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ABSTRACT. This paper discusses some axioms from the literature which have been used to define
properties of timed transition systems. The additivity axiom proposed by (amongst others) Wang, and
Nicollin and Sifakis is compared with the trajectory axiom of Lynch and Vaandrager. Some condi-
tions for an additive transition system to be trajectoried are discussed. These are proved sufficient by
using some simple terminology from category theory to show how this problem about timed transi-
tion systems can be turned into an equivalent problem about monotone functions on partially ordered
sets. We also discuss trajectory (bi)simulation, which is a variant of Ho-Stuart’s path bisimulation,
and use similar techniques to discuss when (bi)simulation is equivalent to trajectory (bi)simulation.
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1 Introduction

Timed transition systems [MoT90, Wan91] are commonly used in the specifica-
tion of time-critical systems. They describe a system in terms of the states it can
be in, and circumstances under which it can move from one state to the next,
either by allowing time to pass or by performing some transition. There are a
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wide variety of timed transition systems, which are broadly similar but which
are presented with different axioms or properties.

In this paper we compare two axioms concerned with the passage of time.
One states that if a process allows an interval of time to pass to evolve from
one state to another, then there must be an intermediate state at any point along
that interval; the other says that there must be a trajectory of consistent states
through the interval. The first of these is more commonly given; the second was
first introduced in [VaL92]. Although the second is strictly stronger than the first,
we explore conditions where they are equivalent. In fact, both properties hold for
every timed transition system the authors have encountered in practice.

The notion of a trajectory naturally induces associated forms of simulation
and bisimulation, in which it is required that each trajectory from a given state
can be simulated by a trajectory from any related state such that intermedi-
ate states on the trajectories are related. We explore conditions under which
(bi)simulation and trajectory (bi)simulation are equivalent.

The structure of the paper is as follows: the two axioms of timed transition
systems are defined; their presence in a transition system is shown to correspond
to particular properties of monotone functions between partially ordered sets,
so we investigate conditions under which these properties both hold, and trans-
late these back to conditions on transition systems. Two forms of (bi)simulation
analogous to the two axioms are then considered, and conditions for their equiv-
alence are obtained by again considering an equivalent problem in a partial order
setting.

2 Additivity axioms

In this section, we will define two additivity axioms for timed transition systems,
and show why we would like to know when they are equivalent. We can translate
the problem of equivalence of these axioms into a problem about monotone func-
tions on partially ordered sets (posets). Finding a solution to the poset problem
allows us to find sufficient conditions for the two axioms for transition systems
to be equivalent.

2.1 A problem about posets

A poset is a set X with a partial ordering relation � . Given a poset X , define:
� X ��� X is a chain (or is total) iff � x � y � X �	� x � y or y � x.� A chain X � � X is from x iff x � X � and � y � X � � x � y.� A chain X � � X is to x iff x � X � and � y � X � � y � x.� Given chains X � � X � � � X , X ��
 X � � iff � x � � X � � x � � � X � � � x ��
 x � � .� Given x � y � X , the interval from x to y is � x � y 
���� z � X � x � z � y � .

Given posets X and Y , and a monotone map f : X � Y , define:
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� If X � � X then f � X � 
���� f x � x � X � � .� f is finite-to-one iff for any y � Y the set � x � f x � y � is finite.� f is onto iff for any y � Y there is an x � X such that f x � y.� f is chained iff for any chain Y � in Y there is a chain X � in X such that

f �X � 
�� Y � .� f is interval-φ iff for all x � y � X , f : � x � y 
 � � f x � f y 
 is φ.

Any chained function is onto, and so any interval-chained function is interval-
onto. The question we would like to consider is this: under what conditions are
interval-onto functions interval-chained?

2.2 Time domains

A monoid is a set T with an associative operator
�

with unit 0. Given a monoid�
T � � � 0 � , define:
� T is left-cancellative iff t

�
u � t

�
v � u � v.� T is anti-symmetric iff t

�
u � 0 � t � u � 0.

In this paper, a time domain is a left-cancellative anti-symmetric monoid. Exam-
ples of time domains include:
� The singleton set

�
1 � � � 0 � .� The natural numbers
�
N � � � 0 � .� The non-negative rationals

�
Q � � � � 0 � .� The non-negative reals

�
R � � � � 0 � .� The countable ordinals
�
ω1 � � � 0 � .� Strings with concatenation
�
Σ � ��� � ε � .

Given a time domain
�
T � � � 0 � and a set Σ we define the set of timed strings

T S
�
T � Σ � as

�
T Σ �	� T , with the concatenation operation � on timed strings given

by:
�
σ � t � � � u � ρ � � σ � � t � u �
� ρ

we obtain another example of a time domain:
� Timed strings with concatenation

�
TS
�
T � Σ � � � � 0 � .

If τ � Σ then the strings are termed strong strings, otherwise they are weak.
Each time domain

�
T � � � 0 � induces a binary order of precedence:

t � u �
� v � t � v � u

Note that the ordering on timed strings induced in this way is not just the prefix
order on strings, for example 1 � 2 � 1, but 1 �� 2 � 1.

PROPOSITION 1. Let
�
T � � � 0 � be a time domain with precedence relation � .

Then:
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1. � is a partial ordering with unique minimal element 0.
2. Relation � has no maximal elements, unless T is the trivial one-point time

domain.

PROOF. The proof of (1) is routine. For (2), suppose
�
T � � � 0 � has a maximal

element t. Then t
�

t � t, otherwise t would not be maximal. But this implies
that t

�
t � t

�
0, and hence, since T is left-cancellative, t � 0. Thus T is the

one-point time domain. �

As a consequence all nontrivial time domains are infinite. When we talk about
chains, intervals, etc. of a time domain, this will always be with respect to its
precedence relation. We define a subtraction operator on times related by � :
� t � u � v iff u

�
v � t

Then t � u is well-defined when u � t by left-cancellativity; and is undefined
otherwise.

