@v,u:='0zv:=?0z,z:=A) (Above)
— Vwvz. (X:=lu@v,u:=A,v:=?0z,z:=A) (OupDp)
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which can be drawn graphically as.
X

. @
® &7

since the graph is fully built, the spine is tagged, there are no function nodes to
reduce, and thereisno garbage. Thusthedeclarationx:= !0 isdeadlocked rather
than divergent. Denotationally, we shall identify theterms ¥ and Q, since neither
of them can reach weak head normal form, although operationally they are very
different.

We can define x to be in weak head normal form (whnf) in D iff D contains
x:=IAw. M.

DEFINITION.

e xisinwhnf in (x:=!Aw.M).
e xisinwhnf in(D,E) if xisinwhnf inD or E.
e Xisinwhnf invy.Dif xisinwhnf in D and X # .

Notethat if D = E and x isinwhnf in D then x isin whnf in E. O
We can use this to define our notion of testing:

e A program isa closed declaration.

¢ Atestisaclosing context C[-] and avariable x.

¢ Aterm M passes atest iff, when we tag x in C[M], the result reduces to weak
head normal form at x.

DEFINITION.
o tag, isdefined (when x #y) as.

tag,(X:=IM) = (x:=1M) tag,(x:=M) = (x:=1M)
tag, (Y= IM) = (y:=IM) tag,(y:="M) = (y:= M)
tag,(vx.D) =vx.D tag,(vy.D) = vy. (tagx D)
tag, € =€ tag,(D,E) = (tag,D), (tag,E)

For closed D, D | E iff tag, D —* E and xisinwhnf in E.

Dy, iff JE. D |x E and D1ty iff ~3E. D Y« E

M Co N iff C[M]{}, = C[N]{y for any x and closing context C.

D Co E iff wwD = wv E and C[D]{}, = C[E]{ for any x and closing context
C. O

Note that convergence (D{},) and termination (D—* /) are very different in this
operational semantics, although they are equivalent in Ap. For example:
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e x:=!(recy:=!Qin Aw.Yy) converges, but does not terminate.
e X:= 10U terminates, but does not converge.

Sinceweare using convergence rather than termination asour definition of testing
equivalence, we can identify Q and . The testing equivalence based on termi-
nation has been investigated by the author (1993).

3.3 Denotational semantics

The denotational semanticsfor Lam isgiven inthesamedomainD ~ (D— D) ;
as/\p. The semanticsof Dec isgivenas|[[D] : Z— Z, soif o isan environment,
then so is [D]o. The main difference between the semantics of Lam and that of
N\p isthat the former makes explicit use of recursion. For example, if we define:

constab=a
Then we can show that the semantics of the ‘ogre’:
recX:=!Ay. Oxin Ox
isgiven as the least solution to:
f =foldolifto constof
and so frecx:=\y. IXinOX] = T.
DEFINITION. Define [M] : £ —D as.
[OX] = readx
[x@y] = split(apply oread X)(read y)
[xvy] = split(fork oread x)(ready)
[Ax. M] = fold o lift o fn X[M]]
[recDin M] = [M] o [D]
Define[[D] : Z— X as:
[x:=M] = fix(set{x}(x:= [M]))
[x:= 2M] = fix(set{x}(x:=[M]))
[e] =id
[D, E] = fix(set(wv(D, E))([D] o [E]))
[vx.D] = newx[D]

where:
newxfoy — 4 9% ifx=y
oy = foy otherwise
. _Jfoifx=y
(x:=floy = {cy otherwise
52



f(go)xifx e X
oX otherwise

fixf = V{f"L|ninw}

e M Cp Niff [M] < [NJ.
e DCp EiffwwD=wvE and [D] < [E]. O

EXAMPLES. We can show that the semantics of the ‘ogre’ termis T, since:

[recx:=IAy. Oxin OX]

= [Ox] o [x:=!Ay. OX] (Defn of [[recD in M)
read Xo [x:=!Ay. 0X] (Defn of [OX])
read Xo fix(set{x}(x:= [Ay. OX])) (Defn of [x:=IM])
read Xo set{X}[[Ay. OX](fix(set{x}(x:=[[Ay. OX])) (Unfold)
read Xo set{X}[[Ay. OX] [x:=!Ay. OX] (Defn of [x:=IM])
[Ay. Ox] o [x:='Ay. OX] (Defn of read and set)
= foldolift o fny[OX] o [x:='Ay. OX] (Defn of [Ax. M])
= fold o lift o consto((read X) o [x := !Ay. OX]) (Defn of fn and const)
= fold olifto consto([OX] o [X:='Ay. UX]) (Defn of [OX])
= fold olift o consto([[recx :=IAy. Oxin OX]) (Defn of [[recD in M)

set Xfgox = {

The only function which satisfies thisis:
[reex:=IAy.OxinOX]| = T
The semantics agrees with that of Ap:
[X] = readx
[MN] = split(apply o [M)[N]
[[Ax. M] = fold o lift o fn X[M]]
[P MN] = split(fork o[M])[N]

This means we can define M, from Section 2.7 in Lam and that [M] = [@]. We
can also define Dy as:

Dg =E£
Dra =Dr,Da
then we can show by inductionon T that [Dr]o = [I]. O

The properties of this denotational semantics are discussed in Section 3.9.

3.4 Program logic

The proof that D isfully abstract for Lam proceeds in much the same way as the
proof in Chapter 2. We present a program logic, and use it as a link between
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the denotational and operational semantics. The propositions we will use are the
same as those from Chapter 2, and so we can use al of the material from Sec-
tion 2.6. However, since we arelooking at a different syntax, we need a different
operational characterization and a different proof system.

Since the operational semantics for graph reduction is given between decla-
rations rather than terms, the operational characterization of ® is also given for
declarations. So rather than defining |= M : @for closed terms, we define |=D : A
for closed declarations. Theproposition |= D : A meansthat thetermin D referred
to by x satisfies A(x). For example, the graph:

X

YZ
ONO
satisfiesp— P —Ppax, o—P—oeay andp—@at z that is:
=(x:=ly@zy:='K,z:=11):

X1 0=Y—=Py: 0=U—0z:0—0)
We define ‘D satisfies A’ as:
e Any declaration satisfies€ or X : .
o |f D satisfiesI” and A, then D satisfiesI” A A.

o |f Dy}, and any extension E of D and z:= !x@y which satisfies y : @ satisfies
z: |, then D satisfies ¢— .

For example:

o D satisfiesx: yiff D,.

o x:=!|satisfiesx : 9— @because any graph

x:=!l,z:=x@y,D

which satisfiesy : @ also satisfies z: @.

o x:=!K satisfiesx: 9— Y — @ because any graph

x:=1K,z:= x@y,w:=z@v,D

which satisfiesy: @and v: ) also satisfiesw : @.

o We can show by induction on @that (w:=!Ay.w,x:=!Ay.w) satisfies x: @.
The only difficult caseiswhen @ = {— X, in which case:

(w:=1Ay.w,x:=IAy. w){,
and in any graph:
w:=I1Ay. w,X:=1Ay.w,z:= Ix@y, D
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if y satisfies | then:

w:=IAy. w,x:=1Ay.w, z:= Ix@y, D
—W:=1Ay. w,x:=!Ay.w,z:=!0Ow,D
—W:=1Ay. wx:=1Ay.w,z:=Ay.w,D

which by induction satisfies z: x. Thus:
(W:=1Ay.w,x:=IAy.w) : @
From thisit issimple to show that (w:=!Ay.w) : (W: @).

This definition depends on the notion of *graph extension’, which isthe preorder
DCE.

DEFINITION. D C E iff we canfind X, ¥, D’ and E’ such that:
D=vX.D E=vxy.(D' E) fvDNy=0
Notethat C isapreorder, andthat DC EC D iff D =E. O
We can then define the the operational interpretation of the logic.
DEFINITION. For closed declarations, |= D : A is given by the axioms:
(1) =D:¢ () =D:(x:w)
and structural rules:
(z:="x@y) CEOD.
Dyy FE:(y:@=[FE:(z:y)
FD:(x:o—1)
This can be generalized to any D by defining I' |= D : A iff:
VE.(=D,E:v(wvD).T) implies(=D,E : A)
Smilarly, I |= M : @iff:
VD,z.(|=(D,z:=IM): T) implies(|= (D,z:=IM) : (z: @)

One consequence of full abstraction isthat for A-calculus terms, this operational
definition agrees with the definition of Section 2.4. O

Wecan define aproof system for Lam aswedid for Ap. Thisusesthe same propo-
sitions, and will have judgementsof theform ' M : @and I - D : A. Themain
difference between the proof system for Lam and that of Ap isthe proof system
for recursive declarations. Note that:

FD:I ED:A |
e HY S

e Theproof rules(!) and (?) for tagged and untagged declarationsare the same.
Semantically there is no difference between a tagged or an untagged node,
although they have very different operational behaviour.
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o Weare considering declarationsto berecursive, and so the proof rules(!), (?),
() and (R) for declarationsare recursive. For example, toshow I' - D, E : G,
we are allowed to have asubgoal of I' - D, E : A.

DEFINITION. The proof system ' = M : @ isgiven by axioms.

(or) FM:w

(D) X:@kFOx:@
(—E) (X:o—=W)A(Y: @) F x@y: Y
(va) X:YEXvy:o—@
(Vb) yiyExvy:o—o

and structural rules:
(A1) I'I—M:(p. r=M:y (<) FI<A AI—M.:(p Fo<uy
Fr'EM:(eAWY) Fr=M:y
) rcto~s ) bty
The proof system I - D : Ais given by axiom:
(L) TED:v(wD).I

and structural rules:

(AI)Fl—D:A r-bD:o (<)|—F§F’ MeD:AN FANA
F[FD:(AAO) = FFD:A
(!)Fl—(x::!M):A AFM:@ (?)Fl—(x::?M):A AFM:@
ME(x:=1M):(x: @) ME(x:=2M):(x: @)
(L)Fl—D,E:A A-D:0O (R)FI—D,E:A AFE:©

[FD,E:O FFD,E:©

W) Vw.T'ED:A
M=vx.D:vx.A

wherevx. (I, x: @A) =T,Aandvx.[ =T whenx ¢ wv . Then:

e MCNIiffvI,@.T-M:@=TFN:{.

e DCgEiffwD=wvEandVlILA.TEFD:A=TFE:A. O
ExXAMPLES. The proof system for Lam is similar to that for Ap. Indeed, we can
use this proof system to show:

TFM:9—y¢ TEN:g@
X:QFX:@ FEMN:yQ
NrMN-M:y MNE=N:y
FTFPMN:@—@ FTFPMN:g—@

The proof system for Dec allows recursive proofs of properties of declarations.
For example, we can prove by induction on @that - (x :=!IAw. 0x) : (x: @). The
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only difficult caseiswhen = — X:

(1D)

<) (x:x)FOx:x
(Indhn) : (—1) =7 (xix,w: ) FOx: X
0 F(x:=1Aw.0x) : (x:X) (x:x)F(Aw.0Ox) : (@—X)
' FOc="1Aaw. 0x) (X w—X)
From this we can show that + rec(x ;= 'Aw. 0x) in Ox : @ for any proposition @,
and so theterm rec(x := !Aw. 0x) in Ox isamaximal element of Cs. a

In Section 3.11 we can show that the problem of full abstraction reduces to one
of showingthat ' =D : Aiff [ = D: Aiff [A] < [[D][r]-

3.5 Operational properties. structural equivalence

In the following four sections we shall look at four properties of the operational
semantics for graph reduction:

This section looks at structural equivalence.
Section 3.6 looks at confluence.

Section 3.7 looks at tagging.

Section 3.8 looks at referential transparency.

In this section we will look more closely at the structural equivalence D = E that
we used to define D — E. Although the structural equivalenceisagreat helpin
presenting D — E, it makes proving properties about D — E harder, sincewe are
alwaysworking modulo =. MILNER (1991) faced a similar problem in proving
properties about the polyadic Te-cal culus, which he solved by giving an indepen-
dent presentation based on a commitment rel ation.

In this paper, we shall continue to prove properties about declarations up to
=, but we will need to know some properties about =. In particular, we shall
present amodel for declarations modulo =, and use this to show that:

o If (x:=IM)=(D,E)thenD=corE=e.

¢ If (D,E) = (F, G) then we can find DF, DG, EF and EG such that
D = (DF,DG), E = (EF,EG), F = (DF,EF) and G = (DG, EG).

e Ifyx.D=(E,F) theneither E=vx.GandD = (G,F) or F =vx.Gand
D= (E,G).

e Ifvx.D=vy.E and x# y then either D = [x/y|E[x/y] or E = vx.F and
D=vy.F.

e VX.D# (x:=1M)
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We can use = to convert any declaration into standard formvx. D where D con-
tainsno local variables. For example:

(x:=10y,localx:=10Owin y:=!x) =vz.(x:=10y,y:= 10z z:=0Ow)
DEFINITION. Let the v-less declarations be:

e £isv-less
e Xx:=!Mandx:=?M are v-less.
e D, Eisv-lessiff D and E arev-less.

Disstandard iff D = vX.E and E isv-less. D can be standardized iff D = E and
E is standard. O

PROPOSITION 20. Any D can be standardized.
PrROOF. An induction on D. O
The model for declarations consists of a4-tuple (X,Y, Z, f) where:

X CV isthe set of written variables.

Y CV\ X isthe set of hidden variables.

Z C XUY isthe set of tagged variables.

f : XUY — Lam istheterm associated with each variable.

For example, the model for vy. (x:= M,y :=N) is.
({3 Ay} O3 A M), (Y. N)})

Weshall consider thismodel up to a-conversion of hidden variables, for example
if zisfresh then we shall equate:

({3, 4y} {x} {(x M), (y.N)})
= ({x}.{z}, {x} {(x M[z/y]). (Y. N[z/y])})
In summary:
DEFINITION. An abstract declaration isa 4-tuple (X,Y, Z, f) such that:
XCV  YCV\X ZCXuY f:XUY—Llam

(XY, Z, )= (X, Y, Z ") iff wecanfind orderingsX of Y and y of Y’, and fresh
Z such that:

Z/R[2] = [Z/NZ] % (1([R/2x))[2/X) = (1([§/2x)[Z/9]
Then the semantics of declarationsis given by:
d[e] = (0,0,0,0)

ox:=M] = ({x},0,{x}.{x—M})
ox:=M] = ({x},0,0,{x— M})
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d[D,E] = (XuX',YuY,zuZ, fuf’)

oflvx. D] = (X\ {x},Yu{x},Z, f)
whered[D] = (X,Y,Z, f),9[E] = (X", Y, Z', f)and X, Y, X" and Y’ are dl dis-
joint. |
Then we can show that this semanticsis fully abstract for =.
PrRoPosITION 21. D =E iff 9[D] = 9[[E].
PROOF.

= Thisproof consists of showing each of the axiomsand structural rulesfor =
to be sound.

< This proof consists of showing that standard declarations provide a normal
form, up to (vswap), (a), (assoc), (comm) and (UNIT). |

We can use this to show the required results about =.
PROPOSITION 22.

1L If(x:='M)=(D,E)thenD=corE=ce.

2. If (D,E) = (F, G) then we can find DF, DG, EF and EG such that
D = (DF,DG), E = (EF,EG), F = (DF,EF) and G = (DG, EG).

3. Ifvx.D = (E,F) theneither E=vx.Gand D = (G,F) or F =vx.Gand
D= (E,G).

4. Ifvx.D=vy.E and x# y then either D = [X/y|E[x/y] or E = vx.F and
D=vy.F.

5 vwx.D# (x:=1M)

PROOF. Each of these has a smple proof, based on abstract declarations. For
example, if (x:=IM) = (D, E) thenletd[[D] = (X,Y, Z, f),9[E] = (X", Y", Z/, f')
for digont X, X', Y and Y/, and so:

XuX',YuY' zuZ fuf)=({x},0,{x} {x— f})

and so either X = 0 (and so d[D] = d[[€])) or X' = 0 (and so A[E] = 0[[e])). This
completesthe proof for part 1, and the othersfollow similarly. O
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3.6 Operational properties. confluence

Thissection looks at the problems rai sed because the operational semanticsgiven
in Section 3.2 is not confluent.

DEFINITION. A relation % isconfluent iff x® ~1& yimpliesx® % ~1y. O

Confluenceis (aswe shall see below) very useful in proving results about an op-
erational semantics. There are two reasons why —* isnot confluent. The first,
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mentioned in Section 1.2, is due to garbage collection, since:
55

but there is no declaration D such that:

L o P
o

The second isdue to fork updating, since:

X X X
SRENY
66 ORONONONO
but there is no declaration D such that:

X X
y —*D <" ®y
ONO o @

Inthissection we will present aconfluent convergent reduction strategy for graph
reduction.

