
Position Paper: Goals of the Luau Type System

LILY BROWN, ANDY FRIESEN, and ALAN JEFFREY, Roblox, USA

Luau is the scripting language that powers user-generated experiences on the Roblox platform. It is a statically-
typed language, based on the dynamically-typed Lua language, with type inference. These types are used
for providing editor assistance in Roblox Studio, the IDE for authoring Roblox experiences. Due to Roblox’s
uniquely heterogeneous developer community, Luau must operate in a somewhat different fashion than a
traditional statically-typed language. In this paper, we describe some of the goals of the Luau type system,
focusing on where the goals differ from those of other type systems.

ACM Reference Format:
Lily Brown, Andy Friesen, and Alan Jeffrey. 2021. Position Paper: Goals of the Luau Type System. In HATRA
’21: Human Aspects of Types and Reasoning Assistants. ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
The Roblox platform allows anyone to create shared, immersive, 3D experiences. As of July 2021,
there are approximately 20 million experiences available on Roblox, created by 8 million devel-
opers [19]. Roblox creators are often young: there are over 200 Roblox kids’ coding camps in
65 countries listed by the company as education resources [18]. The Luau programming lan-
guage [17] is the scripting language used by creators of Roblox experiences. Luau is derived from
the Lua programming language [7], with additional capabilities, including a type inference engine.

This paper will discuss some of the goals of the Luau type system, such as supporting goal-driven
learning, non-strict typing semantics, and mixing strict and non-strict types. Particular focus is
placed on how these goals differ from traditional type systems’ goals.

2 NEEDS OF THE ROBLOX PLATFORM
2.1 Heterogeneous developer community
Need: a language that is powerful enough to support professional users, yet accessible to beginners

Quoting a Roblox 2020 report [16]:
• Adopt Me! now has over 10 billion plays and surpassed 1.6 million concurrent users earlier
this year.

• Piggy, launched in January 2020, has close to 5 billion visits in just over six months.
• There are now 345,000 developers on the platform who are monetizing their games.

This demonstrates the heterogeneity of the Roblox developer community: developers of experiences
with billions of plays are on the same platform as children first learning to code. Both of these groups
are important to support: the professional development studios bring high-quality experiences to
the platform, and the beginning creators contribute to the energetic creative community, forming
the next generation of developers.

2.2 Goal-driven learning
Need: organic learning for achieving specific goals
All developers are goal-driven, but this is especially true for learners. A learner will download

Roblox Studio (the creation environment for the Roblox platform) with an experience in mind, such
as designing an obstacle course to play in with their friends.

This work is licensed under a Creative Commons Attribution 4.0 International License.
HATRA ’21, October 2021, Chicago, IL
© 2021 Roblox.

1

HATRA ’21, October 2021, Chicago, IL Lily Brown, Andy Friesen, and Alan Jeffrey

Fig. 1. Roblox Studio’s 3D environment editor (a), and script editor (b)

The user experience of developing a Roblox experience is primarily a 3D interactive one, seen in
Fig. 1(a). The user designs and deploys 3D assets such as terrain, parts and joints, providing them
with physics attributes such as mass and orientation. The user can interact with the experience
in Studio, and deploy it to a Roblox server so anyone with the Roblox app can play it. Physics,
rendering and multiplayer are all immediately accessible to creators.
At some point during experience design, the experience creator has a need that can’t be met

by the game engine alone, such as “the stairs should light up when a player walks on them” or “a
firework is set off every few seconds”. At this point, they will discover the script editor, seen in
Fig. 1(b).

This onboarding experience is different from many initial exposures to programming, in that by
the time the user first opens the script editor, they have already built much of their creation, and
have a very specific concrete aim. As such, Luau must allow users to perform a specific task with
as much help as possible from tools.
A common workflow for getting started is to Google the task, then cut-and-paste the resulting

code, adapting it as needed. Since this is so common, backward compatibility of Luau with existing
code is important, even for learners who do not have an existing code base to maintain.
Type-driven tools are useful to all creators, in as much as they help them achieve their current

goals. For example type-driven autocomplete, or type-driven API documentation, are of immediate
benefit. Traditional typechecking can be useful, for example for catching spelling mistakes, but for
most goal-driven developers, the type system should help or get out of the way.

2.3 Type-driven development
Need: a language that supports large-scale codebases and defect detection

Professional development studios are also goal-directed (though the goals may be more abstract,
such as “decrease user churn” or “improve frame rate”) but have additional needs:

• Code planning: code spends much of its time in an incomplete state, with holes that will be
filled in later.

• Code refactoring: code evolves over time, and it is easy for changes to break previously-held
invariants.

• Defect detection: code has errors, and detecting these at runtime (for example by crash
telemetry) can be expensive and recovery can be time-consuming.