We want to stress that the notion of time domain that we propose here has
been chosen to suit the purposes of this paper, and that there are many other
definitions occurring in the literature (see [Ben89] for a series of examples). In
all definitions we know of the set of time points is equipped with a partial order
of precedence, but there are plenty of examples where the precedence relation
does not have a minimal element, and there are also nontrivial examples of time
domains with a maximal element. Hehner [Heh93], for instance, reduces time
to a single bit that distinguishes between finite and infinite execution time of a
program.

In this paper, we view time as an attribute of transitions rather than of states,
so we think of the elements of our time domains as durations. As a consequence
it becomes natural to equip the set of time points with a monoidal structure.

2.3 A problem about timed transition systems

A timed transition system
�
N � T ��� � � consists of a set N of states, a time domain

T , and a set � � � N � T � N of transitions such that:
� p 0� � p.� If p 0� � q 0� � p then p � q.� If p t� � u� � q then p t � u��� � q.

If we interpret p t� � q as the statement that it is possible to go from state p to
state q in time t, then the first and the last conditions are obvious: if the system
is in state p and 0 time elapses then it is still possible to be in state p; and if it is
possible to go from p to r in time t, and from r to q in time u, then it is possible
to go from p to q in time t

�
u. The middle axiom says that we are viewing

states up to an equivalence class, where any states in a tight loop p 0� � q 0� � p
are identified.
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Examples of timed transition systems include:
� The transition system

�
CCS � Σ �τ ��� � � of CCS [Mil89].� The weak transition system

� �CCS 
�� � Σ � � � � � of CCS, where we consider
CCS expressions up to the equivalence given by p � q iff p ε� � q ε� � p.� The transition system

�
tCCS � TS

�
Στ � T � ��� � � of timed CCS.� The weak transition system

� � tCCS 
�� � T S
�
Σ � T � � � � � of timed CCS.

In fact, the reflexive transitive closure of any conventional (timed or untimed)
transition system may be considered as a timed transition system, by considering
states up to the equivalence � .

In the process algebra community people often tend to think of time as some-
thing “new” that has to be added to the classical “untimed” theories. We rather
like the view that also the classical process algebras are timed, only with a more
abstract notion of time. Timed transition systems offer a uniform semantical
basis for describing both classical “untimed” process algebras, and the recent
“timed” process algebras. The results of this paper however will primarily be of
interest for algebras that aim at describing real-time.

Given a timed transition system
�
N � T � � � � :

� A trajectory through T � � T is a vector
�
p � �

pt � t � T ��� such that � t � t � u �
T � � pt

u� � pt � u.� A trajectory
�
p through a chain T � from 0 to t is from p0 to pt .� �

N � T � � � � is additive iff, whenever p t � u� � � q then p t� � u� � q.� �
N � T � � � � is trajectoried iff, whenever p t� � q, t �� 0, and T � is a chain from

0 to t, then there is a trajectory through T � from p to q.

Any trajectoried timed transition system is additive. The question we would like
to consider is this: under what conditions are additive timed transition systems
trajectoried?

2.4 Why the timed transition system problem is interesting

Additivity has been considered by many authors [Ho+92, Jef91, NiS90, Sch92,
Wan91] as essential to modeling the behaviour of timed systems. The more pow-
erful trajectory axiom—that a timed transition system must be trajectoried—was
developed by Vaandrager and Lynch [VaL92] to reason about system behaviour
when it is necessary to reason about the computation that resulted in a particular
behaviour.

For example, given a transition system
�
N � T S

�
Σ � R � � ��� � � , we can define

a trajectory
�
p through � s � s � 
 to be a-maximal iff s � s � � 
 �

s � � � t � 
 s � for some
t � R � implies ps � � � a� � . This states that time (R � ) can progress only when event
a is not possible. Then we can define the operational semantics of the timed
CSP [Sch92] hiding operator as p � a s 	 a� � p � � a iff p s� � p � and there is an a-
maximal trajectory through � 0 � s 
 from p to p � . This definition only makes sense
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when the transition system is trajectoried.
There are other examples of the usefulness of the trajectory axiom in [LyV93].
Although being trajectoried is a useful property to have of a timed transition

system, it is very difficult to prove, since it relies on proving properties of infi-
nite computations. The additivity property is much simpler to prove, but is not
as powerful. Therefore we would like to know some sufficient conditions for
additivity to imply trajectoried, to keep the simplicity of proving additivity and
the power of having proved trajectoried.

These conditions are not always equivalent, for example in the transition
system

�
Q � R � ��� � � given by:

p 0� � p
p 
 q x � 0

p x� � q

This transition system is additive but not trajectoried, as this would imply there
was an embedding of the real interval � 0 � 1 
 into the rational interval � 0 � 1 
 , which
is impossible for cardinality reasons. However, we will show that all of the timed
transition systems known to the authors are trajectoried.

2.5 A categorical view of timed transition systems

A (small) category C is:
� A set of objects.� A set of arrows, where each arrow f has an object domain A and codomain

B, written ‘A f� � B in C’.� Identity arrows A 1A� � A in C for each object A.� Composite arrows A f ;g� � C in C for each A f� � B g� � C in C, where ; is
associative, with unit 1.

In analogy with the monoid case, define
� C is left-cancellative iff f ;g � f ;h � g � h.� C is anti-symmetric iff f ;g � 1 � f � g � 1.

Many common mathematical structures are examples of categories:
� A monoid is a category with only one object.� A pre-order is a category where any objects A and B have at most one arrow

A f� � B.� A poset is an anti-symmetric pre-order.� A timed transition system is a category with states as objects and transitions
p t� � q as arrows.