DEFINITION.

e A reduction strategy isarelation —g C —-.
o DYRiff tag,D — E and xisinwhnf in E.
e —risconvergent iff Dl < DR for any closed D. |

The reduction strategy we will present in this section is the same as —, except
that:

e Thereisno garbage collection. Thisbars our first counterexample.

e Fork updating can only take place when both of the nodes pointed to by the
fork have been tagged. This bars our second counterexample.
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For example, we will allow the reduction:

S
ONORONORONO
b, &
ONORONO

Note that we need three axioms to replace the axiom:

but not:

(xX:=ywzy:=1IAw. M) — (x:=!Ly:=1Aw. M)
since we haveto consider the caseswhenx =z y =1z and X # z# Y.
DEFINITION. — isgiven by axioms:

(BUILD) x:=!recDin M) —¢recDin (x:=!M)
(OTRAV) x:=0y,y:=M —c x:=10y,y:=IM
(@TRAV) X:=ly@zy:=M —cX:=ly@zy:='M
(VTRAV) x:=lywzy: =M x:=lyvzy:=IM
(Oupp) x:=10y,y:=AW.M —¢ x:=A\w. M, y:=Aw. M
(@upD) x:=ly@zy :=IAW.M —¢ x:=M[z/w],y:=Aw. M
(vuppa) x:=!'ywzy:=IAwW.M,;z:=IN —¢ x:=!ly:=1Aw.M,z:=IN
(vupDb) X:=lywy y:=1\W.M —¢ x:=!ly:=1Aw. M
(VupDC) X:=IyWxy:=1\W.M —¢x:=!ly:=1Aw.M
and structural rules:
DHcE D|—>cE D'—>cE
WorF=kEF ®EpoFE VYV ixDooxE

In the rest of this section, we shall show that — is convergent and that —¢ is
confluent.
To begin with, we can show some properties of tag:

PROPOSITION 23.

1. tag,(tag,D) = tag,(tag,D)

2. tag,(tag,D) =tag,D

3. If D = E thentag, D = tag, E.

4. 1f D — E thentag, D —<! tag E.
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5. If xisinwhnf in D then x isin whnf in tag, D.
6. Ifx# ythenxisinwhnf in D iff xisin whnf in tag, D.

PROOF.

1. Aninductionon D.
2. Aninductionon D.
3. Aninduction on the proof of D = E.
4. An induction on the proof of D — E.
5. Aninduction on the proof that x isin whnf in D.
6. = Aninduction on the proof that x isin whnf in D.
< Aninduction on the proof that x isinwhnf in tag, D. |

We can show that reduction is independent of the choice of variables, so if y is
fresh then [y/x]D[y/X] has the same behaviour as D:

PROPOSITION 24. Ifyisfresh and x # zthen:

1. If D — E then [y/X|D[y/X] — [y/X E[y/X].
2. DU iff [y/XD[y/x|{.
3. DUy iff [y/X|Dly/x]{y.

PROOF. Part 1 isaninduction on the proof of D — E, and parts 2 and 3 follow.OO

Any reduction D — E isareduction of the form vX. (F,G) — vX. (F,H) where
G+— H isan axiom. For example, the reduction:

b, &
ONORONO

vz.(x:=lzvy,z:=1ly:=7?l) —vz.(x:=1,z:= 1l y:="2I)

can begiven as;

and (x:=1zvy,z:=11) — (x:=1l,z:=) isan axiom.
PROPOSITION 25.

1. IfD— EthenD =vX.(F,G),E =vX.(F,H) and G— H isan axiom.
2. IfD—¢EthenD=vX.(F,G),E=VX.(F,H) and G —¢H isan axiom.

PROOF.

1. Aninduction on the proof of D — E.
2. Aninduction on the proof of D — E. a

We can use this to show that any reduction D = vx. D’ —¢ E must have come
from areduction D' —¢ E' and E = vx. E’. Thismeansthat whether avariableis
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local or global makes no differene to the reduction stragegy —¢. Thisis not true
of —, because of garbage collection.

PrRoOPOSITION 26. IfD=vx.D' —cEthenD' —cE’and E = vx.E’.
PrROOF. By Proposition 25.2;
vx.D' = VvX.(F,G) E=vX.(F,H) G—cH isanaxiom
Then we can a-convert so that x ¢ X, so by Proposition 22.4:
e either we have:
x=yyz D' =vyz.([x/yl(F.G)[x/y])
and so, since all the axioms for — are preserved by a-conversion:
D' = V2. ([%/YI(F. G)[x/¥]) —c V52 ([/y](F. H)[x/¥])
and:
E =vX. (F,H) = vx.vyZ. ([x/y](F,H)[x/Y])
e or we have:
(F,G) = vx.D" D' =vx.D"

and so, by Proposition 22.3 and the fact that all the axioms for — involve
v-less declarations:

F=vx.F D' =vX.(F',G)

and so:
D' =VX.(F',G) —¢VX.(F' H)
and:
E=VX.(F,H)=vx.vX.(F' H)
In either case we have found an E’ such that D’ —¢ E’ and E = vx. E'. |

We would now like to show that — is convergent, that is D5 iff D{,. Unfortu-
nately, itisnot the casethat any reduction D —* E can be matched by areduction
D —¢ E, since:

e Thereduction D —* E might include garbage collection.
e Thereduction D —* E may include fork updating with an untagged node.

However, it isthe case that any reduction D —* E can be matched by areduction
D —Z F, where F can be garbage collected to a declaration with fewer untagged
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nodes than E. For example, the reduction:

é% @éDéDH ®éo

can be matched by the reduction:

Ao

and:

can be garbage collected to:

which has fewer untagged nodes than:

X

®

y

@

Moreformally, we shall show that if D —* E thenD —{—y<,E, whereD —E
means ‘D can be garbage collected to E’ and D <, E means ‘D has fewer un-
tagged nodesthan E’.

DEFINITION. D <, E isgiven by axioms:
(ReFL) D <,D (?) (X:=1M) <5 (x:=7M)

and structural rules:

(LR) D<,E D'<,F v) D<,E
D,D' <,E,FE vx.D<,vx.E
D —y Eiff D — E isproved using the (y) axiom. O
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PrROPOSITION 27. For closed D:

<, isapartial order.

If D —y—¢EthenD —¢—yE.
If D <o—¢E thenD —§1<5E.
IfD S?—>y E thenD —>yS7 E.
If D — E thenD —¢—{<-E.
IfD —* EthenD —¢—{<-E.

PROOF.

NogprwNE

1. By definition, <, isreflexive. By induction on the proof of D <, E, we can
show that if D <, E <, D thenD = E, and so <, isantisymmetric. By induc-
tion on the proof of D <, E, we can show that if D <, E <, F thenD <, F,
and so <, istransitive,

2. Aninduction on the proof of =

3. If D —y F —¢ E then by Proposition 25.1:

D =vX.(G,v(wvH).H) F=wX.G 2

Then by Proposition 26:
E=vx.l G—¢l 3

Thus:
D

= VX.(G,v(wvH).H) (Ean 2)
—¢ VX. (I,v(wvH) . H) (Ean 3)
Vx. | v)
E E (Ean3)

4. If D <, F —¢ E then by Proposition 25.2 we have:
F=vX.(G,H) E=vX.(G,I) H—cl isanaxiom (4)
Then by part 2, and the definition of <»:

D=vX.(G H) G <,G H <, H (5)
Then by analysis of the axiom H — |, we can find:
I <51 H —g I (6)
Thus:
D
= vX.(G H) (Ean’5)
—¢ VX.(G\I') (Ean 6)
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<7 VX.(G,I') (Ean 5)
<2 VX. (G (Eqn 6)
= E (Ean 4)

And so by part 2, D —¢<, E.

5. Similar.
6. If D — E then by Proposition 25.1 we have:

D=wX.(F,G) E=VvX.(F,H) G—H isanaxiom (7)
Then we proceed by analysis on the axiom G — H:
(V) D—yE, 0D —s—{<-E.
(vupD) Thisaxiom has:
G=x:=lyvzy:=Aw.M
H=x:=1Ly:=1Aw.M
There are three subcases:
(x=12) Soby (vupnc), G—¢H, andso D —¢—y<-E.
(y=2 Soby (vurpb), G—¢H,andso D —t—y<»E.
(x#z#£Yy) SinceD isclosed, z€ wvF, and so either:

F=vy.(F',z:=M) €))
and we can a-convert so yNfvG = 0, and so:
D
= v%.(F,G) (Ean7)
= VX.(V}.(F',z:=M),G) (Eqn 8)
= vXy.(F',z:=M,G) (vMmi1G)
—c VY. (F',z:=IM,H) (vuppa)
= VX.(V}.(F',z:= M), H) (VMIG)
= vx.(F,H) (Ean 8)
=E (Ean7)
or:
F=vy.(F',z:=2M) 9
and we can a-convert so yNfv G = 0, and so:
D
= vX.(F,G) (Egn7)
= VX.(VW.(F',z:=?M),G) (Ean 9)
= vwy.(F',z:=M,G) (VMIG)
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—c VY. (F',z:=M,G) (VTRAV)
—c VY. (F',z:=M,H) (vuprDpa)
= VvX.(V.(F',z:=IM),H) (v™mI1G)
<5 VX. (VY. (F',z:=?M),H) (Defn of <)
= VX.(F,H) (Egn9)
=E (Egn 7)

Thus, D —>’é—>;§7 E.
(0THERS) The other axioms are axioms of +—¢, and s0 D —¢—y<» E.

7. Let D —" E, and proceed by induction on n;

(n=0) Whenn=0,D =E, sotrividly D —¢—{<»E.
(n>0) Whenn> 0, we have:

D—-"E
=>D-"1-E (Defn of —M)
= D—¢—y<o—E (Indn)
= D ==y —y<7E (Part 6)
= Dt <oy <rE (Pat 4
5 D gy <ri<oE (Part 3)
= D gy <o<oE (Part 5)
= D—¢—{<-E (Trangitivity)
ThusD —¢—3<,E. a

We can then show that — is convergent.
PROPOSITION 28. For closed D:

1
2
3.
4,

If xisinwhnfin D and E <, D thenxisinwhnfin E.
If xisinwhnfin D and E — D thenxisinwhnfin E.
If xisinwhnfinD and D — E thenxisinwhnfin E.
—¢ IS convergent.

PROOF.

1
2.

An induction on the proof of E <, D.

By Proposition 25.1 D = vX. (F,v(wvG).G) and E = vX.F. Thensincexis
inwhnf in D, xisinwhnf inF, so xisinwhnf in E.
By Proposition 25.1 D = vX. (F,G), E = vX. (F,H) and G — H isan axiom.
Then since xisin whnf in D, either:

e xisinwhnfinF, soxisinwhnfinE.

e xisinwhnf in G, so by caseanalysis of each axiom, xisinwhnf inH, so
xisinwhnf in E.
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4. From the above:

DY
= tag, D —% E,xisinwhnf inE (Defn of }5)
= tag,D—" E,xisinwhnf inE (—cC—)
= DJ, (Defn of )
= tag,D—* E,xisinwhnfinE (Defn of 4,)
= tagyD —¢ F —§ G <7 E xisinwhnf in E (Propn 27.7)
= tagyD —¢ F —§ G <, E xisinwhnf in G (Part 1)
= tagyD —¢ F —{ G <, E xisinwhnfinF (Part 2)
= Dy5 (Defn of %)
Thus — is convergent. a
We can use thefact that — ¢ isconvergent to show that convergence isnot affected
by local variables:
PROPOSITION 29. For closed D, if w # x then DJ}, iff vw. D{},.
PROOF.
= If Dy then we can find E such that tag, D —* E and xisinwhnf in E, so
tag,(vw.D) —* vw. E, and x isinwhnf invw. E. Thusvw. D{,.
< If vw. DJ}, then since — is convergent, tag,(vw.D) —¢ E, and X isin whnf
inE, so by Proposition 26 E = vw. F and tag, D —¢ F. Sincexisinwhnf in
E, xisinwhnf in F, and so D). O

PropPoOsITION 30. For closed D:

1

2.

IfD=(D',x:=!recGin M) —¢ E thenE = (D’,local Gin x:= M)

or E=(E',x:=!recGin M) and YN. (D', x:=IN) —¢ (E’,x:=IN).
IfD=(D',x:=!0y) —cE

then D’ =vX. (D",y:="?M) and E = vX. (D" y :=IM,x:=!0y)

or D'=vxX.(D")y:=1Aw.M) and E = vX. (D",y := IAw. M, x:= IAw. M)
or E=(E', x:=10y) and VM . (D', x:=IM) —¢ (E', x:=IM).

IfD= (D ,x:=y@z) —¢ E

thenD’' = vX. (D" )y:=7M)and E =vX. (D" )y:= M, x:=ly@z)

or D'=vx.(D",y:=1Aw.M) and E = vX. (D" y := IAw. M, x := IM[z/w])
or E=(E',x:=!y@z) andYM . (D', x:=IM) —¢ (E',x:=IM).
IfD=(D',x:=!yvz) —=cE

thenD’' =vX.(D")y:="?M)and E =vX. (D" )y:= M, x:=lyvz)

or D'=vX. (D" ,z:= M) and E = vX.(D",z:=IM,x:= lyvz)

or D'=vX.(D",y:=!Aw.M) and E = vX.(D",y :=IAw. M, x:=!1)

or D'=vxX.(D",z:=!Aw.M) and E = vX. (D", z:=1Aw. M, x:=!)

or E=(E' x:=lyvz) and VM. (D', x:= M) —¢ (E',x:=IM).
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5. 1fD=(D',x:=A\w.M) —;E thenE’' = (E’, x:='Aw. M).
6. IfD=(D',x:=?M) —¢c E thenE = (D', x:= M)
or E=(E',x:=?M)andD' —¢E'.
PrROOF. These all have similar proofs, we shall prove part 1 as an example. If
(D',x:="!recGin M) — E then by Proposition 25.1 we have:

(D', x:="!recGin M)=VX.(H,I)

10
E=vX.(H,J) | —J isanaxiom (10
Then by Propositions 22.3 and 22.5:
D'=vx.D" (D", x:=!recGin M) = (H,1) (12)
So by Propositions 22.1 and 22.2 either:
e we have:
H=(K,x:=!recGin M) D" =(K,I) (12)
and so:
E
=vX.(H,J) (Egn 10)
=vX. (K, x:=!recGin M,J) (Egn 12)
=vX.(K,J),x:=!recGinM (Vvm1G)
and for any N:
D' x:=IN
= vX.D" x:=IN (Egn 11)
= vX.(K,I),x:=IN (Egn 12)
—c VX. (K, J),x:=IN (I —¢J)
e or we have:
I =(K,x:=!recGin M) D" =(H,K) (13)

so the axiom is either:
(BUILD) s0 we have:
X:=!lrecGinM— localGinx:=!M
in which case;
| =x:=!recGinM J=localGinx:=1M K=e 14
and so:

vX.(H,J) (Egn 10)
vX.(H,local Gin x:= M) (Eqgn 14)
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= (VX.H,local Gin x:= M) (VMIG)
= (VX.(H,K),local Gin x:= M) (Egn 14)
= (vX.(D"),local Gin x:=IM) (Egn 13)
= (D', localGin x:=IM) (Egn 11)

(vuppa) We have:
Z:=Iywx,y:=1AW.N,x:=!recGin M
— z:=1Ly:=1AW.N,x:=!recGin M
in which case:
| =z:=lywvxy:=!IAw.N,x:=!recGin M
J=z:=ILy:=1AWwW.N,x:=!recGinM (25)
K=z:=lyvxy:=!Aw.N

and so:
E
=vX.(H,J) (Egn 10)
=vX.(H,z:="Ly:=1AW.N,x:=recGin M) (Egn 15)
=vX.(H,z:="Ly:=1AwW.N),x:=!recGin M (VMIG)
and for any N
D', x:=IN
= vx.D",x:=IN (Egn 11)
= vX( ,K),x:=1IN (Egn 13)
= VX.(H,z:=yvx,y:=1Aw.N),x:=IN (Egn 15)
= VX.(H,z:=yvx,y:=1Aw.N,x:=IN) (VMIG)
—¢ vX (H,z:="Ly:=1Aw.N,x:=IN) (vuppa)
= vX.(H,z:=!ly:=Aw.N),x:=IN (VMIG)
The other propositions are proved similarly. O

PROPOSITION 31. —§1 isconfluent.

PrROOF. If D —=§'EandD —£1 F theneither D=E,D=F, or D — E and
D —¢ F. Thefirst two cases aretrivial.
If D —¢ E and D — F then by Propositions 25.1 we can find:

D=VX.(G,I) E=vX.(G,J) | —J isanaxiom (16)
and by 26 we can find:
F=vX.H (G,1) =cH (17)

Thenwe proceed by case analysison which axiomwasusedtoshow | — J. These
all have similar proofs, so we shall just show the case for (BUILD). We have:

| =x:=!recKinM J=localKin (x:=IM) (18)
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Then by Proposition 30.1 either:
¢ we have:

H = (G, local K in x:= M) (19)

inwhich case:

E
= vX.(G,J) (Egn 16)
= VX. (G, localK in x:=IM) (Egn 18)
=vVX.H (Egn 19)
=F (Egn 17)
e or we have:

H= (L x:=!recKinM (20)

and for any N:
(G,x:=IN) —¢(L,x:=N) (21)

Then let ¥ be wv K and let Z be fresh so:
E

= vX.(G,J) (Egn 16)
= VX (G,localK in x:= M) (Egn 18)
= VX.(G,vZ.([Z/YIK[Z/¥],x:= IM[Z/¥])) (Defn of local)
= vX’Z (G, [2/YIK[2/¥],x:=M[Z/¥]) (VMIG)
¢ vzz. (L, [2/YIK[Z/¥], x:= M[Z/Y]) (Egn 21)
= vx.(Lvz. ([Z/5IK[2/5]. x:= IM[Z/9)) (vmic)
= VX (L, localK in x:=!M) (Defn of local)
—cX.(L,x:="!recKin M) (BUILD)
= vX.H (Eagn 20)
=F (Above)
The other cases are Similar, and so — &1 is confluent. O

PROPOSITION 32. For closed D, if D —¢ E then DJ}, iff E{,.
PROOF.
= If D —¢ E then we have the following diagram:

D—>0"‘—>cF

le
E
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where x isin whnf in F. Then since — &1 is confluent we can complete the
diagram as.

D _)C e _>C F

< < <
le It gt &t
E—g .. —fs

Sincexisinwhnf in F, x isin whnf in G, and so E{,.

< Follows from the definition of D —y. O

3.7 Operational properties. independence from tagging

The denotational semantics for tagged declarations (x := !M) and untagged dec-
larations (x := ?M) is the same, despite the fact that tagged and untagged decla-
rations have very different operational behaviour. For example the declaration:

vy. (x:=1y:=1Q)
can diverge, whereas the declaration:
vy. (x:=1Ly:=2Q)

cannot. However, both of them can reach whnf at x, and since the testing equiv-
alenceis based on reaching whnf, they are testing equivalent. In this section, we
will show that convergence isindependent of tagging, that is:

Dl iff tag, Dilx
and that this means that convergence is independent of reduction, that is:
if D — E then DJ}, < Elly
For example, even though the declaration:
vy. (x:=1ly:=1Q)
can diverge, and the declaration:
x:=1l

cannot, they have the same convergent behaviour, since:

vy. (x:=1Ly:=1Q) — (x:=11)

In order to show that convergence is independent of tagging, we shall present a
reduction strategy —, where a reduction D —y E will take place only when the
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reduction isneeded in order to evaluate x. For example, we will allow:

**

since we need to evaluate M in order to evaluate x, but:

&5
® @ @

since we may not need to evaluate N in order to evaluate x. In the rest of this
section we will:

Define the reduction strategy —

Show that DJ}, iff tag, D —% E and xisin whnf in E.

Show that if D >, E —} F and xistaggedin D thenD —} > F.
From this, show that if D >, E then Dl}, iff E|,.

Show that if D «—y—x E then D —y«—y E.

From this, show that if D — E then D{, iff E,.

First we can define the reduction strategy —x C —:

DEFINITION. — isgiven by axioms:

(BUILD) D,x:=!recEin M —4 D,local E in (x:=!M)
(OTRAV) D,x:=!0y,y:=?M —x D,x:=0y,y:= M
(@TRAV) D,x:=!ly@zy:=?M —x D,x:=ly@zy:='M
(VTRAV) D, x:=lyvzy: =M —4 D, x:=lyvzy:=M

(OupD) D,x:=!0y,y:='AW.M —, D,x:=Aw.M,y:= IAw. M
(@upD) D,x:=ly@zy:='Aw.M —y D, x:=IM[z/w],y := IAw. M
(vuppa) D,x:=!lyvzy:=IAw.M,;z:=!N —x D, x:=!l,y:=Aw.M,z:=IN
(vupDb) D, x:=!yvy,y:=1AwW.M =4 D, x:=!ly:=1Aw.M
(VupPDC) D,x:=!ywx,y:=IAwWw.M —; D,x:="!l,y:=1Aw. M

and structural rules:

73

D x:=!0y—yE
D,x:=!0y—xE

D x:=ly@z—yE
D, x:=ly@z—xE
=) D=—,=E

7 D—xE

(OiND) (@)

D ,x:=!lywz—yE (
D,x:=1lyvz—y E

D—E
(v) WV#V]

LetD —_wEiff D—cEandD 44 E. |
ProPoOsSITION 33. If D —yx EthenD,F — E,F.
PROOF. An induction on the proof of D — E. O

Informally, D —y E if thereduction D — E takes place on the x-spine of D, for
example:

(VIND)

since each of the nodes that are tagged are on the x-spine. More formally, we can
define the x-spine of D to be al the variableswhereD - x < y:
DEFINITION. D F X < yisgiven by axioms:
(REFL) DFx<x
(Omnp)  Dyx:=!0ykFx<y
(@np) D,x:=ly@zkx<y
(VIND)  D,x:=lyvzk x<y
and structural rules:

DFx<y<z ,_\D=EkFXx<y
(TRANS) =527~ &) Torx<y
DFEx<y
V) Sz B x<y X# 2%V
Dt x < yispronounced ‘In D, x spinestoy’. O
PROPOSITION 34.
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1. fDFx<ythenD,EF x <.
2. Ifvx.DFy=<zthenDFy=<z
3. Ifx#y#z wisfreshand D F x < zthen [w/y|D[w/y] F x < z

PROOF. Inductions on the proof of <. O
Then we can show that D — E iff thereis areduction on the x-spine of D:

ProPOSITION 35. D —yEiffD=VX.F,E=VX.G, F —y Gisanaxiom, and
FEXx=<y.

PROOF.

= Aninduction on the proof of D — E.
< Aninduction on the proof of F - x < y. O

PROPOSITION 36. IfDFx<yandD —y E thenD —« E.

PrROOF. By Proposition 35, D =vX.F,E=VX.G,Fry<zandF —;Gisan
axiom. Then by Proposition 34.2, F - x < y, S0 by (TRANS), F F X < z, s0 by
Proposition 35, D — E. a

ProOPOSITION 37.

1 IfD=(D',D"),DFx=< 2z x€wvD' andz€ wv D"
thendy € vD'Nwv D" .D'F x < y.

2. IfD=(D',D"),DFx<zandx,ze wwD'thenD' - x< z
ordyerwD'NnwvD” . D'Fx<Yy.

PROOF. An induction on the proof of D x < z
1. Theonly difficult casesare (v) and (TRANS). Inthe case of (v) we have:
D=vw.E EFx<z XEWHZ
Then by Proposition 22.3 either:

e D'=vw.E' and E = (E’, D) so by induction we can find
yervE'NwvD” suchthat E'+-x<y. Theny € wwD"” soy# w, 0
yerwD'NnwvD”and by (v) D'F x<y.

e D" =vw.E" and E = (D', E") so by induction we can find
yervD'NnwvE" suchthat D' Fx<y. Theny € rvD’ soy #w, SO
y€erwD' NnwvD".

In the case of (TRANS) we have:
DFEx<w<z
Then either:

e w e wv D' so by induction on Part 2 either:
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o D'k x < w, and by induction we can find y € rv D’ nwv D" such that
D'Fw<y,soby (TRANS), D' F x <.

o dyerwD' NnwvD".D'Fx=<y.
e w ¢ wv D" so by induction we can find y € rv D' nwv D such that

D'Ex=<y.

The other cases are smpler.
2. Issimilar. a
DEFINITION.
e Xistaggedinx:=1!M.
e Xisuntaggedin x:= 7M.
e Xis(un)taggedin D, E iff xis (un)taggedin D or E.
e Xis(un)taggedinvy.D iff x# yand x is (un)tagged in D. |

PropPOSITION 38. For closed D:

1 fD—¢(E,y:=M)=EthenD= (D',y:=?M)and D' —¢E'.

2. If D —¢E, yisuntaggedin D and tagged in E then D = vX. (F,y:= ?M)
and E=vX.(F,y:=IM).

3. If D —x E thenxistaggedin D.

4. IfD—c.E=(E',x:=!M) and xistaggedin D then D = (D', x:= M)
or D—,E.

5. IfD—cE=vy.E'thenD=vy.D'and D' —¢E’
or D=VX.(D',z:=recF in M), E=VX.(D',local F in z:= IM),
E'=vX.(D',F’)andvy.F' =local F inz:= M.

6. If D= (D',x:=!M) —¢ (E',x:= M) = E thenD —, E

or VYN.(D',x:=IN) —¢ (E', x:=IN).

Ifvx.D'=D —yEthenE=vx.E'and D’ — E'.

8. If D= (D',D") —4 E thenE = (E/,D") and D’ — E’
ordyewvD".D'Fx<y.

~

PROOF.
1. By Proposition 25.1 we have:
D=vX.(F,G) E=vX.(F,H) G—¢Hisanaxiom (22)
Then by Propositions 22.3 and 22.5 we have:

E'=vx.E” (F,H)=(E",y:=2M) (23)
Then by Propositions 22.2 and 22.1 either:
e We have:
F=(Fy:=7M) (F,H)=E" (29
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and so: e or we have:

D H=(H x:=IM) E'"=(F,H) (28)
= WX. EF,IG) | (Ean 22) 50 by case analysis on which axiom could give G — H, either:
=vX.(F',y:=M,G (Egn 24) )
=V%.(F,G),y:= M (vIG) o wehave G —xH and so:

" G_>X H

and: = F,G—xF,H (Propn 33)
vX.(F',G) = V%.(F,G) =4 X.(F,H) v)
—¢ VX.(F',H) (Ean 22) = D—yE (Egn 25)

= WX.E" (Egn 24) o )

_ (Eqn 23) o wehave G= (G ,x:=!M) and so:

e Or we have: G= (G x:=M)

' , , " = VvX.(F,G)=vX.(F,G' x:=IM) (L), (R) and (v))

H=(Hy=M) (FH)=E = D=VX.(F.G,x:=IM) (Eqn 25)

but by analysis of each axiom, there isno axiom G —¢ H where H con- = D=VX.(F,G),x:=M (VMIG)
tains an untagged node, and so we have a contradiction. 5. By Proposition 25.1;
2. By Proposition 25.1 we have: D=w.(G,H) E=wi.(G1I) H—c | isanaxiom (29)
D=vX.(GH) E=W.(Gl) Hr~clisanaxiom Then we can a-convert sothat y ¢ ¥, and by Propositions 22.4 and 22.3 either:
Then sincey is untagged in D and tagged in E, this meansy must be tagged e We have:
in H and untagged in |, so the only axioms which could give H —¢ | are the _ I —
axiomsfor spinetraversal. Thuswecanfind Jsuchthat H = (J,y:= ?M) and W= ywz B'=vyz. /(G Dly/w] (30)
| = (J,y:=M). Theresult follows from setting F to be (G, J). S0
3. Aninduction on the proof of D — E. D
. = WW. (G, (Egn 29)
4. By Proposition 25.1: — vyvvz(. (G,L) (Eqn 30)
D=vX.(F,G) E=vX.(F,H) G—¢Hisanaxiom (25) = WWyZ. [y/W](G,H)[y/w] (o)
Then by Propositions 22.3 and 22.5: = VyYZ.[y/W(G, H)ly/w] (vsWaP)
E'=vX.E’ E’x:=IM=FH (26) and.
» ther- vyzZ. [y/wj(G, H)[y/w]
Then by Propositions 22.2 and 22.1, either: L V2. [y/WI(G, Dy /W] (Eqn 29 and Propn 24.1)
e we have: = FE (Egn 30)

F=(F x:=IM) E'=(F H) (27 e or we have:

o: G=w.G E'=w.(G ) (31)

D o)
= vX.(F,G) (Egn 25) D
= vX. (F',x:=IM,G) (Egn 27) = . (G,H) (Egn 29)
=vX.(F',G),x:=!M (VMIG) EV\TV.(V),/.G’ H) (Eqn 31)
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= vyw. (G',H) ((vmr1G) and (VvsWAP))
and:
w. (G, H)
—c WV (G 1) (Eqn 29)
= FE (Egn 31)
e Or we have:
I=vy.l’ E'=wv.(GI)

50 by analysis of each axiom that could giveH — |, we find that the only
possihility is(BUILD) in which case:

D=vW.(G,z:=!recF in M)
E=VvW.(G,localF inz:=1M)
E'=wv. (G 1)
wy.l"=localFinz:=!M
. By Proposition 25.1:
D=vy.(G,H) E=vwy.(G,I) H—clisanaxiom (32
Then by Propositions 22.3 and 22.5 we have:

D' = vy.D"
(D", x:=IM) = (G,H)
E'=vy.E” (33)

(E",x:=M) = (G, 1)
Then by Propositions 22.2 and 22.1 either:
e we have:
G=(G,x:=IM) D'=(G,H) E'=(G,1) (34
so for any N:

D', x:=
= ( 7 D”) x:=IN (Eqn 33)
= (W.(G H)),x:=IN (Eqn 34)
e (V9. (G, 1)) x:= IN (Eqn 32)
= (vy E”) x:=IN (Eqn 34)
= E',x:=IN (Egn 33)

e Or we have:
H=(H x:='M) D"=(GH) I=('x:=IM) E"=(G]I")
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and by case analysis of each axiomwhich could giveH — |, we find that
either:

o GH —xG,l andso D — E.
o Forany N,H' x:=!N— 1" x:=IN,
andso D/ x:=IN — E’,x:=IN.

7. By Proposition 35:
D=W.F E=W.G FFry<z F —;Gisanaxiom (35)

and we can a-convert so that X ¢ X. Then by Proposition 22.4 either:

¢ we have:
X=yw2Z  D'=vyZ. [x/W]F[x/w] (36)
and so:
E
=Ww.G (Egn 35)
= WWWZ.G (Ean 36)
= V2. [x/W|G[/w] (o) and (vswap))

by Proposition 24.1.
[X/WIF[x/W] —z [x/W]G[x/W]
by Proposition 34.3:
[X/WF[x/w] Fy < 2

and so:
Dl
= VZ. [x/W]F[x/w] (Ean 36)
—y VY2 [X/WG[/w] (Propn 35)
e Or we have:
F=vx.F’ D' =vx.F (37)
so by analysis of each axiom:
G=wx.G F'—,G (39)
S0:
E
=vX.G (Egn 35)
=vx.G (Ean 38)
= xX.G (vswaP)
80



by Proposition 34.2;

Flry<z
and so:
Dl
= vX.F' (Egn 37)
—y VX.G (Propn 35)

8. Aninduction on the proof of D — E. Theonly difficult caseis(v), inwhich
case:

D=vz.F E=vz.G F—xG
So by Proposition 22.3 either:
e D'=vz.F' and F = (F',D") so by induction either:

o G=(G,D")andF' —xG,s0D' =vz.F' —4vz.G and
E=vz.G=vz.(G,D")=(vz.G',D").

o dyewvD” . F'Fx<ysoby (v),D'Fx<y.

e D"=vz.F"and F = (D',F") so by induction either:
o G=(G,F"andD' —xG 0E=vz.G=vz. (G F") = (G,D").
o dye wvF"”.D'+x<y. Then either:

o x € wvD’ so by Proposition 37.1 we can find avariable
wervD'NwyvF” suchthat D' - x < w. Thensincew € rv D/,
werwDandsow# z andsoby (v), DF x < w.

o xewvD” andby (sym), DF X < x. O

PropPosITION 39. For closed D, if D —¢c—x F and x istagged in D, then we
have D —y— F.

ProoF. Assume D —¢ E —x F. Then we proceed by induction on the proof of
E —x F.

(BUILD) Wehave:
E=E' x:=!recGinM F=FE'localGinx:=!M (39)
Wecan a-convert G so that wv GNfv E’ = 0. Then by Proposition 38.4 either:
¢ we have:
D= (D',x:=!recGin M) (40)
50 by Proposition 38.6 either:

o wehaveD —x E,andso D —x—¢F.
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o or we have:

VYN.(D',x:=IN) —¢ (E',x:=IN) (41)
and so:
D
= D/,x:=!recGin M (Egn 40)
—y D' local Gin x:=!M (BUILD)
= localGin (D', x:=IM) (VvmIG)
—¢ local Gin (E/,x:=IM) (Egn 41)
= E',localGinx:=!M (VMIG)
=F (Egn 39)
* Dﬁanndg)D_B(_n:F.