A functor is a structure-preserving function between categories, so C F� � D iff:
� For any object A in C, there is an object FA in D.� For any arrow A f� � B in C, there is an arrow FA F f� � FB in D.
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� F1A � 1FA and F

�
f ;g � � F f ;Fg.

An isomorphism from C to D is a functor C F� � D which is a bijection, both on
objects and on arrows. A functor F is faithful iff whenever A f� � B, A g� � B and
F f � Fg then f � g. Many common functions are examples of functors:
� If C and D are monoids then C F� � D is a functor iff F is a monoid homo-

morphism.� If C and D are posets then C F� � D is a functor iff F is a monotone function.

PROPOSITION 2. A category C is isomorphic to a timed transition system iff
C is left-cancellative, anti-symmetric, and there is a time domain D and faithful
functor C F� � D.

PROOF.

� If there is an isomorphism Θ from C to a timed transition system
�
N � T ��� � � ,

then it follows that C is left-cancellative and anti-symmetric. Let D � T , and
let F be the function that maps each object in C to the unique object of D
(recall that D is a monoid), and each arrow f of C to the label of the transition
Θ f . It is routine to check that F is a faithful functor from C to D.

� If C is left-cancellative and anti-symmetric, there is a faithful functor C F� �
D, and D is a time domain, then let N be the set of objects of C, T � D,
and � � � N � T � N be the relation given by p t� � q iff F f � t, for some
arrow p f� � q of C. It is routine to show that

�
N � T ��� � � is a timed transition

system. Let Θ be the function that maps each object of C to itself, and each
arrow p f� � q of C to the triple p F f� � q. Then Θ is an isomorphism from C
to
�
N � T ��� � � . �

Proposition 2 says that essentially a timed transition system is a faithful functor
F from a left-cancellative anti-symmetric category C to a time domain D.

2.6 Why the timed transition system problem is an example of the poset
problem

Given a category C, define the category � C as:
� Objects are arrows from C.� Arrows are triples

�
f � g � h � of arrows in C with f ;g � h. The domain of�

f � g � h � is f and the codomain h.� For A f� � B an object of � C, the identity arrow 1 f is
�
f � 1B � f � .� Composition is given by

�
f � g � h � ; � h � k � l � � �

f � g;k � l �
Given a functor C F� � D, we can define the functor � C

�
F� � ��� D by � F f � F f

and � F
�
f � g � h � � �

F f � Fg � Fh � . (Category theorists will note that � is a functor
Cat
�

� � Cat.)
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Category � C is of interest, as it is a poset of the arrows in a left-cancellative
anti-symmetric category. For example, for each of the following time domains
� C generates the natural ordering:
� The singleton set

�
1 � � � 0 � has the trivial ordering.� The natural numbers
�
N � � � 0 � has the number ordering.� The non-negative rationals

�
Q � � � � 0 � has the number ordering.� The non-negative reals

�
R � � � � 0 � has the number ordering.� The countable ordinals
�
ω1 � � � 0 � has the ordinal ordering.� Strings

�
Σ � ��� � ε � has the prefix ordering.� Timed strings

�
T S
�
Σ � T � � � � 0 � has the timed prefix ordering.

However:
� The two-point domain

�
2 ��� � 0 � is not left-cancellative, since 1 � 0 � 1 � 1 but

0 �� 1. Thus �
�
2 ��� � 0 � is not a poset, since there are two arrows 1

�
1 � 0 � 1 �� � � � 1

and 1
�
1 � 1 � 1 �� � � � 1. In general, the only left-cancellative monoid with a zero is

the trivial one-point monoid.
� The integers

�
Z � � � 0 � are not anti-symmetric, since 1

� � 1 � 0 but 1 �� 0.
Thus �

�
Z � � � 0 � is not a poset, since 0

�
0 � 1 � 1 �� � � � 1

�
1 � � 1 � 0 �� � � � � 0. In general, the

only anti-symmetric group is the trivial one-point group.

The following proposition generalizes Proposition 1(1).

PROPOSITION 3. � C is a poset iff C is left-cancellative and anti-symmetric.

PROOF. Routine. �

This means that if C F� � D is a timed transition system, � C
�

F� � � � D is a mono-
tone function between posets, and so we can show that our timed transition sys-
tem problem is a specific instance of our poset problem.

PROPOSITION 4. Let C F� � D be a timed transition system. Then
� C F� � D is additive iff � C

�
F��� � � D is interval-onto.� C F� � D is trajectoried iff � C
�

F� � � � D is interval-chained.

PROOF.
� Suppose C F� � D is additive. In order to prove that � C

�
F��� � � D is

interval-onto, suppose that � C has an arrow f k� � g, and � D has ar-
rows t l� � v � v l �� � u such that � Fk � l; l � . We must prove the existence
of arrows f m� � j � j m �� � g in � C such that k � m;m � , � Fm � l and
� Fm � � l � . Since f k� � g is an arrow of � C, C has an arrow f � such
that k � �

f � f � � g � and hence f ; f � � g. Let F f � � t � . Then u � F
�
g � �

F
�
f ; f � � � F

�
f � ;F

�
f � � � t; t � . Since t l� � v is an arrow of � D, D has an

arrow v � such that l � �
t � v � � v � and hence v � t;v � . Since v l �� � u is an ar-

row of � D, D has an arrow u � such that l � � �
v � u � � u � and hence u � v;u � .
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Now observe that t; t � � u � v;u � � �
t;v � � ;u � � t;

�
v � ;u � � . Since D is left-

cancellative, this implies t � � v � ;u � . Hence F f � � t � � v � ;u � . Since C F� � D
is additive, C has arrows h � h � such that f � � h;h � , Fh � v � and Fh � � u � .
Define i � f ;h, m � �

f � h � i � and m� � �
i � h � � g � . Then i is an object of � C,

and m � m � are arrows of � C (use i;h � � �
f ;h � ;h � � f ;

�
h;h � � � f ; f � � g).