(OTrAV) We have:
E=FE' x:=!0yy:=M F=FE x:=!0yy:=IM (42)
By Proposition 38.1:

D=D'\y:=M D' —¢E' x:=!0y (43)
Then by Proposition 38.4 either:
e we have:
D'=D" x:=!0y (44)
and so:
D
= D,y:=M (Eqn 43)
= D" x:=10y,y:=?M (Eqgn 44)
—y D", x:=10y,y:=M (OTRAV)
= D y:=IM (Ean 44)
—¢ E' x:=0y,y:=M (Egn 43)
=F (Egn 42)
e or we have D' —4 E’,x := !0y, so by Proposition 33 D — E, and so
D —x—¢F.

(@TrAV) Issimilar.
(VTRAV) Issimilar.
(Oupp) We have:
E=FE' x:=!0y,y:=A\w.M F=E x:=\w.M,y:=1Aw.M (45)
Then by Proposition 38.4 either:
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e D=D’,x:=!0y, so by Proposition 38.4 €ither:
o D=D"y:=!Aw.M, so by Propositions 22.2 and 22.1:
D =D" x:=!0y,y:=!Aw.M
Then by Proposition 38.6 either:
o wehaveD —x E,andso D —yx—¢F.

o or we have:
VYN. (D", x:=IN,y:=Aw.M) — (E',x:=IN,y :=Aw. M)
(46)

and so:

D
= (D" x:="10y,y:=1Aw. M) (Eqgn 46)
—x (D" x:=A\W. M, y:=Aw. M) (Ouprp)
—c (B, x:=1\w. M,y :=1Aw. M) (Egn 46)
=F (Egn 45)

o D—yE,soby IND D =y E,and so D —y—¢ F.
e D—yE,andsoD —yx—F.
@upp) Issmilar.
vupDa) Issimilar.

(
(
(vuppb) Issimilar.
(vupDpc) Issimilar.
(

=) Wehave E=E —x F =F s0 D —¢ E' — F/, and so by induction
D —x—cF' =F.

(v) Wehave:
E=vy.E F=vy.F E' —xF' (47)
Then by Proposition 38.5 either:

e wehaveD =vy.D' andD' —¢ E’. ThenxistaggedinD’, so by induction
D' —y—c¢F/,andso D —y—¢F.

e Or we have:

vX.(D',z:=!recGin M)
vX. (D' localGin z:= M)
E'=vxX.(D',G)

Vy.G =localGinz:= M

(48)
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Then:
E' —xF
= VX.(D',G) —x F/ (Egn 47)
= WX.(D',G) —x Vy.F’ v)
= vX.(D',vy.G) —vy.F (VMIG)
Then by Proposition 38.7:
vy.F'=vx. F” (D',vy.G) —x F" (49)
s0 by Proposition 38.8 either:
o we have:
FII = (Fl”, vy. Gl) Dl —y FIII (50)
Then:
D
X.(D',z:="recGin M) (Egn 48)
—x vX (F" z:=1recGin M) (Eqn 50)
—x VX.(F" local Gin z:= M) (BUILD)
= VX.(F" vy.G) (Eqgn 48)
= VX.F” (Eqn 50)
= vy.F (Eqgn 49)
=F (Egn 47)

o or we can find w € wv(vy. G') such that D’  x < w, and since
wv(vy.G') ={z}, thismeansw=z so D' F x < z Then:

true
= (D',z:="recGin M) —, (D', local Gin z:= M) (BUILD)
= (D',z:="recGin M) —4 (D', local Gin z:= M) (Propn 36)
= VX.(D',z:="recGin M) —x VX.(D’,local Gin z:= M) (V)
= D—xE (Eqgn 48)

(OIND) We have:
E=E x=!0y E-—F
Then by Proposition 38.4 either:
e D=D' x:= !0y, so either:

o yistagged in D, so by induction D —y—¢ F, and so by (0IND)
D —y—cF.

o yisuntagged in D, so by Propositions 22.2, 22.1 and 38.2:
D= (D" x:=!0y,y:="?M) E=(D",x:='0y,y:=M)
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so by (OIND), D —« E,and so D —x—¢ F.
e D—yE,andso D —y—F.
(@Np) Issimilar.

(VIND) Issimilar. O

PROPOSITION 40. For closed D, if xistaggedinD and D —¢ E thenD —;—*, E.

PROOF. Let D —{ E, and proceed by induction on n.

e Ifn=0thenD=E soD —;—* E.

e If n>0then D —¢c F —0~1 E, and by Proposition 23.4 x is tagged in F
so0 by induction F ——*, E, so by Proposition 39 D ——¢—Z, E, and so
D —;—IE. O

PROPOSITION 41. For closed D, if xistaggedin D, D —_x E and x isin whnf
in E then xisinwhnf in D.

PrROOF. By Proposition 25.1 we have:
D=vX.(F,G) E=VvX.(F,H) G+ Hisanaxiom
Then by the definition of whnf, x ¢ X and either:
e xisinwhnf inF, soxisinwhnf in D.

e x isin whnf in H, and by inspection of the axioms which could result in
G —¢ H we have either:

o G—yH and so D —y E which isacontradiction.
o Xisinwhnf in Gand so x isin whnf in D. O

PROPOSITION 42. For closed D, D), iff tag, D — E and x isin whnf in E.
PROOF.

= Wehavetag, D —¢ F and xisinwhnf inF. By Proposition 40 we know that
tag,D —; E —*, F. By Proposition 23.4 x istagged in E, so by Proposi-
tion4l xisinwhnf in E.

< Wehavetag, D —§ E and so tag, D —* E. Thus DJ},. a
PROPOSITION 43. If tag D' = D —4 E and x # y then E = tag E' and
D' -} E".

PROOF. An induction on the proof of D — E. ]
PROPOSITION 44. D, iff tag, Di,.

PROOF.
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= Wehave:

Dy
= tag,D —* E,xisinwhnf inE
= tag,(tag,D) —" tag E,xisinwhnf inE
= tag,(tag,D) —" tag E,xisinwhnf in tag, E
= tagy(tag,D) —" tag,E,xisinwhnf in tag, E
= tagy Dl
< If x=ythen:
tagyDUx
= tag, Dy
= tag,(tag, D) —* E,xisinwhnf inE
= tag,D —" E,xisinwhnf inE
= DJy

If X #£ y then:
tag, Dy
= tag,(tag,D) —% E, xisinwhnf in E
= tag,(tag,D) —} E,xisinwhnf in E
= tag,D —% F,E=tag,F xisinwhnf in E
= tag,D -y F.E= tagyF,XiSin whnf in F
= Dliy
Thustag, DY iff Di)y.
COROLLARY 45. If D <5 E then D|, iff E{,.
PROPOSITION 46. If D «—y—x E then D —y—y E.
ProOF. By Proposition 25.1 we can find F and G such that:
D=WX.F vX. (F,v(wvG).G) —«E
Then by Proposition 38.7 we can find H such that:
E=vX.H (F,v(wvG).G) —H
Then by Proposition 38.8 we canfind | such that:
H=(I,v(wG).G) F—I
Thus:

= wX.F
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—y VX.(I,v(w G).G) (v)

= VX.H (Ean 53)
=E (Egn 53)
ThusD —y«—y E. O

PROPOSITION 47. For closed D, if D — E then Dy, iff E{,.
PROOF.

= If D —¢ E, then by Proposition 32, E{,.
If D —y E, then by Propositions 42 and 23.4:

tagyD —y - —x F

I
tag, E
and xisinwhnf in F, so by Proposition 46:
tag, D —x —x F
I N e b
tag, E —x —x G

and by Proposition 28.3 xisin whnf in G, and so EJ},.
Otherwise D — E from (Vupp) and since D 4 E and D is closed:

D=vX.(F,w:=!yvzy:=IAw.M,;z:=N) (9
E=vX.(F,w:="1y:=1Aw.M,z:=?N) (55)
and so:
D

= vX.(F,w:=lyvzy:=1Aw. M, z:= ?N) (Egn 54)
>, VX (Fw:i=lyvzy:=1Aw.M,z:=IN) (Defn of <)
—c V. (F,w:=11y:=1Aw.M,z:=IN) (vuppna)
<, VXL(Fw:=1hy:=1A\w.M,z:=N) (Defn of <9)
=E (Egn 55)

Thus by Proposition 32 and Corollary 45, EJ},.
< Follows from the definition of D —v. O

For exampl e, we can use thisto show that extending a closed declaration does not
affect its convergence.

PROPOSITION 48. IfDC E, x € wvD, and D isclosed, then DJ}., iff E{},.
PROOF. We can show by induction on the proof of C that:

D=VvX.F E=vX.(F,G) wvGNfvF =0
Then:
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= If D|, thensince — is convergent, tag,(vX.F) —% H andxisinwhnf inH,
S0 by Proposition 26 tag, F —¢ | and H = vX. I, soxisinwhnf inl. Then
tag,(VX.(F,G)) —¢ vX.(l,G), and s0 E{,.

< If EJ}, then by Proposition 29, v(wv G) . El}, sov(wv G) .vX. (F, G){,, so by
(vwmia), vX. (F,v(wvG) . G){, so by Proposition 47 vX.Fl},,soD{,. O

3.8 Operational properties. referential transparency

Referential transparency was introduced by EVANS (1968) to mean that the se-
mantics of a term should be the same as the semantics of a pointer to aterm. In
our semanticsthisis the same as saying:

[x:='10y,y:=IM] = [[x:=!M,y:=M]

Denotationally, thisis quite smple to prove (although it does require some non-
trivial reasoning about fixed points). But to prove this operationally is much
harder. We need to show that copying a section of graph is equivalent to making
a pointer into a section of graph. Much of the work in showing this turns out to
bein showing that if two variables point to the same term, then we can substitute
onefor the other, that is:

[(D,x:=IM,y:=IM)[x/Z] = [(D,x:= M,y := M) [y/Z]
Inorder to prove thisoperationally, we need to find some property of adeclaration
(D,x:=1IM,y:= M) which we can use as an operational invariant, so:

o If D satisfies theinvariant and D[x/Z] — E then we can find an F such that
E —¢ F[X/Z, and D]y/Z] —; F[y/2], and F satisfiesthe invariant.

We can then use this to show that if D[x/Z{},, then D[y/Z]{},,. Unfortunately, we
cannot use ‘x and y point to syntactically identical terms’ asthe invariant, since:
x:=l(recw:=!Min Ow),y:=!(recw:=!Min Ow)

—2Zyww. (V= IM[v/wW],w:=IM,x:=0v,y:= | Ow)

and although x and y are syntactically identical in the LHS, they are not syntacti-
callyidentical intheRHS. However, they areidentical up to a-conversion, and we
can use this as the basis of an invariant: simulation, based on MILNER’s (1989)
definition of bismulation between processes. Informally, two variablesx and y
aresimilar iff x pointsto M, y pointsto N, and M and N areidentical, up to substi-
tution of similar variables. More formally, we can define a smulation for v-less
declarations as:

DEFINITION. ® C wvD xwvD isav-less D-simulation iff D isv-less, and for
any xR.y.
e If D3 (x:=!M) thenD I (y:=N[y/Z), M =N[X/Z,and X %_¥.
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e IfDJ (x:=?M)thenD O (y:= N[y/ZF),M = N[X/Z],and X .
whereX R Viff Vi.x R V. O
For example, if E isv-less, and D isthe declaration:

x:=M,y:=ME
then one v-less D-simulation is:

{(xy)}
and so x isD-similar toy. If D isthe declaration:
w =ly@zx:=1z@zy:="l,z:= |

then one v-less D-simulation is:

{(wx),(y,2),(z2)}
andsowisD-smilartox. If Dis:

x:=10x y:=10zz:=1y

then one v-less D-simulation is:

{(xy), (x2}

and so x isD-similar toy. We can generalize smulation to any declaration D by
converting it into the form vX. E, and finding av-less E-simulation:

DEFINITION.

e W& = {(Y.2) | X£YR 2#X).
e % isaD-smulationiff D=VX.E, ®'isav-lessE-smulation,and ., =VvX. % '.
e DFx~yiff thereisaD-smulation & withx® . O

For example, for any E, if D isthe declaration:
x:=M,y:=IME

then we can find a v-less F such that E = vZ. F, and we can a-cornvert E so
D=vZ. (x:=!My:=MF), and {(x,y)} isav-less (x := M,y ;= IM,F)-
smulation, so {(x,y)} isaD-simulation, and so:

x:=My:=IME)Fx~y
Therest of this section shows that:

o If D[x/Z F x ~ ythen D[x/Z{, iff D[y/Z{.
e If DF x~ ythen Dy, iff D{,.
¢ We can use thisto show referential transparency.

DEFINITION. Define ‘D is (un)tagged’ as.
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e ¢istagged.

e X:= M istagged.

e X:=?M isuntagged.

e D, E is(unytagged iff D and E are (un)tagged.

e vX.Dis(un)taggediff D is (un)tagged.
DefinetagD as:

e tage=¢

o tag(x:=IM) = (x:=IM)

o tag(x:=?M) = (x:=1M)

o tag(D,E) =tagD,tagE

e tag(vx.D) = vx.(tagD) |

PROPOSITION 49.

1. If DF X~ ythentagDF X ~ .
2. Ifwi.DF X~y thenD F X~ ¥.

PROOF.

1. From the definition, if ® isav-less D-simulation, then ® isav-lesstagD-
simulation. Thus, if £ isaD-smulation, then ® isatag D-simulation. Thus,
ifDFX~§ythentagDF X~ V.

2. Ifvw.DFX~ythenletD =vV.E,and ® beav-less E-simulation such that
X® y. Thenvv. g isaD-simulation,andsoDF X R ¥. O

PROPOSITION 50. If D isv-less, closed and tagged, D[X/Z] F X ~ ¥,
and D[X/Z] —¢ E, then E —¢ F[R/7], F[X/4 FX~y, and D[y/Z —¢ F[y/2.

PROOF. We proceed by analysis on which axiom gave D[X/Z —¢ E. We shall
prove the case for (BUILD), since the others are smpler. Since D is v-less and
tagged, we have:

D= ((x:="!recGin M), %1 :=My,..., X, :=Mp)
E= ((|OCa|Gin X= !M),Xl =My, X = !Mn)[i/_Z‘]

and we can a-convert G so that wv GNfv D = 0. Then let W = wv G, and define
F=viW, .. Wh. (G x:=IM F,....R) as

e If D[X/Z) F x ~ x; then we can find M/, %, i and Z such that:
recGinM[%/4=M[%/3]  MX/A=M[/3] %R
Thuswe can find G; and N; such that:
(recGiin N)[%i/Z] =recGin M (recGiin N)[Vi/Z] = M;
Let W; be fresh, and define;
Fi = ([W /W] Gi[w; /W], X := IN; [V /W))
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e Otherwise F = (x :=!M;), andw; = €.
Then:
e For eachi suchthat D[X/Z] F X ~ X;, (X := !M;[X/Z]) —¢ VW; . FK[X/Z] and so
E—:F[X/Z.
« Similarly, D[y/Z —: F[y/Z.
o Let® beav-lessD[X/Z-smulationsuchthatX ® . Thenlet £ ' bethe small-

o

est relation containing k. such that VW W; & W, W;w. We can show &’ is
av-less (G, x:=M,Fy, ..., Fy)[X/Z-smulation,and S0 F[X/Z F X~ y. O
PropPosITION 51. For closed D:

1. If D[X/Z F X~ y and D[X/Z{}, then D[y/Z{}.

2. If DF x~ ythen Dy, iff DJ,.

PROOF.

1. By Proposition 28.4 tag, D[X/Z] —¢ E and x isin whnf in E. We now show
by induction on n that if D[X/Z] =2 E, Xisinwhnf in E, and D[X/Z| F X ~ ¥

then D[Y/Z U
By Proposition 20 we can find v-less D’ such that tag D = vw. D', and by

Propositions 27.4 and 26, D'[X/Z] —¢' E’, m< n,and xisinwhnf inE’. Then:
¢ If m=0thenxisinwhnf inD’[X/Z], soxisinwhnf in D[y/Z, so D[y/Z]{)y.
e If m> Othen D'[%/Z] —¢ F —! E’ so by Proposition 50 F — F/[%/Z],
F'[X/Z + X~ yand D'[y/Z) —¢ F'[J/Z. Thuswe have:
D[R4 —c F —{'E
le
F%/2
so by confluence:
DR/ — F —ftE
le le
FI[K/—Z] _)ém—l EII
Sincexisinwhnf in E’, xisinwhnf in E”, so by induction D'[y/Z]{, s0
by (v), vw. D'[y//Z 1}, and so by Corollary 45, D[y/Z{}y.
2. Issimilar. O
We can use this to show referential transparency:
PROPOSITION 52. For closed declarations:
1. (D, x:="10y)ly iff (D,x:=10y) Y.
2. (D,x:=IM,y:=M){,iff (D,x:=10y,y:=IM)|,.
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PROOF.