We derive m;m � � �
f � h � i � ; � i � h � � g � � �

f � h;h � � g � � �
f � f � � g � � k. Since

Fi � F
�
f ;h � � F f ;Fh � t;v � � v, � Fm � �

F f � Fh � Fi � � �
t � v � � v � � l and

� Fm � � �
Fi � Fh � � Fg � � �

v � u � � u � � l � .
� Suppose � C

�
F� � � � D is interval-onto. To show that C F� � D is additive,

suppose that C has an arrow A f� � B and D has arrows t � t � , such that F f �
t; t � . We must prove the existence of arrows g � g � in C such that f � g;g � ,
Fg � t and Fg � � t � . � C has an arrow k � �

1A � f � f � , and � D has arrows
l � �

0 � t � t � and l � � �
t � t � � t; t � � . Since:

� Fk � �
F1A � F f � F f � � �

0 � t; t � � t; t � � � �
0 � t � t � ; � t � t � � t; t � � � l; l �

and � C
�

F� � � � D is interval-onto, � C has arrows 1A
m� � g and g m �� � f such

that k � m;m � , � Fm � l and � Fm � � l � . Let m � � �
g � g � � f � . It follows that

f � g;g � , Fg � t and Fg � � t � , as required.
� Suppose C F� � D is trajectoried. To show that � C

�
F��� � � D is interval-

chained, suppose that � C has an arrow f k� � g, � D has an arrow t l� � u
with � Fk � l, and Y is a chain in � D from t to u. We must prove the
existence of a chain X in � C from f to g such that F �X 
 � Y . Let k ��

f � h � g � , for some p h� � q, and l � �
t � v � u � . Then g � f ;h and u � t;v. Since

t;v � u � F
�
g � � F

�
f ;h � � F f ;Fh � t;Fh and D is left-cancellative, Fh � v.

If v � 0 then t � u and Y � � t � . In this case X � � f � g � gives the required
chain in � C. So assume that v �� 0. Let Z be the collection of arrows u of D
for which t;u is in Y . Then Z is a chain of D from 0 to v. Now we use that
C F� � D is trajectoried: there is a function τ that associates to each element
of Z an object of C such that τ

�
0 � � p, τ

�
t � � q, and, for all w � w;w � in Z,

there is an arrow τ
�
w � m� � τ

�
w;w � � with Fm � w � . In particular, for all z in Z,

there is an arrow p mz� � τ
�
z � with Fmz � z. Let X � � f ;mz � z � Z � . Since F is

faithful, m0 � 1p and mv � h. For all w � w � � Z, mw � mw � � w � w � . Proof:

� Suppose mw � mw � . Then there is an m such that mw � � mw;m. Hence
w � � Fmw � � F

�
mw;m � � F

�
mw � ;Fm � w;Fm, and therefore w � w � .

� Suppose w � w � . Then there is a w � � with w;w � � � w � and an arrow
τ
�
w � m� � τ

�
w � � with Fm � w � � . Since F is faithful, mw;m � mw � . Hence

mw � mw � .
Using the fact that Z is totally ordered, this implies that X is a chain in � D
from t to u.
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� Suppose � C

�
F� � � � D is interval-chained. To show that C F� � D is trajecto-

ried, suppose that p f� � q is an arrow of C with F f � t �� 0, and Y is a chain
of D from 0 to t. We must prove the existence of a function τ that associates
to each element of Y an object of C such that τ

�
0 � � p, τ

�
t � � q, and, for

all v � v;v � in Y , there is an arrow τ
�
v � g� � τ

�
v;v � � with Fg � v � . � C has an

arrow k � �
1p � f � f � , and � D has an arrow l � �

0 � t � t � with Fk � l. Further
Y is a chain in � D from 0 to t. Because � C

�
F��� � � D is interval-chained,

there exists a chain X in � C from 1p to f with F �X 
 � Y . Hence there
exists a function τ that associates to each u � Y an object of C that is the
codomain of an arrow h in X with Fh � u, and with in particular τ

�
0 � � p

and τ
�
t � � q (here we need t �� 0). Now suppose v and v;v � are elements of

Y . Let r � τ
�
v � and r � � τ

�
v;v � � . Then X has arrows p m� � r and p m �� � r � with

Fm � v and Fm � � v;v � . Since X is a chain, m and m � are ordered. There are
two possibilities:

– There is a g such that m � � m;g. Then v;v � � Fm � � F
�
m;g � � Fm;Fg �

v;Fg. Because D is left-cancellative, v � � Fg. Further τ
�
v � g� � τ

�
v;v � � .

– There is a g such that m � m � ;g. Then v;0 � v � Fm � F
�
m � � ;F

�
g � �

v;
�
v � ;F

�
g �	� . Because D is left-cancellative, 0 � v � ;F

�
g � . Hence, be-

cause D is also anti-symmetric, v � � F
�
g � � 0. This implies r � τ

�
v � �

τ
�
v;v � � � r � . Therefore τ

�
v � g� � τ

�
v;v � � . �

2.7 Some sufficient conditions

In this section, we shall present some sufficient conditions for an interval-onto
function to be interval-chained. We shall use some concepts from set theory: see
a textbook such as [Joh87] for details. Given posets X � Y and a monotone map
f : X � Y , define:
� X � � X is a κ-chain iff X � is a chain of cardinality less than κ.� f : X � Y is limited iff for all y � Y and �Y � -chains X � 
 X � � in X if f � X � 
 

� y � 
 f �X � � 
 then � x � f � 1 � y 
 � X ��
 � x � 
 X � � .

It is simple to show that any limited function is onto (since X � � X � � � /0 has
f �X � 
 
 � y � 
 f � X � � 
 so � x � f � 1 � y 
 ) and interval-onto, and we can show that
any limited function is chained.

PROPOSITION 5. Every limited function is chained

PROOF (USING THE AXIOM OF CHOICE). Let f : X � Y be limited, and let Y �
be a chain in Y . By the axiom of choice let � yα � α 
 κ � be a well-ordering of Y �
in a cardinal κ. Then for each α 
 κ, define by transfinite induction the chains
Xα and X �α as:

Xα � � xβ � β 
 α � yβ 
 yα �
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X �α � � xβ � β 
 α � yβ � yα �
where by the axiom of choice, for each α 
 κ, xα is defined (since f is limited)
to be such that Xα 
 xα 
 X �α and f xα � yα. Then X � � � xα � α 
 κ � is a chain,
and f �X � 
 � Y � . Thus f is chained. �

In fact, two weaker forms of the axiom of choice are sufficient for this proof: that
any well-ordered set of sets admits a choice function; and that any total order can
be well-ordered. Furthermore, this result itself is as least as strong as the axiom
of choice for totally ordered sets of sets—that any total order of non-empty sets
has a choice function.

We can now present some conditions for an interval-onto function to be
interval-chained. Define:
� The coverage of X � � X is � x � X � � x � � X � � x � x � or x � x � � .� X is κ-covered iff there is a κ-chain X � in X with totally ordered coverage.� X is interval-φ iff for all x � y � X , � x � y 
 is φ.

PROPOSITION 6. Each of the following is a sufficient condition for an interval-
onto function f : X � Y to be interval-chained:

1. X is interval-ω-covered and Y is interval-total.
2. Y is interval-countable.
3. f is interval-finite-to-one.

PROOF.

1. For any x � x � � X , � x � x � 
 is ω-covered, so we can find x � x0 � x1 � ���	���
xn � x � such that the coverage of � xi � 0 � i � n � is total. This implies that,
for all i, � xi � xi � 1 
 is a chain of X . Suppose Y � be a chain in � f x � f x � 
 . Let
X � � � � x0 � x1 
�� �	����� � xn � xn � 1 
 ��� f � 1 �Y � 
 . Then X � is a chain of X . In order to
see that f � X � 
 � Y � , suppose y � Y � . Because Y is interval-total, we can find,
0 � i 
 n such that f xi � y � f xi � 1. Since f is interval-onto, there exists an
x � � � � xi � xi � 1 
 such that f x � � � y. Clearly x � � � X � . Thus f is interval-chained.

2. Suppose Y is interval-countable. By Proposition 5 it is enough to prove that
f is interval-limited. For this, suppose that x � � x � � � X , y � � f x � � f x � � 
 , and
X � 
 X � � � � f x � � f x � � 
 � -chains in � x � � x � � 
 such that f � X � 
 
 � y � 
 f �X � � 
 . We
must find an x in f� 1 � y 
�� � x � � x � � 
 such that X � 
 � x � 
 X � � . If y � f x � then
we can take x � x � , and if y � f x � � then we can take x � x � � . So assume
that f x � 
 y 
 f x � � . Because Y is interval-countable, X � � X � � are finite chains.
Thus we can take z � to be the maximal element of X � � � x � � , and z � � to be
the minimal element of X � � � � x � � � . Then z � 
 z � � and f z � 
 y 
 f z � � . Since
f is interval-onto, there exists an x � � x � � x � � 
 such that x � � z � � z � � 
 and f x � y.
Clearly x � f � 1 � y 
�� � x � � x � � 
 and X � 
 � x � 
 X � � .

3. Similar to the proof of (2). �
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Finally, we can translate these conditions back to conditions on timed transition
systems. Define:
� A timed transition system is image-finite if for every p and t, there are at

most finitely many q such that p t� � q.� A transition p t� � q of a timed transition system is deterministic iff for any
u
�

v � t, there is at most one r such that p u� � r v� � q.� An additive timed transition system is finitely variable iff for any p t� � q
we can find pi and ti such that p � p0

t0� � p1
t1� � ����� tn� � pn � 1 � p � , t �

t0
� �	��� � tn, and each transition pi

ti� � pi � 1 is either deterministic or has
ti � 0.

PROPOSITION 7. Let C F� � D be a timed transition system. Then

1. If C F� � D is finitely variable and D is interval-total, then � C is interval-ω-
covered.

2. If C F� � D is image-finite then � F is interval-finite-to-one.

PROOF. Routine. �

PROPOSITION 8. Each of the following three conditions on timed transition sys-
tems is sufficient to guarantee the equivalence of additivity and trajectoried:

1. Finite variability and interval-totality of the time domain.
2. Interval-countability of the time domain.
3. Image-finite.

PROOF. Immediate from Propositions 4, 6, and 7. �

For example, for both strong and weak strings:
� Real-timed strings

�
T S
�
Σ � R � � � � � 0 � are interval-total, so any finitely variable

real-time transition system is trajectoried.� Strings
�
Σ � ��� � ε � are interval-countable, so any untimed transition system is

trajectoried.� Discrete-timed strings
�
T S
�
Σ � N � � � � 0 � are interval-countable, so any discrete-

time transition system is trajectoried.� Rational-timed strings
�
T S
�
Σ � Q � � � � � 0 � are interval-countable, so any rational-

time transition system is trajectoried.� Any image-finite real-time transition system is trajectoried.� Any finitely variable real-time transition system is trajectoried.