1. = Show by inductionon nthat if vX.(D,x:=!0y) — E and xisinwhnf in
E, thenvx. (D, x:=!0y){,.
If n= 0 then we have a contradiction.
If n> Othenwehavevx. (D, x:=!0y) —¢ F —1~1 E, and so by Propo-
stion 30.2 either:

F=vy. (D', x:=!0y)
and so by induction vX. (D, x:= !Oy)l}y, or:
F=vX.(D,x:=IM,y:=M) M=Aw.N
and so vX. (D, x:=!0y){,.
< Issimilar.
2. = Show by induction on n that if:
vX.(D,x:=IMy:=IN)F X~y
vX.(D,x:=IM,y:=IN) =1 E
zisinwhnf inE
thenvx. (D, x:=10y,y:= IN){,.
If n=0thenzisinwhnf invxX.(D,x:=!M,y:=!N) and so:
vX.(D,x:=10y,y:=IN){,
If n> Othen we have:
vX.(D,x:=M,y:=IN) = F—=5"E
We proceed by case analysis of the axiom for — used. Most of the cases
are similar, so we shall prove the case for (BUILD ) when:
M = recGin M’
N =recH in N (56)
F =vX.(D,x:=!recGin M’ localH in y:=IN')
Weshall a-convert sothat wv DU {x, y}, wv Gandwv H aredigoint. Then
we have:
vX.(D,x:=!recGin M’ localHiny:=IN') —s"E
vX.(D,local Gin x ::l!K/I’, localH iny:=IN’)
and so by confluence:
vX.(D,x:=!recGin M localHiny:=IN) —s" E

le 1§t
vX.(D,local Gin x:=!M' localH iny:=IN") —5"
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and by (vMmIa):
vX.(D,local Gin x:=!M’ localH iny:=IN’)
= VvX.v(wvG).v(wvH).(D,G H,x:=IM" y:=IN')
and from the definition of simulation:
vX.v(wvG).v(wvH).(D,G,H,x:=IM y:=IN)Fx~Yy
S0 by induction:
V. V(wvG).v(wvH).(D,G,H,x:='0y,y:=!N){, (57)

and so:
vX.(D,x:=!0y,y:=N)
= vX.(D,x:=!0y,y:=!recH in N') (Egn 56)
— vX.(D,x:=!0y,localH iny:=IN’) (BUILD)
— VX.(D,local Gin g,x:= 10y, localH iny := IN') )

= vX.v(wvG).v(wvH).(D,G,H, x:="10y,y:=IN) (vmia)
and so by Equation 57 and Proposition 47:
vX.(D,x:=10y,y:=IN){,
The other cases are similar.

< Issimilar. O

3.9 Denoctational properties

This section looks at some properties of the denotational semantics presented in
Section 3.3. In particular, we shall show that:

¢ wv D can be determined from [D].

¢ Concatenation is acommutative monoid, so [D, (E,F)] = [(D,E),F],
[D,€] = [D] and [D, E] = [E, D].

e Syntactic renaming corresponds to semantic renaming, for example
[Mly/X] = [M] o (x:= ready).
¢ a-conversion issound, so [vx. D] = [[vy. ([y/X|D[y/x])] for freshy.
We can use read x to make reasoning about this semantics easier:
PROPOSITION 53. f = giff VX.readXo f =readXxog
ProOF. Follows from the definition of read x. O

For exampl e, thismeans we could have used the foll owing proposition as the def-
inition of newxf, (x:= f), and set X fg:
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PROPOSITION 54. Ifxe X andy ¢ X then:

read xo newXf = readx
readyonewXxf =readyo f
readXo (x:=f)=f

readyo (x:= f) =ready
readXo (set Xfg) =readXxo fog
readyo (set Xfg) = ready

o~ PE

PROOF. Follows from the definition of readx, newxf, (x:= f), and set Xfg. O
Another useful property of fix is uniformity:

ProPOSITION 55. IfVi. f(gi) = h(fi) and fL = L then f(fixg) = fixh.
PROOF.

f(fixg)

= f(V{d"L|nin w}) (Defn of fix)
= V{f(d"L)|ninw} (f iscontinuous)
= V{h"(fL1) | nin w} (Hypothesis)
= V{h"L|nin w} (Hypothesis)
= fixh (Defn of fix)
|

The written variables of asemantic function f can be defined aswv f:
DEFINITION. wv f = {X| readxo f # read x}. O

For example (when h # read X):
wv(x:=h) = {x}
wv(x:=readx) = 0
wv(newxf) = (wv f)\ {x}
wy(set Xfg) C X
wv(fog) CwvfUwvg

We can show that the semantic and syntactic definitions of ‘written variable' co-
incide.

PROPOSITION 56.

1. Ifwvf CwvDthen[[D] =[D]eo f.
2. wD =wv[[D]

PrROOF.
1. We can show that if wv f C X then:
Vi.(setXgi)o f = setXg(io f)
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2.

lof=1
and so by uniformity:
fix(set Xg) o f = fix(set Xg)
From thisit is easy to show by induction on D that [D]] = [D] o f.
(wv[[D] € wvD) Aninduction onD.
(wv[D] 2 wvD) If wv[D] wvD thenfind x € wvD and x ¢ wv[[D]. Then:

T
=readXo(x:=T) (Propn 54.3)
=readxo [D]o(x:=T) (x ¢ wv[[D])
=readXxo [D]o(x:=L)o(x:=T) (Part 1)
=readXo(X:= L)o(X:=T) (x ¢ wv[D]))
=lo(x:=T) (Propn 54.3)

Thisisacontradiction, and so wv[[D] O wvD. O

We can now show that concatenation is a commutative monoid.
PROPOSITION 57. Ifwvf C X,wvgCVY,wvhC X,and XNY = 0 then:

1. setXfh=foh
2. fix(setXf) = f ofix(set Xf)
3. fix(set(XUY)(fog)) = gofix(set(XUY)(fog))
4. fix(set(XUY)(go f)) = fix(set(XUY)(f o Q))
5. fix(set(X UY)(fix(set X f) ofix(setYQ))) = fix(set(X UY)(f o Q))
6. [D] = fix(set(wv D)[[D])
7. [D,e] = [D]
8. [D,E] = [E,D]
9. [D,(E,F)] =[(D,E),F]
PrROOF.
1. Forany x € X:
readxoset X fh
—=readXofoh (Propn 54.5)
For any x ¢ X:
readXosetXfh
= read X (Propn 54.6)
=readXo foh (X ¢ wv f Uwvh)

So by Proposition 53 set X fh= foh,
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2. Follows from part 1.

3. ForanyxeY:
read X o fix(set(X UY)(f oQ))
= readXo f o gofix(set(XUY)(foQ)) (Part 1)
= read xo gofix(set(XUY)(f og)) (x ¢ wv f)
Forany x¢Y:
read X o fix(set(XUY)(f oQ))
= read xo gofix(set(XUY)(f oQ)) (X ZwvQ)

So by Proposition 53:
fix(set(XUY)(f og)) = gofix(set(XUY)(foQ))

. Forany xe XUY:

read Xoset(XUY)(go f)(fix(set(XUY)(f og)))

= readXo go fofix(set(XUY)(f oQ)) (Propn 54.5)
= readXogo fogfix(set(XUY)(foQ)) (Part 3)
= read Xo gofix(set(XUY)(fog)) (Propn 57.2)
= read Xofix(set(XUY)(f og)) (Part 3)
and for any x ¢ XUY:
read Xoset(XUY)(go f)(fix(set(XUY)(foQ)))
= read X (Propn 54.6)
= read xofix(set(XUY)(f o g)) (Propn 54.6)

and so by Proposition 53:
set(XUY)(go f)(fix(set(XUY)(fog))) = fix(set(XUY)(f og))
and sincefix f isthe least fixed point of f:
fix(set(XUY)(go f)) < fix(set(XUY)(foQ))
and so by a symmetrical argument:
fix(set(XUY)(go f)) =fix(set(X UY)(f o Q))

5. If f =go f, wecan show by induction on n that (set Xg)"Lo f < f:

o (setXg)PLlof=_1lof<f.
e If x€ X then:
read xo (set Xg)™1 L o f

= read Xo (set Xg)((set Xg)"L)o f (Defnof M)
= readxogo (set Xg)"Lo f (Propn 54.5)
< readXogo f (Indn)
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= readXo f (f=gof)

If x ¢ X then:
readxo (set Xg)™1 Lo f
= read Xo (set Xg)((set Xg)"L) o f (Defn of M)
= readXo f (Propn 54.6)
Thus (set Xg)"** Lo f < f.
Thus:
f=gof
= V{(setXg)"Lof |ninw} < f (Above)

= V{(setXg)"L |ninw}o f < f
= fix(setXg)o f < f

(o is continuous)
(Defn of fix)

For example, if wv f = X, wvg=Y and XNY = 0 then we have by part 3:
fix(set(XUY)(fog)) = fofix(set(XUY)(f oQ))

and so by the above:

fix(set X f) ofix(set(XUY)(f og)) < fix(set(XUY)(fog)) (58)
Similarly:

fix(set Yg) o fix(set(XUY)(f o @)) < fix(set(XUY)(fog))  (59)
Thus:

set(XUY)(fix(set X ) o fix(set Y@)) (fix(set(XUY)(f 0Q)))

= fix(set X f) ofix(set Y@) o fix(set(X U Y)(f o)) (Propn 57.1)
< fix(set X f) o fix(set(XUY)(f oQ)) (Egn 58)
< fix(set(XUY)(fogQ)) (Egn 59)

And so sincegf < f = fixg < f:
fix(set(X UY)(fix(set X f) ofix(set YQ))) < fix(set(XUY)(fog)) (60)
Similarly, we can show:

fix(set(X UY)(fix(set X ) ofix(set YQ)))
= fix(set(X UY)(fix(set YQ) o fix(set X f))) (Propn 57.4)
= fix(set X f) o fix(set(X UY)(fix(set Yg) o fix(set Xf)))  (Propn 57.3)
= f ofix(set X ) o fix(set(X UY)(fix(set Yg) o fix(set Xf))) (Propn 57.2)
= f ofix(set(XUY)(fix(set Yg) o fix(set X f))) (Propn 57.3)
= fogofix(set(XUY)(fix(set X f) o fix(setYQ))) (Similar)
= set(XUY)(f o g)(fix(set(X UY)

(fix(set X ) ofix(set YQ)))) (Propn 57.1)
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and so, since f = gf = fixg < f:

fix(set(X UY)(fix(set X f) ofix(set Y@))) > fix(set(XUY)(f oQ))
which, together with Equation 60 gives:

fix(set(X UY)(fix(set X f) ofix(set YQ))) = fix(set(XUY)(f o g))

. We have:
fix(set X f)
= fix(set X(f oid)) (Identity)
= fix(set X(fix(set X f) o fix(set 0id))) (Part 5)
= fix(set X(fix(set X f ) o set Qid(fix(set 0id)))) (Unfold)
= fix(set X(fix(set X f) 0 id)) (set0fg=id)
= fix(set X(fix(set X f))) (Identity)

S0 we can show by induction on D that [D] = fix(set(wv D)[D]).

7. Follows immediately from the definition of [D, €]
8. Followsimmediately from part 4.
9. We have:
[D, (E,F)]
= fix(set(wv(D, E,F))([D]
ofix(wv(E, F))([E] o [F]))) (Defn of [D, EJ)
= fix(set(wv(D, E, F))(fix(set(wv D)[D])
ofix(wv(E, F))([E] o [FI))) (Part 6)
= fix(set(wv(D,E,F))([D] o [E] o [F])) (Part 5)
= [(D,E),F] (Similar)
Thus concatenation is a commuatative monoid. |

Finally, we can show the relati onship between semantic and syntactic relabelling
of free variables, and thus show the soundness of a-conversion.

PropPosITION 58. [f zisfresh and x ¢ fv E then:;

oM~ wbhPE

[Mly/X]] = [M[ o (x:= ready)

(x:=ready) o [D[y/X]] = [[D] o (x:= ready) for any x,y ¢ wvD
(x:=readz) o [[[z/X|D[z/X]]] = (z:=read x) o [D] o (X := read 2)
[vx. D] = [vz. ([z/XD[z/X)]

[vx.vy.D] = [[vy.vx.D]

[D,vx.E] = [vx.(D,E)]

PrRoOOF. An induction on the size of D and M.

1. Thedifficult caseisto show:

[(recDin M)[y/X]| = [[recD in M] o (X := ready)
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If x € wv D then:
[(recDin M)[y/X]
= [recDin M]] (Defn of substitution)
= [M]<[D] (Defn of [[recD in MJ)
= [M] o[[D] o (x:= ready) (Propn 56.1)

= [[recDin M] o (X:=ready)
Otherwise, if y € wv D then, for fresh z
[(recDin M)[y/X]
= [[rec[z/y]D[z/Y][y/X] in M[z/Y][y/X] (Defn of substitution)

= [M[z/ylly/¥] < [[2/y]D[z/y]ly/X]] (Defn of [[recD in M)
=[[M] o (y:=readz)o(x:=ready)o[[z/y]D[z/V][y/X] (Indnon 1)

(Defn of [[recD in MJ)

= [[M] o (y:=read2)o[[2/y]D[z/V]] o (X :=ready) (Indnon 2)
=[[M]o(z:=ready)o[[D] o (y:=readz)o(X:=ready) (Indn on 3)
= [M[y/Z] o [D] o (y:=read z) o (X := ready) (Indnon 1)
= [M]o[[D] o(y:=readz) o (x:=ready) (zisfresh)
= [M] o [[D] o (x:=ready) (Propn 56.1)
= [[recDin M] o (X:=ready) (Defn of [[recD in MJ)
Otherwise:
[(recD in M)[y/X]
= [[recD[y/X] in M[y/X] (Defn of substitution)
= [M[y/X]] = [D[y/X] (Defn of [[recD in M])
= [[M] o (x:=ready) o [D[y/X]] (Indnon 1)
= [M] o[[D] o (x:= ready) (Indnon 2)

= [[recDin M] o (X :=ready)
The other cases are smpler.

(Defn of [recD in M])

. Thedifficult cases are those involving fix, for example to show:

(x:=ready)o[[z:=M[y/X] = [[z:= M] o (X:=ready)
We first show:

Vi.(x:=ready)oset{z}((z:= [M]) o (x:=ready))i

= (set{x,z}(x:=ready) o {Z}(z:= [M]))((X :=ready) oi) (612)
(X:=ready)o L = |
and:
Vi.set{z}(z:= [M])io (x:=ready)

= (set{x,z}(x:=ready) o {Z}(z:=[M]))(i o (X :=ready)) (62)
Lo(x:=ready)= L

99

Then we can use uniformity twice to show:
(x:=ready)o[z:=M[y/X]

= (x:=ready) ofix(set{z}(z:= [M[y/X])) (Defn of [x:=!M])
= (X:=ready) ofix(set{z}((z:= [M]) o (X:=ready))) (Indnon 1)
= fix(set{X, z} (X := read y) o set{z}(z:= [M]))) (Unif on Eqn 61)
= fix(set{z}(z:= [M])) o (X :=ready) (Unif on Egn 62)
= [[z:=!M]o(X:=ready) (Defn of [x:=IM])

The other cases are similar.

3. Thishasasimilar proof to part 2.
4. If y ¢ wv(vx. D) then:

readyo [[VX. D]
= ready (y ¢ wv[vx. D)
= readyo [[vz.([z/X|D[z/X])] (v & wv[[vz. ([z/X]D[z/x)])

Otherwise:
readyo [[Vx. D]
= readyonewX[[D] (Defn of [Jvx. D))
= readyo [D] (Propn 54.2)
= readyo (z:=readX)o[D] (Propn 54.4)
= readyo(z:=readX)o[[D] o (x:=read2) (Propn 56.1)
= readyo (Xx:=readz)o [[z/XD[z/X] (Indnon 3)
= readyo [[2/X|D[z/X] (Propn 54.4)
= readyonewZ[[[z/X|D[z/X]] (Propn 54.2)
= readyo [vz.[z/X|D[z/X]] (Defn of Jvx. D)
Thusfor any y:

readyo [[vx. D] = readyo [[vz.[z/X]D[z/X]
and so [[vx. D]| = [[vz. [z/X]D[z/X]].

5. Follows from the definition of new.
6. To begin with, we can show by induction on D that if x ¢ fv D then:

(x:=Lo[D]) =([D]ox:= 1) (63)
We can &l so show that:
(x:= Lo f)=(x:=Lonewxf) (64
Thenfor any i:
x:= L o(set(wv(D, E))([D] o [E])i)
=x:=_Lo[DJo[E]ei (Propn 57.1)
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=[D]ox:= Lo[E]oi (Egn 63)
=[[Dox:= Lo[[E]ox:=Loi (Propn 56.1)
=[D]ox:= LonewX[E]ox:= Loi (Eqgn 64)
=X:= Lo[[D]onewX[E] ox:= Loi (Egn 63)
= set(wv(D,E))(x:= Lo [[D] o newx[E])(x:= Loi) (Egn 57.1)

Thus, sincex:= Lo L = 1, we can apply unification and get:
x:= L ofix(set(wv(D, E))([D]  [E]))

= fix(set(wv(D, E))(x:= L o [D]j o newx[[E])) (%)
Similarly, we can show:
x:= L ofix(set(wv(D,vx.E))([D] o newX[E])) (66)

= fix(set(wv(D, E))(x:= L o [D] o newx[E]))
And so:
x:= Lo[vx.(D,E)]
= x:= L onewX(fix(set(wv(D, E))([D] o [E]))) (Defnof [vx.(D,E)])

= x:= L ofix(set(wv(D, E))([D] o [E]])) (Eqn 64)
= fix(set(wv(D,E))(x:= Lo [[D] o newX[E])) (Egn 65)
= x:= L ofix(set(wv(D, vxsE))([D] o new x[E]))) (Egn 66)
=X:= Lo[D,vx.E] (Defn of [D,vx. E])
From this, it is easy to show that [vx. (D, E)] = [D,vx.E]. O

3.10 Logical properites

This section looks at some properties of the operational characterization of the
program logic given in Section 3.4. In particular, we shall show that:

e Thelogic respectsduplication, so |= (D, x:=IM,y:=M)[x/Z : A iff
= (D,x:= M,y:=M)[y/Z: A

¢ Thelogicisreferentially transparent, so |= (D, x:=0y)[x/Z : Aiff
= (D,x:=10y)ly/Z : &

e Thelogicisunaffected by local variables, soif x ¢ wvA then |= D : A iff
I=vx.D:vx.A.

¢ Thelogic respects reduction, so if D — E then =D : Aiff = E: A.
PROPOSITION 59.

1. Ifyisfreshand |= D : Athen |=[y/X|D[y/X] : [y/XA.
2. Ifyisfreshand I |=D: Athen[y/X|I" |= [y/X|D[y/X] : [y/XA.
3. Ifyisfreshand I |= M : @then [y/X|I" = M[y/X] : @.

ProoOF. Follows from Proposition 24. O
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PrRoOPOSITION 60. IfDisclosedandwvENwvA=0then |=D:Aiff |=(D,E):A.

PROOF. We show by induction on @that |=D : (x: @) iff |= (D,E) : (x: @). The
only difficult caseiswhen = — X:

= Assume |=D: (x:y—X). ThenDJ so by Proposition 48 we have (D, E){}.
Then for any (z:=!'x@y) C F 3 (D, E) 3 D, by induction:

FFR:y:W) = FF:(z:x)
andso |=(D,E) : (x: W—X).

< Assume |=(D,E) : (x: y—X). Then (D, E){, so by Proposition 48 we have
Dy,. Thenfor any (z:=!x@y) C F J D, let W= wvE, and V be fresh, so:

= (Fz:=1x@y) : (y: §)

= |= [V/W)(F, z:= Ix@y)[V/W] : [V/W](y : ) (Propn 59)

= = ([V/W(F,z:= 'x@y)[v/W],.E) : [V/W](y: W) (Indn)

= [= ([V/W(F,z:= x@y)[V/W].E) : [V/W](z:x)  (Hypothesis)

= [= [V/W(F, z:= x@y)[V/W] : [V/W](z: X) (Indn)

= =(Fz:=1x@y) : (z:X) (Propn 59)
and so |= D (x: Y—X).

Then by inductionon A, =D : Aiff |=(D,w:=1IM):A. O

PrROPOSITION 61. For closed declarations:

1L If = (D,w:=IM x:=1M):(w: @)

then |= (D,w:=!M,x:=1M) : (X: @).
2. If =(D,w:=1M, x_lM , 2= w@y) : A

then |= (D,w:= IM x:=1M,z:=Ix@y) : A
10w) : (x Q) iff |_(D X: _|DW) (w: ).
10w, z:= Ix@y) : Aiff |= (D,x:= 0w, z:= lw@y) : A
IM,y:=M)[x/Z : Aiff |= (D, x:=IM,y:=M)]y/Z: A
1Oy)[x/7 : Aiff |= (D, x:=10y)[y/Z : A
D,x:=?M): Aiff |=(D,x:=IM): A
ProoF. These al have similar proofs, so we shall show parts 1 and 2 as an ex-
ample. We shall show by induction on @ that:

L If E(D,w:=IMx:=IM):(w: Q)
then |= (D,w:=!M,x:=M) : (X: @).

2. If =(D,w:=IM,x:=M,z:=w@y) : (v: )
then |= (D,w:=!M,x:=IM,z:= Ix@y) : (V: @).

From this it is easy to show parts 1 and 2. The only difficult case is when

~No ok~ w
[l
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1. Assume:

= (D,w:=IM,x:=IM): (W: Y—X) (67)

Then (D,w := M, x:=IM){,, so by Proposition 51.2:

(D,w:=IM,x:= M)y

For any (z:=!x@y) C E O (D,w:=IM,x: _'M)e|ther:

e Z=WOrz=x,
tradiction.

0 M = x@y, 0 (D,w:=!M,x:=!M){},, whichisacon-

& W# z# X, S0 by Proposition 22, we can find F such that:

(F,w:=IM,

x:=1M,z:=Ix@y) = (F,z:=Ix@y) IJD (68)

Then, for fresh v:

FE:(y:y)

= [= (Fwi=IM,x:= M, z:= 1x@y) : (y: §) (Eqn 68)
= = (F,w:=IM,x:=IM,z:=Ix@y,v:= IXx@y) : (y: Y)(Propn 60)
= = (F,w:=IM,x:=IM, z:=Ix@y,v:=lw@y) : (y: Y{indn on 2)
= = (Fw:= IMx_'Mz_|x@yv—|w@y) (v:x) (Egn67)
= |_(F w:=IM Xx:=IM,z:=Ix@y,V:=!x@y) : (v:X)(Indn on 2)
= = (F,w:=IM,x:=IM,z:=Ix@y,v:=IXx@y) : (z: X)(Indn on 1)
= = (F, !M,x::!M,z::!X@Y):(z:x) (Propn 60)
= E:(z:x) (Above)
Thusfor any (z:=Ix@y) C E J (D,w:=!M,x:=M):
FE:(y:W)= FE:(z:X)
andso |= (D,w:=M,x:=IM): (x: P—X).
2. Assume:
= (D,w:=IMx:=IM,z:=w@y) : (v: y—YX) (69)

Then (D,w := IM,

x:=IM,z:= 'w@y){,, and so by Proposition 51.1, we

have (D, w:=IM,x:=IM, z:= Ix@y),.
For any (t —lv@u)EEj(Dw IM,x:=1IM, z:= Ix@y) either:

e t=zsov=wandu=y. Then:

= (DW IMx_le—'W@y) VHUESY)
= = (D,wi=IM,x:= M zi= w@y): (W:p—%) (v=w)
= |:(D,W :!M,x::!M z:=w@y): (x:Y—x) (Part 1)

and so, since (z:=

w@y) C E 3 (D,w:=M,x:= M, z:= w@y):
FE:(u:y)
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= FE:(y:p)
= FE:(z:Xx)
= FE:(t:X)

e t # zs0 by Proposition 22, we can find F such that:

(u=y)
(Above)
t=2

E=(Fx=My:=IMz=Ix@) FID FI(t:=!v@u) (70)

\-/-E

(Egn 70)

) (Indnon 2)
(Egn 69)

(Indn on 2)

(Indn on 2)

and so:
=E:(uy)
= = (Fx:=IMy:=IM,z:=1x@y) : (u:
= = (Fwi= IMx:=IM,z:= w@y) : (u:
= = (F,w:=IM,x:= IM,z:= lw@y) : (
= | (Fwi=IM,x:=IM,z:= Ix@y) : (t :
=> FE:(t:x)
Thusfor any (t :=!v@u) C E J (D,w:=IM,x:=IM, z:= Ix@y):

FE:(u:g) = FE:(t:X)

andso |= (D,w

=1IM,x:=IM,z:= IX@y) : (V: P—X).
PROPOSITION 62. If (T,w: @) =M :Wythen(TAY: @) |=

Mly/w] : @

ProoOF. For any D and x, find afresh z, and so by Proposition 59 we have:

(Mz:@) = Mlz/w g

and:
|=(D,x:=!M[y/W]): A(Y: Q)

= (D, x:=M[z/w][y/Z) : T A (y: @)
= (D,x:=M[z/w][y/Z,z:=0y) : T A(y: @)
= (D,x:=M[z/w],z:=10y): T A(Y: @)
= (D,x:=M[z/w],z:=10y): T A(z: @)
= (D,x:=M[z/w],z:=10y): (I',z: @)
= (D,x:=M[z/w],z:=10y) : (Xx: Y)
= (D,x:= IM[z/wy/Z,z:= 1y) : (x: W)
= (D,x:= M[z/w][y/2) : (x: §)

= (D,x:= My/w]) : (x: )

ThusT A (y : @) [= Mly/w :
PropPosITION 63. For closed D:

1 Ifw#xthen |=D: (x: @) iff =vw.D: (x: @).
2. If =D:Athen |=vw.D:vw.A.
3. If =vw.D:Athen |=D:A.
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(71)

(Substitution)
(Propn 60)
(Propn 61.6)
(Propn 61.3)
(zisfresh)
(Egn 71)
(Propn 61.6)
(Propn 60)
(Substitution)

O



PROOF.

1. Aninductionon ¢. The only difficult caseiswhen o= (— X.

= If =D: (x:y—YX) then D|, so by Proposition 29 vw. D{},.. For any
(z:=Ix@y) C E 3 (vw. D), let v be fresh, by Proposition 22, we canfind

F 3 (z:= !'x@y) such that:
E=vw.F
50 by Proposition 59:

F 3 [v/wD[v/w]

[= [v/WID[v/W] : (x: W —X)

and so:
FE:(y: W)

= EVW.F:(y:y)
= FF:y:y)
= EF:(z:x)
= EwW.F:(z:X)
= EE:(z:X)

Thus =vw.D: (X: P—X).

< If:

Eww.D:(x:Pg—X)

then vw. D} so by Proposition 29 DJ},.

For any (z:=!'x@y) C E O D, we can find F such that:

E = (F, z:=x@y)

Thenvw. (F,z:= !x@y) 3 vw. D, so for fresh u and v:
FE(y:W)

= (F,zi=1x@y) : (y: )

= = (F,z:=x@y,u:=0y,v:=Ix@u) : (y: W)

= |=(F,z:=x@y,u:=!0y,v:=Ix@u) : (u: )
= [=vw. (F,z:=!x@y, u:=0y,v:=!x@u) : (u: V)

= = (vw. (F,z:= x@y),u:= 0y, v:=Ix@u) : (u: Y)
= |= (vw. (F,z:= x@y),u:='0y,v:=Ix@u) : (v:X)

= [=vw. (F,z:=x@y, u:=0y,v:=!x@u) : (v:X)

= = (F,z:= Ix@y,u:=!0y,v:=Ix@u) : (v:X)
= |=(F,z:= x@y,u:=Oy,v:= Ix@y) : (v:X)
= |=(F,z:= x@y,u:=!0y,v:=Ix@y) : (z:X)
= = (Fz:=x@y) : (z:X)

= =E:(z:x)
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(72)

(73)

(Egn 72)
(Indn)
(Egn 73)
(Indn)
(Egn 72)

(74)

(75)

(Egn 75)
(Propn 60)
(Propn 61.3)
(Indn)
(v™M1G)
(Egn 74)
(vMmi1G)
(Indn)
(Propn 61.6)
(Propn 61.1)
(Propn 60)
(Egn 75)

Thus =D : (x: y—X).
2. Aninductionon A, using part 1.
3. Aninductionon A, using part 1.
PROPOSITION 64.

L IfFe<yand |=D:(x:@) then |=D:(x:y).

2 IfFF<Aand |=D:Tlthen |=D:A.

3. fr<I',IM"=D:Aand+ A < Athenl |=D:A.
4. fr <A A=M:@and Fo< Ythenl |=M: .

PROOF.

1. Aninduction on the proof of F @< (.
2. Aninductionon the proof of |=D:T.
3. Follows from part 2.
4. Follows from part 2.

PrROPOSITION 65. For closed D:

1. IfD=Ethen |=D:Aiff =E:A.
2. IfDCEand|=D:Athen |=E:A.
3. IfD—¢Ethen |=D:Aiff =E:A.

Thus, if E —. F thenT |= E: Aiff [ = F : A
PROOF.

1. A simpleinduction on A.

2. Follows from Propositions 60 and 63.

3. Show by inductionon @that D : (x: @) iff E : (x: ¢). The only difficult case
iswhen = p— X. Wethen have two cases, depending on the axiom used in

proving D — E:

(BUILD). Weshall show thatif D: (x: —X) thenE : (x: y— x) sincethe

other directionis easier.
By Proposition 25.2 we can find v-less F such that:

D = vX.(F,w:="!recGin M)
E=vxy.(F,Gw:=1!M)
y=wvG

For simplicity, we assume G is v-less, and that the declaration (F,G) is
well-formed, as the general case is no more interesting. Then for any

(z:='x@y)CH JE:
¢ |f w= zthen Dft,, which isa contradiction.
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e If w= xthen we can find fresh ¥ and | such that:
H=vxy.(F,G 1, w:=IM,z:=w@y) (76)

soletw=wv G, andlet vand Vbefresh. Thensince|=D: (x: W—X),
by Proposition 59:

vX. (F,v:i="lrecGin M)[v/w] : (v:P—X) (77)
and, from the definition of C:
(z:=v@y)
C vX. (F[v/w],G,I,v:=!(recGin M)[v/w], -
w:=IM[v/W],z:= v@y) (78)
JVX.(F,v:i=!recGin M)[v/wW|
Then:
EH:(y: )
= =y (F,G l,w:=IM,z:=1w@y) : (y: V) (Egn 76)
= = (FGl,w:=1M,z:=1w@y) : (y: ) (Propn 63)
= [= (F,G,1, [w/w] G[vv/ wiw],
v:=IMw:= IM , 2= 1w@y) : (y: ) (Propn 60)

= = (F[v/w],G [W/WW]G[VV/WW]
vi= IM{v/w] W= IM[v/w], := V@y) : (v

= = (Fv/w],G, I ,Vi=1(recGin M)[v/w,
wi= !M[v/vv],z:: v@y) : (y: g) (Indn)

= = (Fv/W],G,I,v:=(recGin M)[v/w],
w:=IM[v/W],z:=Iv@y) : (z: X)

= =H:(z:)x)

Thus = E: (x: Y—X).

e If x# w# zthen the proof is similar.

Y) (Propn 61.5)

(Eqns 77 and 78)
(Similarly)

(oTHER) If D —¢ E is proved without (BUILD) then we can show that:

DC D impliesD' —=.E'JE
ECE impliesDC D' —¢FE

Thenif =D : (x: Y—YX) then D, so by Proposition 32, E{},. Thenfor
any (z:=!'x@y) C F J E, we can find G such that:

= (G, z:= Ix@y) (79)
Then let w be fresh, so:

(W:=IX@y) C (G,w:= Ix@y,z:= x@y) J E
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and we can find H 2 D such that:

H—¢F
Then:
FF:(y:)

= [F(G.z:=1x@y): (y: ) (Ean 79)
== (G z:= 'x@y, =Ix@y) : (y: §) (Propn 60)
= |=(Hw:=1x@y): (y ) (Indn)
= = (H.w:=1x@y) : (W:X) (FD:(x:y—x)
= [=(Gz:= 'X@y wi=Ix@y) : (W:X) (Indn)
= = (G, ='X@y, =Ix@y) : (z:X) (Propn 61.1)
= = (G z:=1x@y): ( X) (Propn 60)
= [FF: (Z X) (Egn 79)

Thusfor any (z:=Ix@y) C F J E:

FFiyiW = EF@X)
0 =E:(X:Pg—X).
The other direction is shown similarly. O

3.11 Full abstraction

In this section, we show that the model D is fully abstract for concurrent graph
reduction. Thismeansthat concurrent graph reduction hasthe samefully abstract
model asleftmost-outermost reduction, and so concurrent graph reduction has ex-

actly the same computational power as leftmost-outermost reduction.
This proof follows the same structure as Section 2.7

e Weshow that I - D : Aiff [A] < [D][r], thusshowing that the proof system
issound and compl ete for the denotational semantics. ThisisProposition 66,

the graph reduction equivalent of Proposition 15.

e Wethenshow thatif THD:Athenl |=D:A, andthatif I |= D : A then
[A] < [D]T]- Thusthe three presentations of the logic are equivalent. This

is Proposition 69, the graph reduction equivalent of Proposition 18.