3 (Bi)simulations

In this section, we will apply the same techniques to bear on a related problem.
We can define two notions of bisimulation: Milner’s [Mil89] definition which
says that two terms are bisimilar if they can match transitions, and a form of
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Ho Stuart’s [Ho+92] path bisimulation which says that two terms are trajec-
tory bisimilar if they can match trajectories. Then the question is under what
conditions these two notions agree. Again, we will reduce this (and also the cor-
responding question for simulations) to a problem about monotone functions on
posets, and use the poset problem to find sufficient conditions.

3.1 Another problem about posets

Given posets X and Y , and a monotone map f : X � Y , define:
��� x � � y � X � x � y � .� A monotone function f : X � Y is upper-φ iff for all x � X , the function

f : � x � � � f x � is φ.

Then any upper-chained function is upper-onto. The question we would now
like to consider is this: under what conditions are upper-onto functions upper-
chained?

3.2 Another problem about timed transition systems

One preorder between transition systems is simulation. A simulation between
timed transition systems

�
M � T � � � � and

�
N � T ��� � � is a relation R between M

and N such that whenever p R q:
� If p t� � p � then we can find q� with q t� � q � and p � R q � .

A bisimulation is a relation R such that R and R � 1 are simulations. Let � be the
largest simulation, and let � be the largest bisimulation. Note that this definition
includes both strong bisimulation on

�
CCS � Σ �τ � � � � � and weak bisimulation on� �CCS 
 � � Σ � � � � � .

We may define another notion of simulation, based on the path bisimulation
from [Ho+92]: a trajectory simulation between

�
M � T � � � � and

�
N � T � � � � is a

relation R between M and N such that whenever p0 R q0:
� If T � is a chain through T from 0 and

�
p is a trajectory through T � and p 0� � p0

then there is a trajectory
�
q through T � such that q 0� � q0 and � u � T � � pu R qu

A trajectory bisimulation is a relation R such that R and R � 1 are trajectory sim-
ulations. Let

�
� be the largest trajectory simulation, and let

�� be the largest
trajectory bisimulation.

In a timed transition system, any trajectory simulation is a simulation. The
question we would now like to consider is this: under what conditions is a simu-
lation a trajectory simulation?

3.3 Why the trajectory simulation problem is interesting

For timed transition systems, the notion of trajectory simulation is strictly
stronger than simulation. For example, let R∞ be the reals with a new top el-
ement ∞, and let the timed transition system

� � px � x � R∞ ��� Q � � � � � be given
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by:

px
0� � px

t � 0 x 
 y
px

t� � py

x � Q
px

0� � p∞

Thus px can perform any rational number and increase x, and if x is rational, then
px can also reach a time-stop state p∞ which only has the transition p∞

0� � p∞.
Then let

� � qx � x � R∞ � � Q � ��� � � be given by:

qx
0� � qx

t � 0 x � y
qx

t� � qy

x � Z
qx

0� � q∞

This transition system is the same, except that qx can only time-stop whenever x
is an integer. Then we have the bisimulation:

� � px � qy � � x � Q � y � Z � � � � px � qy � � x � R � Q � y � R � Z � � � � p∞ � q∞ � �
and so p0 � q0. However, there is no trajectory bisimulation R such that p0 R q0,
since there is a trajectory

�
p through � 0 � 1 
 from p0 to p1 such that infinitely many

px can time-stop, and any trajectory
�
q through � 0 � 1 
 from q0 to some qy will only

have finitely many qx which can time-stop.
Another example can be given in the timed CSP notation [Sch92]:

�

t � 0

�
WAIT t;a � STOP � �

t � 0

�
WAIT t;a � WAIT t; STOP �

These processes are weakly bisimilar, but not weak trajectory bisimilar: the first
has a trajectory with a � STOP at every t � 0, which cannot be matched by the
second. Similar examples may be defined in the PARTY language [Ho+92].

This last example indicates that for languages like timed CSP trajectory
bisimulation is not an interesting equivalence by itself, since it is not a con-
gruence:

STOP
�� WAIT t; STOP

but:
�

t � 0

�
WAIT t;a � STOP � ��� �

t � 0

�
WAIT t;a � WAIT t; STOP �

However, trajectory bisimulation is useful when we can show that it coincides
with bisimulation, that is p � q iff p

�� q. For example, to show that timed CSP
hiding preserves bisimulation, we have to show that whenever p � q then p � a �
q � a. Without trajectory bisimulation, this requires complex ad hoc reasoning,
but it is simple to show that if p

�� q then p � a
�� q � a.

3.4 Why the trajectory simulation problem is an example of the second poset
problem

Given posets X1, X2 and Y , and monotone functions f1 : X1 � Y and f2 : X2 � Y :
� A relator between f1 and f2 is a poset X with monotone maps π1 : X � X1,

π2 : X � X2 such that π1; f1 � π2; f2 : X � Y .
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� A simulator is a relator where π1 is upper-onto.� A trajectory simulator is a relator where π1 is upper-chained.

We define a relation � R between arrows of categories in terms of a relation R
between objects of categories:
� If C1

F1� � D, C2
F2� � D, and R is a relation between the objects of C1 and the

objects of C2 then � R is a relation between the arrows of C1 and C2 defined
f1 � R f2 iff A1

f1� � B1, A2
f2� � B2, F1 f1 � F2 f2 and B1 R B2.

PROPOSITION 9. In timed transition systems C1
F1� � D and C2

F2� � D:

1. R is a simulation between C1 and C2 iff � R is a simulator between � F1 and
� F2.

2. R is a trajectory simulation between C1 and C2 iff � R is a trajectory simu-
lator between � F1 and � F2.

PROOF. Routine. �

Thus we have reduced the problem of showing that a simulation R is a trajectory
simulation to showing that the upper-onto function π1 is upper-chained.

3.5 A sufficient condition

We already know (assuming the axiom of choice) that any upper-limited func-
tion is upper-chained, so we now have to find a sufficient condition for an upper-
onto function to be upper-limited. As we would expect from our two counter-
examples, neither an interval-countable labeling nor a finitely variable transition
system are sufficient. The reason why we cannot apply the techniques of Sec-
tion 2.7 is that not every upper-onto function is limited, for example the function
f : � a � b � c � d � � � 0 � 1 � 2 � given by:

a

b

cd

0

1

2

�
� �

�

�
�

�
�

� �

�

�
f a � 0
f b � 1
f c � 2
f d � 2

is upper-onto but not interval-onto (since f � a � c 
 � � 0 � 2 � ) and so is not limited.
However, given an upper-onto f : X � Y , we can define a partial order � f � � ,
and show a sufficient condition for f :

�
X � � f � � Y to be upper-limited. We

can then apply the techniques from Section 2.7 to show that f :
�
X � � f � � Y is

upper-chained, and so f : X � Y is upper-chained.
Informally, the partial order � f is defined to be the largest partial order

smaller than � such that f :
�
X � � f � � Y is interval-onto. That is, if x � f x �

and f x � y � f x � then � x � � � f � 1 � y 
�� x � f x � � � f x � . However, this definition
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is cyclic, so we shall formally define it in a similar fashion to Milner’s [Mil89]
definition of bisimulation. For each ordinal α, define x � αf x � iff x � x � and

� y � � f x � f x � 
 ��� x � � � f � 1 � y 
 � � β 
 α � x � β
f x � � � β

f x �
Then x � f x � iff � α � x � α

f x � .
PROPOSITION 10. If f : X � Y and Y is interval-total then

1. � f is a partial order, and
2. f :

�
X � � f � � Y is interval-onto.

PROOF. The proof of (1) is routine. For (2), suppose x � f x � and y � � f x � f x � 
 .
For each ordinal α, define the set Xα as:

Xα ��� x � � � f � 1 � y 
 � � β 
 α � x � β
f x � � � β

f x � �
Then by the definition of � f , Xα �� /0, and, for all γ 
 α, Xγ � Xα. Since each Xα
is a set, it follows that there is some x � � in all of the Xα. Then x � f x � � � f x � , and
f x � � � y. �

PROPOSITION 11. If f : X � Y is upper-onto, upper-finite-to-one, and Y is
interval-total then f :

�
X � � f � � Y is upper-limited.

PROOF. This proof uses some concepts from lattice theory. See a textbook such
as [DP90] for details.

First, we shall show by induction on α that f :
�
X � � α

f � � Y is upper-onto,
that is for any x � X and y � � y � f x there is an x � � α

f x such that f x � � y � . If

α � 0 then the result follows immediately, since � 0
f � � . Otherwise, for each

chain Y � y0 � ���	� � yn in � y � y � 
 and β 
 α define Xβ
Y as:

Xβ
Y � � x � � f � 1 � y 
 � � x0 � f � 1 � y0 
 � � � � � xn � f � 1 � yn 
 �

x � β
f x0 � β

f �	��� � β
f xn � β

f x � �
By induction Xβ

Y is non-empty. Since f is upper-finite-to-one, each Xβ
Y is finite.

Since Xβ � γ
Y � Y � � Xβ

Y � X γ
Y � , the Xβ

Y form a non-empty � -directed set of finite non-
empty sets. Any such set has a top, which is finite and non-empty, and we let x�
be any member of that top. It is easy to show that f x � � y � and that x � α

f x � . Thus
f :
�
X � � α

f � � Y is upper-onto.
Second, we shall show that f :

�
X � � f � � Y is upper-onto, that is for any

x � X and y � � y � f x there is an x � � f x such that f x ��� y � . For each α, define:

Xα � � x � � f � 1 � y � 
 � x � α
f x � �

By the first part, each Xα is non-empty. Since f is upper-finite-to-one, each Xα
is finite. Since Xα � β � Xα � Xβ, the Xα form a non-empty � -directed set of finite
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non-empty sets. Any such set has a top, which is finite and non-empty, and we
let x � be any member of that top. It is easy to show that f x � � y � and that x � f x � .
Thus f :

�
X � � f � � Y is upper-onto.

Finally, we shall show that f :
�
X � � f � � Y is upper-limited, that is for any

x � X , chains X � 
 f X � � in � f x, and f � X � 
 
 � y � � � � 
 f �X � � 
 in �
�
f x � there is an

x � � � � f � 1 � y � � � 
 such that X � 
 f � x � � � � 
 f X � � . Wlog, we can assume that x � X �
and so X � is non-empty. We then have two cases, depending on whether X � � is
empty:
� If X � � is empty, then for each x � � X � , define Xx � as:

Xx � ��� x � � � � f � 1 � y � � � 
 � x � � f x � � � �
Since f :

�
X � � f � � Y is upper-onto, each Xx � is non-empty. Since f is upper-

finite-to-one, each Xx � is finite. Since Xx � � x � � � Xx � � Xx � � , the Xx � form a non-
empty � -directed set of finite non-empty sets. Any such set has a top, which
is finite and non-empty, and we let x� � � be any member of that top.

� If X � � is non-empty, then for each x � � X � and x � � � X � � , define Xx �
x � � as:

Xx �
x � � � � x � � � � f � 1 � y � � � 
 � x � � f x � � � � f x � � �

Since f :
�
X � � f � � Y is interval-onto, the X x �

x � � form a non-empty � -directed
set of non-empty finite sets, and we let x� � � be any member of its top.

It is easy to show that f x � � � � y � � � and X � 
 f � x � � � � 
 f X � � . Thus f :
�
X � � f � � Y

is upper-limited. �

We are now in a position to prove the main result of this section.

PROPOSITION 12. If f : X � Y is upper-onto, and upper-finite-to-one then f :
X � Y is upper-chained.