¢ Finaly, we show that full abstraction is gained by proving the three logical
presentations to be equivalent. This is Proposition 70, the graph reduction

equivalent of Proposition 19.

Thus, ABRAMSKY and ONG’s techniques can be adapted to graph reduction.

PROPOSITION 66.

1L r=M:oiff [@] < [M][TT.
2. T+D:AIff [A] < [D]ITT-
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PROOF.
SOUNDNESS (=) We have to prove therulesof TFM:@and T'-D: A be

sound. For example, to prove (1), if [A]] < [[x:=!M]['] and [@] < [M][A]
then:

X: @

: s]](x = [MD[A] (Hypothesis)
< (x:= [M([x:= M) (Hypothesis)
= [x:=M][I] (Propn 57.2)

The other cases are similar.

COMPLETENESS («=) Aninduction on M and D. For example, if x # y and:

[l < [x@y][r]
then either [@] = L,s0 F ¢=wandso I - x@y : ¢, or:

9l < [x@y][r]

= @] < apply[FOTIT (W] (Defn of [x@y])
= [Fy)—¢ < [FX)] (Propn 9.1)
=>FIX)<Iy)—o (Propn 12)
=> Fr<x:ry)—oy:r(y) (Defn of <)
=>TFx@y:o ((<) and (@a))

The proofs for x@x, [x, xvy and xvx are similar. The proof for Ax. M is
similar to that of Proposition 15. If:

[¢] < [recDin M][I] (80)
then:
[
< [recDin M][I] (Ean 80)
= MDD (Defn of [recD in M])
= [MICVA[A] | [A] < [D]IrT}) (Propn 14)
= V{IM]IIA] | [A] < [OTIF]}) (Continuity)

so since [[@] is compact we can find aA such that:

[ol <[MITA]  [A] < [DIIFT
s0 by induction:
A-M:o r=D:A

and so by (rec):
MN-recDinM: @
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If [A] < [(x:=IM)][r] then:

A

: ]]S [ :=M)TIT] (Hypothesis)
= fix(set{X}(x := [M])[I] (Defn of [x:=IM])
= V{(set{x}(x:=[[M]))"L | nin w}[I] (Defn of fix)
= V{(set{x}(x:=[M]))"L[F] | nin w} (Continuity)

0 since [[A]] is compact, we can find an n such that:
[A] < (set{x}(x:= [M])" L[]
then we can show by inductiononnthat I + (x:= M) : A:

o If [A] < (set{x}(x:=[M]))°L[I] then [A] = L so by Proposition 12
FA=¢,s0by(<)and (L) F(x:=!M):A.

o If [A] < (set{x}(x:= [M]))™*L[r] then:

[AX)]
< (set{x}(x:= [M]))™1L]IrPx (Hypothesis)
= [M]((set{x}(x:= [M])"L[TT) (Defn of set)

= MJ(V{[©] | [€] < (set{x}(x:=[M])"L[T})  (Propn 14)
= V{IMI[O] | [@] < (set{x}(x:= [M]))"L[F]}  (Continuity)

so0 since [A(x)] is compact we can find a © such that:
[20] <IMITE] [ < (set{x}(x:= [M]))" L[]
so by induction:
OFM:A(X) Ne=(x:=M):0

and so by (!):
e (x:=1M) : (x: A(X))
For any y # x:
true

= [A(y)] = [Aly (Defn of [A])
= [Ay)] < (set{x}(x:=[M]))"** L[ Ty (Hypothesis)
= [Ay] <[y (Defn of set)
= [ay] < [Fyl (Defn of [T])
=F r(y) <Ay) (Propn 12)
= Fux.T <y:A(y) (Defn of <)
= TEx:=IM) i (y:A(y) (L) and (<))

ThusVy.TF (x:=!M): (y:A(y)) andso T - (x:=!M) : A.

The proofsfor x:= ?M and D, E are similar, and the proof for vx. D ismuch
simpler. a
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PROPOSITION 67. If D — E then [D] = [EJ.

ProOOF. Thisisamatter of proving each of the axiomsfor = and — to be sound.
The axiomsfor = are covered in Propositions 57 and 58.

Of the axiomsfor —, the axiom for graph building can be shown from Propo-
sition58. Theaxiomsfor spinetraversal aresimplesince [y := ?M] = [y :=!M].
Garbage collection isequally simple, from the definition of new. Thisleavesthe
axiomsfor updating which all have similar proofs, so we shall consider the case
of an indirection node. For any z# x:

readzo (X:=ready)o[[y:=IM]

=readzo[y:=IM] (Propn 54.4)

=readzo (X:=[M]) e ly:=M] (Propn 54.4)
and:

readXo (X:=ready)o[y:=!M]

= readyo[[y:=IM] (Propn 54.3)

=readyo (y:=[M])o[y:=!M] (Propn 57.2)

= [M]e[y:=M] (Propn 54.3)

= readXo (x:=[[M])o[y:=!M] (Propn 54.3)
Thusfor any z

readzo (X:=ready)o[ly:=IM] =read zo (x:= [M]) o [y :=M]
and so:
(x:=ready)oly:=IM] = (x:=[M]) o [y:=IM] (81)
Then:

[x:='10y,y:="Aw.M]
= fix(set{x, y} (fix(set{x}(x :=ready)) o [y:='Aw.M])))  (Defn of [M])
= fix(set{x, y} (fix(set{x} (X ;= read y))

ofix(set{y}[y:='Aw.M]))) (Propn 57.6)
= fix(set{X, y}(X:=readyo [y :=1Aw. M])) (Propn 57.5)
= fix(set{x, y}(x:= [Aw. M] o [[y:='Aw. M]))) (Ean 81)
= fix(set{x, y} (fix(set{x} (x := [Aw. M])))
ofix(set{y}[y:='Aw. M]))) (Propn 57.5)
= fix(set{x, y} (fix(set{x}(x := [Aw.M]))) o [y:='"Aw.M])))  (Propn 57.6)
= [x:=1Aw. M,y :=IAw. M] (Defn of [M])
The other cases are simiilar. O

COROLLARY 68. If Dy}, then [DJox# L.
PROPOSITION 69.

e TEM:@ = (T=M:@ = ([¢] < [MIITD).

111

e TEFD:A)= (T'=D:4A)= ([A] < [DIIFD.
PROOF.

SOUNDNESS (1= 2) Thisisamatter of proving each of therulesof ' =M : @

andT + D : A sound.

(L) Forany Dand z, if |= (D, z:=!M) : € then by Proposition 64 we know
that |= (D,z:=!M):(z: w). Thus =M : w.

(ip) Forany Dandz if |=(D,z:=1!0x) : (x: @) then by Proposition 61.4,
|=(D,z:=10x) : (z: @). Thusx: @|=0Ox: .

(—E) ForanyDand z, if |=(D,z:=!x@y) : (X: p— YAY: @) then
= (D,z:=!x@y) : (x: 9— ) and |= (D,z:=!x@y) : (y: ¢), 0
= (D,z:=1x@y) : (z: ). Thusx: 9—YAY: Q= x@y: .

(va) Forany D and z assume (D,z:=Ixvy) : (X:Y), o

tag,(D,z:=Ixvy) —¢ E (82
and xisinwhnf in E, so:
(D,z:=Ixvy)
—&1tag (D, z:=Ixvy) (VTRAV)
—¢ (Eqn 82)

and by Propositions 30.4 and 30.5 either E = (F,z:=!1), or
E = (F,z:=Ixvy) andsincexisinwhnf inE, E —¢ (F,z:=!1). Thus:

(D,z:=1Ixvy) = (F,z:=11)
and:
FFz=1)(z: 90—
so by Proposition 65:
= (D,2:=1xvy) : (z: 9— @)
Thus(x:y) |= (xVy: 0— @).
(Vb) y:yl=xvy: @— @isproved smilarly.
(A) Assumel =M:gandT =M : .
Thenforany Dand z, if |=(D,z:=!M): T
then |=(D,z:=M): (z: @) and = (D,z:=M) : (z: Y)
0 = (D,z:=M) : (z: QA Y). ThusT |= M : (pA ).
(<) Follows from Proposition 64.

(—) Assumel,w:@|=M : . Thenfor any D and x, assume
= (D,x:='Aw.M) : T. Then (D, x:='Aw. M){,, and for any
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(z:='x@y) C E O (D, x:='Aw. M), by Proposition 22 we can find F
such that:

(F,x:="\w.M,z:=x@y) = E (83)
S0
= (D,x:=A\w.M): T

= =E:T (Propn 60)
= = (Fx:=1Aaw.M,z:=Ix@y) : T (Ean 83)
= = (Fx:="w.M,z:=M[y/w]) : T (@upp)

Thus:

FE: (Y9

= = (F,x:=1Aaw. M, z:=Ix@y) : (y: ¢) (Eqn 83)
= | (F.x:= Aw.M,z:= IM[y/w]) : (¥ : ) (@urp)
= |= (Fx:=1Aw.M, z:=M[y/w]) : T A(y: @) (N
= = (Fx:=1Aaw.M,z:=IM[y/W]) : (z: ) (Propn 62)
= = (Fx:=1Aw.M,z:=Ix@y) : (z: P) (@upp)
= =E:(z:y) (Eqn 83)

Thus (D, x:=1Aw.M) : (x: p— ), and o |=Aw. M : p— .
(rec) Assumel |=D:AandA|=M: @. LetX=wvD andlet ¥ befresh.
Then by Proposition 59:
I = [y/XDIy/X - [y/X (84)
[y/%4 = MY/X - ¢ (85)
soforany E and z
=E,z:=!YrecDinM):T

= |=E,localDinz:=IM:T (BUILD)
= = E,vy.(z:=M[y/X],[y/XDly/X]) : T (Defn of local)
= = vy.(E.z:= IM[y/X,[J/X|D[y/X)) : T (vac)
= | (E,z:= M[y/X, [J/XD[y/%) : T (Propn 63)
= [ (E.zi= IM[y/X], [J/XD[y/%) : [J/%A (Eqn 84)
= |= (E,z:= /X [j/ID[y/%) : (z: ) (Ean 85)
= =Y. (E.z:=M[y/X), [J/XDy/%) : (z:¢)  (Propn 63)
= EEv.(z:= M[/X,[j/XD[F/xX) : (z: © (vMic)
= |=E,localDinz:=IM:(z: @) (Defn of local)
= =E,zi=!recDinM:(z: @) (BUILD)

ThusT |=recDinM: @.

(L) Forany E,if |=D,E:v(wvD).T then |=D,E:v(wvD).l. Thus
M=D:v(wvD).T.
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(A) Assumel =D:Aandl |=D:®. Thenfor any E,
if =D,E:v(wvD).l then |=D,E:Aand |=D,E: 0O,
0 =D,E:AAO. ThusT |=D:AAG.
(<) Follows from Proposition 64.
(") Assumel |=(x:=!M):Aand A= M : @. Thenfor any E, if
= (x:=!M),E:vx. then |= (x:=!M),E: A0 |= (x:=!M),E: 0.
ThusT |= (x:=!M): ©.
(?) Followsfrom (!) and Proposition 61.7.
(L) Assumel |=D,E:AandA|=D:0O. Thenforany F, if
|=D,E,F :v(wv(D,E)).T then =D,E,F:As0 = D,E,F:®. Thus
=D,E: 0.
(R) Assumel |=D,E:AandAj=D:©. ThenT |=D,E: © follows
similarly.
(v) Assumevx.l |=D:A. Thenfor any freshy, by Proposition 59:
vx. T = [y/XIDly/x : [y/x|A (86)
Then for any E and fresh y:
= (vx.D) E:v(wv(vx.D)).T

= = (vy. [y/x|D[y/X]),E: v(wv(vx.D)).T (o)
= [=vy. ([y/¥D] / X|,E) : v(wv(vx. D)) .T (VMIG)

= = [y/XD[y/X,E:v(wv(vx.D)).T (Propn 63)
= = [y/XDly/¥, E: v(wv([y/x|Dly/x])) .vx.T (Defnof vx.T)
= = [y/xDly/¥. E: [y/xA (Eqgn 86)
= = Vy.([y/x|Dly/X].E) : vy.[y/¥A (Propn 63)
= = (Vy [y/X|Dly/x]), E : vy.[y/XA (VMIG)
= |=(vx.D),E:vx.A ()

ThusT |=vx.D:vx.A.
Thus the proof system is operationally consistent.

COMPLETENESS (2= 3) Wefirst show by inductiononAthatif D isclosed and
|= D :Athen[A] < [D]o.

o If =D:ethen[e] = L <[D]o.

e If =D:ATthen|=D:Aand |=D:TI,sobyinduction|l'] < [D]o and
[a] < [D]o, so [T, A] = [F] v [A] < [D]o.

o If |=D:(x:w)then[x:w] =L < [D]o.

o If =D:(x:0AW) then =D :(x: @) and |=D: (x: ) so by induction
[x: @] < [DJoand[x: Y] < [Dfo, so[[x: A Y] < [D]o.
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o If |=D:(x:@— ) then D|}, so by Corollary 68 [D]jox # L. Also, for PROPOSITION 70.

freshyand z 1. DCoEiffDCsEiff DCp E.
true 2. MCoNiffMCgNiff M Cp N.
= [y: ¢] = [Dygl L (Defn of D) - "
= FDyo: (y: z’pi" (Propn 66) PROOF. Similar to Proposm'on 10.
= FD,Dyg,z:=x@y: (y: @) ((L) and (R)) Thuswe have shown that D is fully abstract for concurrent graph
= |=D,Dy., z:=X@y: (y: @) (Soundness)
= [=D,Dy, z:=x@y: (z: ) (Defn of |=)
= [z: Y] < [D, Dy, z:= x@y] O (Induction)
= [Y] < [D, Dy, z:= x@y] 0z (Application)
= [W] < apply([D]ox)([Dy:g]0y) (Defn of [x@y])
= [] < apply([DJox)[¢] (Defn of D)
= [¢—y[ < [D]ox (Propn 9.1)

= [x:¢—y] <[D]o (Defn of [x: ¢— )

Thus [o— Y] < [D]o.

Thus we have:
=D:A= [A] < [D]o (87)
If I |=D: Athen:
true
= [[V(WV D) . F]] = [[Dv(wv D)AF]]J— (Defn of Dp)
= F Dy r :V(wvD).T (Propn 66)
= +D,Dy(wyD)r: viwvD).T (L) and (r))
= = D,Dywpyr:V(wvD).T (Soundness)
= |: D, DV(WVD r YA (Defn of |:)
= [A] < [D,Dy(wvpy.rlL (Eqn 87)
= [A] < [D][r] (Defn of Dy)
If I |=M: @thenfor fresh z
true
= [F1=1[br]L (Defn of Dp)
= FDr:l (Propn 66)
= +Dr,z=IM:T (L)
= |=Dr,zz=M:T (Soundness)
= [=Dr,z:=M:(z: @) (Defn of |=)
= [[z: ¢] < [Dr,z:=M] L (Ean 87)
= [[z: @] < [z:=M][r] (Defn of Dp)
= [¢] <[M][r] (Application)
Thus the semanticsis operationally complete. O
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4 Conclusions

Inthispaper, we haveinvestigated the rel ati onshi p between the semanti ¢ notion of
full abstraction and the implementati on technique of concurrent graph reduction.
We have shown that:

¢ Concurrent graph reduction can be given a simple operational presentation
in the style of BERRY and BOuDOL’s (1990) chemical abstract machine, and
MILNER'’S (1991) polyadic Tcalculus.

¢ Thetechniquesof ABRAMSKY (1989) and ONG’s (1988) lazy A-calculus can
be used to show that the fully abstract model for leftmost-outermost reduction
isalso fully abstract for concurrent graph reduction.

¢ Toshow full abstraction, we discussed a confluent reduction strategy, therela-
tionship between concurrent and sequential reduction, and referential trans-
parency. These properties are also important in implementations, and it is
reassuring that showing full abstraction and writing compilers have so many
issues in common.

This Chapter will discuss related work in the semantics of graph reduction, and
possible future work.