PROOF. Consider x � X , and a chain Y � � � f x; then Y � � � Y � � � f x � is also a
chain. Let X � � � f � 1 �Y � � 
 , and let f � : X � � � Y � � be the function f domain restricted
to X � � . Then f � is upper-onto and upper-finite-to-one, since f is. Finally, Y� � is
total, since it is a chain in Y . It follows from Proposition 11 that f � :

�
X � � � � f �

��� Y � � is upper-limited, and thus, by Proposition 5, upper-chained. Since x � X � �
and Y � is a chain in � f � x, it follows that there is a � f � -chain X � � ���

f � x such that

f � � X � 
 � Y � . As X � is totally ordered under � f � , it is also totally ordered under
� . Clearly X � � � x. Hence f : X � Y is upper-chained. �

The condition that f2 : X2 � Y is upper-finite-to-one is precisely the condition
that the corresponding timed transition system is image-finite.

Thus we have shown that any simulation between timed transition systems�
M � T ��� � � and

�
N � T � � � � is a trajectory simulation if

�
N � T ��� � � is image-

finite.
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4 Discussion

Many timed transition systems which the authors are familiar with use the nat-
ural numbers as their underlying time domain. The domain of timed strings
corresponding to the transitions that may be performed will be interval-finite,
and so these transition systems will be trajectoried. These include one of the
versions of timed LOTOS [BoL92], the Temporal Process Language of [HeR91],
the Algebra of Timed Processes ATP [NiS90], the process algebra described in
[Ort92], and the algebra for time and probabilities [Han91]. Also, the transition
systems discussed in [ClZ92] are required to be image-finite, which is enough to
ensure that they are trajectoried.

The majority of timed transition systems which the authors are familiar with
are image-finite: only finitely many results are possible from any state through
any particular (delay or action) transition. As well as the transition systems men-
tioned above, these include a number of algebras using the reals as the underlying
time domain: the three versions of Timed CCS [MoT90, Wan91, Che91], Timed
ACP [BaB91], APA [Jef91], and a different version of timed LOTOS [QAF89].
These are all additive, so it follows that they are trajectoried.

Timed CSP [Sch92] and PARTY [Ho+92] are not image-finite; they both al-
low infinite choice. However, they are both forward and backward deterministic
under delay transitions, and so they are finitely variable on both weak and strong
timed strings, which is enough to ensure that they are trajectoried on both strong
and weak timed strings.

In the framework investigated in [VaL92], no assumptions are made about
the transition system, or the time domain, and the authors make explicit their
requirement that the transition systems are trajectoried; additivity without any
other assumptions is not enough.

In addition, we have shown that for image-finite processes from any of these
algebras, simulation is equivalent to trajectory simulation.

Acknowledgments

Thanks to Bill Roscoe, Edmund Robinson, Chris Ho-Stuart, Nancy Lynch, and
Gavin Lowe for useful comments and helpful criticism.

References

[BaB91] J. C. M. Baeten and J. A. Bergstra, Real time process algebra, Formal Aspects of Comput-
ing 3(2), pp 142–188, 1991.

[Ben89] J. van Benthem. Time, logic and computation. pp 1–49, LNCS 354, 1989.

[BoL92] T. Bolognesi and F. Lucidi, Timed process algebras with urgent interactions and a unique
powerful binary operator, pp 124–147, LNCS 600, 1992.

[ClZ92] R. Cleaveland and A. E. Zwarico, A theory of testing for real-time, North Carolina State
University report, 1992.



A comparison of additivity axioms. . . 19

[Che91] Liang Chen, An interleaving model for real-time systems, report ECS-LFCS-91-184, Uni-
versity of Edinburgh, 1991.

[DP90] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University
Press, 1990.

[Han91] H. Hansson, A calculus for communicating systems with time and probabilities, Ph.D.
thesis, University of Uppsala, 1991.

[Heh93] E. C. R. Hehner, Abstractions of time, Manuscript, June 1993.

[HeR91] M. Hennessy and T. Regan, A process algebra for timed systems, report 5/91, University
of Sussex, 1991.

[Ho+92] C. Ho-Stuart, H. S. M. Zedan, M. Fang, M, and C. M. Holt, PARTY: A process algebra
with real-time from York, report YCS 177, University of York, 1992.

[Jef91] A. S. A. Jeffrey, Observation spaces and timed processes, D.Phil thesis, Oxford Univer-
sity, 1991.

[Joh87] P. T. Johnstone, Notes on logic and set theory, Cambridge University Press, 1987.

[LyV93] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations Part II: Timing-
based systems, Report CS-R9314, CWI, Amsterdam, 1993.

[Mil89] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[MoT90] F. Moller and C. Tofts, A temporal calculus of communicating systems, pp 401–415,
LNCS 458, 1990.

[NiS90] X. Nicollin and J. Sifakis, The algebra of timed processes ATP: theory and application,
RT-C26, Project SPECTRE, Laboratoire de Génie Informatique de Grenoble, 1991 .

[Ort92] Y. Ortega-Mallén, Operational semantics for timed observations, pp 507–528, LNCS 571,
1992.

[QAF89] J. Quemada, A. Azcorra, and A. Fernandez, TIC: A timed calculus for LOTOS, in Formal
Description Techniques II, FORTE ’89 (Son T. Vuong, ed), North Holland 1990.

[Sch92] S. A. Schneider, An operational semantics for timed CSP, Information and Computation,
to appear.

[VaL92] F. W. Vaandrager and N. A. Lynch, Action transducers and timed automata, pp 436–455,
LNCS 630, 1992.

[Wan91] Wang Yi, A calculus of real time systems, Ph.D. Thesis, Department of Computer Sci-
ences, Chalmers University of Technology, 1991.