4.1 Related work

Inthis section, we discuss some rel ated work on the rel ati onshi p between denota-
tional or operational modelsof the A-calculus. The papersdescribed hereareonly
those most directly related to model s of concurrent graph reduction. For adiscus-
sion of modelsof treereductionfor theA-calculus, see (BARENDREGT, 1984); for
adiscussion of implementation of graph reduction, see (PEYTON JONES, 1987).

ABRAMSKY AND ONG. This paper isbased on ABRAMSKY (1989) and ONG's
(1988) Lazy A-calculus, which is summarized in Chapter 2.

Themain difference between their approach and that outlined hereisthat their
operational semantics is for tree reduction rather than graph reduction, and so
models 3-reduction by substitution rather than sharing.

Inaddition, ABRAMSKY and ONG investigate applicativesimulation asan al-
ternative characterization of the operational order. For closed terms from the A-
calculus, M Cx N iff:

e If M| then NJ}.
e For any closed O, MO Cp NO.

This can be adapted to the A-calculuswith rec asD |= x Ca y iff:

o 1f Dy, then D,
e Foranyclosed E, if (X :=Ix@zy :=!'y@z) CE I DthenE|=x CaY.

However, this definition does not relate directly to the proof of full abstraction,
in the way that ABRAMSKY and ONG’s definition does, and so was not used in
Chapter 3.

BouDOL. Another paper based on leftmost-outermost reduction of the untyped
A-calculusisBouDOL's (1992) A-calculi for (strict) parallel functions. Thispre-
sents an operational and denotational semanticsfor the A-cal culus extended with
call-by-value abstraction (A\Vx. M) and concurrency (M || N, which we wrote as
MMN). The decision to extend the A-calculus with with P or with AY .M and
M || N is somewhat arbitrary, since both are inter-definable:

AVX. M = Ax. PxxM
M || N = Y(AX.Ay.Az. (Pyz(Aw. x(yw)(zw))))MN
PMN = ((AYx. hM) || ((AYx. 1)M)

In this paper we used P, since it has a simpler graph-reduction semantics, and
corresponds very closely to AUGUSTSSON's oracular choice discussed below.

BOUDOL's syntax allows for declarations, letD in Ax. M, but his reduction
rule for declarationsis by substitution rather than sharing, and so he modelstree
reduction rather than graph reduction. Indeed, the main result of his paper isto
find afully abstract model for the strict A-calculuswith parallelism, and it is dif-
ficult to see how such aresult could be applied to graph reduction, since graph
reduction isusually used to eval uate non-strict languages.

ROSE. Another approach to cyclic declarations of the form recD in M istaken
by ROSE (1993), who defines an operational semantics for the A-calculus ex-
tended with rec. He then shows that the A-calculus with rec is a model for the
A-calculus.

However, his semantics for declarations allows non-whnf declarations to be
copied, for example (in our syntax):

(recx:=!Minx) = (recx:=!Min M)

Thushis operational semantics does not correspond to graph reduction. However,
his techniques are useful for showing that the A-calculus with rec isa model for
the A-calculus, and it would be interesting to see if they could be applied to a
semanticswith sharing. Thisis mentioned as being ‘ current work’.

WADSWORTH. Thestudy of graph reduction began with WADSWORTHS' (1971)
thesis. He presentsthe notion of graph reduction, and shows that graph reduction
is correct for tree reduction of the untyped A-calculus. His graphs are similar to
ours, but are rooted, do not include tagging information, and do not contain re-

118



cursivedeclarations, local variablesor cycles. WADSWORTH alsoinvestigatesthe
relationshi p between graph reduction and the D., model of the untyped A-calculus
(see (BARENDREGT, 1984) for more details), a topic which was later picked up
by LESTER (1989) and ABRAMSKY (1989) and ONG (1988).

BARANDREGT et al. Thereis alarge body of work on term graph rewriting,
introduced by BARANDREGT et al. (1987), and surveyed by KENNAWAY €t al.
(1993b) and the other papersin SLEEP et al.’s (SLEEP et al., 1993) book. Term
graphsarevery similar to declarations, but are rooted, and do not include tagging
information, recursive declarations or local variables.

Term graphs are parameterized by a signature of combinators, and so model
combinator graph reduction, that is graph reduction with afixed set of combina-
tors, suchas S, K and I. Combinator graph reduction was used by TURNER (1979,
1985) in the implementation of sAsL and Miranda.

Since term graphs do not have a fixed signature, they allow for more genera
reduction strategies than ours. In particular they alow for a natural presentation
of type constructors and deconstructors.

However, since term graphs are so general, it is difficult to find denotational
models for term graph reduction. BARANDREGT et al. (1987) and KENNAWAY
et al. (1993a) show that term graph reduction is adequate for term tree reduction,
but it is not obvious whether more abstract models for term graph reduction be
developed.

LESTER. After WADSWORTH’s thesis, one of thefirst papersto investigate de-
notational semantics for graph reduction was LESTER'’S (1989). He presents a
typed A-calculus, and gives it three semantics:

e A denotational semantics based on sToY’s (1977) semantics for a typed A-
calculus.

o An abstract operational semantics for graph reduction using digraphs, which
arevery similar to our declarations.

¢ A concrete operational semanticsfor graph reduction based on JOHNSSON's
(1984) G-machine.

He then shows that the denotational semantics is correct for the abstract opera-
tional semantics, whichisin turn correct for the concrete operational semantics.
It ispossible that the same techniques could be applied to our work, tofind afully
abstract semanticsfor the G-machine.

LAUNCHBURY. Theapproach most likeoursisLAUNCHBURY’s(1993) natural
semanticsfor lazy evaluation. The differencesbetween his operational semantics
and ours are:
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e Hepresentsa'large-step’ operational semantics‘M{N’ rather than a‘small-
step’ semantics‘'M — N’

¢ Hepresents sequential rather than concurrent reduction, so at each stagethere
isone node where reduction cantake place. Thisallowshimtogive hisreduc-
tions between terms of the form ‘recD in M’, where M is the term currently
being reduced.

¢ His syntax does not include local variables‘vx. D’, does not distinguish be-
tween tagged and untagged nodes, and does not include fork nodes ‘yvz. It
does allow applications of the form ‘Mx’ rather than just ‘x@y’ .

His semanticsis (rewritten in our syntax):

(recDin AX.M) | (recDin Ax. M)

(recDinXx) | (recEinAz.N) (recEin N[y/2) | (recF in O)
(recDin x@y) | (recF in O)

(recDin M) |} (recEin N)

(recD,x:='MinXx) | (recE,x:=!Nin N)
(recD,Ein M) |} (recF in N)

(recDinrecEin M) | (recF in N) [

Thenit is easy to see that LAUNCHBURY's semanticsis a subset of ours, in that
if:

fvDNwvE = 0]

(recDin M) |} (recEin N)

then:
(localDinx:=!M) —* (local E in x:=IN)

However, since LAUNCHBURY’s semanticsisdesigned to model sequential rather
than concurrent reduction, our semantics has some reductions which cannot be
matched by his, for example:

(localy:="!linx:="1) — (localy:=!linx:=11I)

But since the main result of LAUNCHBURY'S paper isto show that D is an ade-
quate model for his semantics, we have for free that our semanticsis adequatefor
his. Thus by showing that D isfully abstract for concurrent graph reduction, we
have al so shown that concurrent graph reduction is adequate for LAUNCHBURY'S
model of sequential graph reduction.

LAUNCHBURY hasinvestigated anumber of propertiesof hissemanticswhich
have not been covered here, such as space- and time-complexity, update analy-
Sis (LAUNCHBURY et al., 1992), and combinators. It is an open problem as to
whether these approaches can be directly trand ated into our semantics.
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PURUSHOTHAMAN AND SEAMAN. Another approach to the operational se-
mantics of graph reduction is PURUSHOTHAMAN and SEAMAN’S (1992) LAZY-
PCF+SHAR, which extends PLOTKIN’S (1977) PCF with let declarations. Thisis
given a big-step operational semantics of the form (in our syntax):

(letDin M) |} (letEin N)
Thissemanticsis similar to ours and LAUNCHBURY''S, except that:

e LAZY-PCF+SHAR is atyped language, and has constructors and deconstruc-
tors for booleans and natural numbers.

e Since let-expressions are being used rather than rec-expressions, the seman-
ticsfor fixed points lose some sharing information:

(letDinletx:=!(ux.M)in M) |} (IetE in N)
(letDin px. M) | (letEin N)

Extending the semanticsto deal with rec-expressions is ongoing work.

e Garbage collectionis not modelled, except in the case when an expression is
of ground type (Bool or Int). If M isafunction, then their reduction rule for
letis:

(letD,x:=INin M) | (letD’,x:=IN"in M")
(letDinletx:=INin M) | (letD’ inletx:=!N"in M’)
But if M isof ground type, then it has no free variables, and so garbage col-
lection can be performed:
(letD,x:=INin M) | (letD',x:=IN"in M)
(letDinletx:=!Nin M) | (letD’ in M’)
Thisisthe only form of garbage collection given for LAZY-PCF+SHAR.

PURUSHOTHAMAN and SEAMAN show that LAZY-PCF+SHAR can be given an
adequate semantics in the same domain as PCF. It is an open problem as to
whether LAZY-PCF+SHAR with parallel conditionalscan be given afully abstract
semanticsin the same domain as PCF with parallel conditionals.

ARIOLA AND ARVIND. The Graph Rewriting Systems (GRS's) of ARIOLA and
ARVIND (1993) are very similar to the declarationsintroduced in this paper. The
only differencesare:

e GRS'sarenot explicitly designed for parallel evaluation, and so do not distin-
guish between tagged and untagged nodes.

e L ocal variablesare provided by adeclarationlocal D in E rather than by vx. D.

e GRS'sallow for arbitrary term rewriting, rather than being specific to the un-
typed A-calculus.
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e GRS'shave aterm ‘o’ to denote black holes such asrecx :=!xin X.

The operational semanticsfor GRS'sisvery similar to oursand LAUNCHBURY'S,
for example one of their rulesis (in our syntax):

(recDin (recE in M)) — (recD,E in M)

Thisisthesame asour (BUILD ) except that reduction isbetween termsrather than
declarations.

ARIOLA and ARVIND present an adequate model for GRS's in terms of sets
of normal forms. Since GRS's are independent of the term reductions, it is not
obvious whether afully abstract semantics could be found.

THE AUTHOR. |na previous paper, the author (1993) presents an operational
semanticsfor concurrent graph reduction, and shows that graph reduction is cor-
rect for tree reduction. The improvements given in this paper are:

e Theproof that the denotational model D isfully abstract for concurrent graph
reduction.

e The use of ABRAMSKY’S (1991) domain theory in logical form to structure
the proof of full abstraction.

e The presentation of the operational semantics directly in terms of declara-
tions, rather than introducing a new type of chemical solutions.

e Thegraphical presentation of graphs has been improved.

Thetrand ation of graph reduction into MILNER’s(1991) polyadic 1-cal culus has
been omitted, and is further work.

4.2 Future work
There are anumber of open problems raised by this work.

SIMPLIFICATION. The operational proofs in Sections 3.6-3.8 are long and
rather tedious case analysis. To a degree, this is to be expected, since any
verification of apractical implementation technique is likely to involve extended
case analysis. However, it would be useful if a presentation could be found
which simplified and generalized the proofs given here.

An analogy can be drawn between the presentation of graph reduction by
WADSWORTH (1971) and BARENDREGT et al. (1987). Theformer makesexplicit
mention of application and abstraction nodes, where the latter is ageneral theory
of graph and tree reduction.

Unfortunately, full abstraction results are often very syntax-dependent—for
example PLOTKIN'S (1977) proof of full abstraction for PCF with parallel condi-
tionalsisvery dependent on the syntax and operational semantics of PCF.
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Finding aproof techniquethat is powerful enough to show full abstraction for
concurrent graph reduction, but does not rely on long case analysisislikely to be
quite difficult.

TYPED A-CALCULI. Theproofs given in this paper are only for the untyped A-
calculus with recursive declarations. The non-strict functional languages which
areused in practicearetyped, and have type constructors and deconstructors (usu-
aly in the form of pattern-matching).

Such constructors and deconstructors could be added to the A-calculus with
recursive declarations. For example, the product type T x U with constructors
and deconstructors:

pair : T—U — (T xU) fst : (T xU)—=T snd: (T xU)—U
could be added to the A-cal culus with recursive declarations as:
M= | pairxy|fstx|sndx
with the operational semanticsfor fst given:
W= Ifstx, X:=?M — w:=Ifstx X:= M
w = Ifstx X:=!pairyz— w:=I0y,x:= ! pairyz
Unfortunately, thisleavesthe problem of giving asemanticsfor when x isafunc-
tion:
x:=Ifsty,y:=IAw.M — X:=1Something,y:=IAw. M

One possibility would be to use a type system to bar such declarations, but this
would make the proof dependent on a choice of type system.

Another problem is that the proofs in Chapter 3 rely on the fact that D is a
lattice. If the boolean type were to be allowed, the model would no longer be a

lattice, and so the proofs would require the techniques of ABRAMSKY's (1991)
domain theory in logical form, rather than the simpler logic of Chapter 2.

OTHER PARALLEL COMBINATORS. The parallel mechanismsgiven in this pa-
per are:

o Parallel evaluation of theform recx:=!Min N.
o Parallel convergence of the form xvy.

Neither of these introduce any nondeterminism, which is one reason why con-
current graph reduction has the same fully abstract model as leftmost-outermost
reduction. In practice, languages often require a more powerful form of parallel
convergence, which returns the value of the term which reached whnf first. For
example, if we have aterm:

pick : 0 — a — Bool
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which says which of its arguments reached whnf, then we can write a function
which merges two lists as.

merge xsys = if (pick Xsys)
then(merge’ xsys)
else(merge’ ysxs)
merge' [|ys=ys
merge’ (X:: XS)ys = X :: (merge Xsys)
The merge function can then be used, for example, in 1/O routines which need to

merge two event streams.
The pick function could be added to the A-calculus with rec as:

M= | pickxy
with the operational semantics given:
X:=!lpickyzy:=?M — X:=lpickyz y:= M
X:=Ipickyz,z:= M — X:=lpickyz z:= M
X:=!pickyzy:=AW.M — X:=ltrue,y:=1Aw.M
X:=lpickyz z:=A\W.M — X:=!false,z:= IAw. M

Thisisthe same operational semanticsasyVvz, except that we return true (AXxy. x)
or false (Axy.y) rather than I.

Although it issimpleto give an operational semanticsfor the A-calculuswith
recursive declarations and pick, finding a fully abstract model is non-trivial. For
example, pick is not referentially transparent, since:

[rec(x:= ?pick I1) in (x< X)]| = [[true]
[pick 11 < pick I 1] = [[pick 1]

Thislack of referential transparency is caused by non-determinism, so one would
expect to need a model based on powersets. One open problem is to show that
any fully abstract model for leftmost-outermost reduction of the A-calculuswith
nondeterminismis also fully abstract for concurrent graph reduction with nonde-
terminism. One would then be able to apply the techniques of oNG (1993) or DE
"LIGUORO and PIPERNO (1992) to concurrent graph reduction.

Another approach, which is still nondeterministic, but retains referential
trangparency, is AUGUSTSSON’s (1989) oracles, which have been implemented
inLazy ML. Thisreplaces pick with a choose function, that as a side-effect sets
an oracle variablerecording the result.

In AUGUSTSSON'’s implementation there are an unbounded number of ora-
cles, but we can ssimply model the case where there is only one oracle variable
calledo. Thisisinitially declared aso :=!1, and can have one of three states:
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L, lorr. The choose function could be added to the A-calculus with recursive
declarations as:

M = --- | choosexy
Di=---|o=!L|o:=!|o:="r
with the operational semantics given:
X:=!chooseyz y:=?M +— X:=!chooseyz y:= M
X:=lchooseyz z:= ?M — X:=!chooseyz,z:= M
o:=!1,x:=!Ichooseyzy:=!AW.M — o :=!l x:=!chooseyz y:=Aw. M
o:=!1 x:="!chooseyz z:='\W.M +— o :=!r ,X:= I chooseyz, z:= 'Aw. M
o:=!l,X:=!chooseyz— o:=1!l x:=!true
o:=!r,X:=!chooseyzr o:=!r Xx:=!false

This is the same operational semantics as pick as long as the o variable is L.
Oncethe o variable has been set, choose xy always returnsthe same result. Thus,
choose is nondeterministic, but is referentially transparent, for example:

[rec(x := ?choose | 1) in (x < X)[ = [[true]
[choose I | < choose | ] = [[true]

Itisan open problem to find a model for such an operator, which isreferentially
transparent, but which may have side-effects.
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