2

Position Paper: Goals of the Luau Type System HATRA ’21, October 2021, Chicago, IL

Detecting defects ahead-of-time is a traditional goal of type systems, resulting in an array of
techniques for establishing safety results, surveyed for example in [13]. Supporting code planning
and refactoring are some of the goals of type-driven development [1] under the slogan “type, define,
refine”. A common use of type-driven development is renaming a property, which is achieved by
changing the name in one place, and then fixing the resulting type errors—once the type system
stops reporting errors, the refactoring is complete.
To help support the transition from novice to experienced developer, types are introduced

gradually, through API documentation and type discovery. Type inference provides many of the
benefits of type-driven development even to creators who are not explicitly providing types.

3 GOALS OF THE TYPE SYSTEM
3.1 Infallible types
Goal: provide type information even for ill-typed or syntactically invalid programs.

Programs spend much of their time under development in an ill-typed or incomplete state, even if
the final artifact is well-typed. If tools such as autocomplete and API documentation are type-driven,
this means that tooling needs to rely on type information even for ill-typed or syntactically invalid
programs. An analogy is infallible parsers, which perform error recovery and provide an AST for
all input texts, even if they don’t adhere to the parser’s syntax.

Program analysis can still flag type errors, which may be presented to the user with red squiggly
underlining. Formalizing this, rather than a judgment Γ ⊢ 𝑀 : 𝑇 , for an input term 𝑀 , there is a
judgment Γ ⊢ 𝑀 ⇒ 𝑁 : 𝑇 where 𝑁 is an output term where some subterms are flagged as having
type errors, written 𝑁 . Write erase(𝑁) for the result of erasing flaggings: erase(𝑁) = erase(𝑁).

For example, in Lua, the string.find function expects two strings, and returns the offsets for that
string:

string.find(“hello”, “ell”) → (2, 4) string.find(“world”, “ell”) → (nil, nil)
and in Luau it has the type:

string.find : (string, string) → (number?, number?)
In a conventional type system, there is no judgment for ill-typed terms such as string.find(“hello”, 37)
but in an infallible system we flag the error and approximate the type, for example:

⊢ string.find(“hello”, 37) ⇒ string.find(“hello”, 37) : (number?, number?)

The goal of infallible types is that every term has a typing judgment given by flagging ill-typed
subterms:

• Typability: for every𝑀 and Γ, there are 𝑁 and 𝑇 such that Γ ⊢ 𝑀 ⇒ 𝑁 : 𝑇 .
• Erasure: if Γ ⊢ 𝑀 ⇒ 𝑁 : 𝑇 then erase(𝑀) = erase(𝑁)

Some issues raised by infallible types:
• Which heuristics should be used to provide types for flagged programs? For example, could
one use minimal edit distance to correct for spelling mistakes in field names?

• How can we avoid cascading type errors, where a developer is faced with type errors that
are artifacts of the heuristics, rather than genuine errors?

• How can the goals of an infallible type system be formalized?
Related work: there is a large body of work on type error reporting (see, for example, the survey
in [4, Ch. 3]) and on type-directed program repair (see, for example, the survey in [8, Ch. 3]), but less
on type repair. The closest work is Hazel’s [11] typed holes where 𝑁 is treated as a partially-filled
hole in the program, though in that work partially-filled holes are not erased at run-time. Many

3

HATRA ’21, October 2021, Chicago, IL Lily Brown, Andy Friesen, and Alan Jeffrey

compilers perform error recovery during typechecking, but do not provide a semantics for programs
with type errors.

3.2 Strict types
Goal: no false negatives.
For developers who are interested in defect detection, Luau provides a strict mode, which acts

much like a traditional, sound, type system. This has the goal of “no false negatives” where any
possible run-time error is flagged. This is formalized using:

• Operational semantics: a reduction judgment𝑀 → 𝑁 on terms.
• Values: a subset of terms representing a successfully completed evaluation.

Error states at runtime are represented as stuck states (terms that are not values but cannot reduce),
and showing that no well-typed program is stuck. This is not true if typing is infallible, but can
fairly straightforwardly be adapted. We extend the operational semantics to flagged terms, where
𝑀 → 𝑀 ′ implies𝑀 → 𝑀 ′, and for any value 𝑉 we have 𝑉 → 𝑉 , then show:

• Progress: if ⊢ 𝑀 ⇒ 𝑁 : 𝑇 , then either 𝑁 → 𝑁 ′ or 𝑁 is a value or 𝑁 has a flagged subterm.
• Preservation: if ⊢ 𝑀 ⇒ 𝑁 : 𝑇 and 𝑁 → 𝑁 ′ then𝑀 →∗ 𝑀 ′ and ⊢ 𝑀 ′ ⇒ 𝑁 ′ : 𝑇 .

For example in typechecking the program:

local (𝑖, 𝑗) = string.find(𝑥,𝑦); if 𝑖 then print(𝑗 − 𝑖) end

the interesting case is 𝑖 − 𝑗 in a context where 𝑖 has type number (since it is guarded by the if) but
𝑗 has type number?. Since subtraction has type (number, number) → number, this is a type error,
so the relevant typing judgment is:

𝑥 : string, 𝑦 : string ⊢ (local (𝑖, 𝑗) = string.find(𝑥,𝑦); if 𝑖 then print(𝑗 − 𝑖) end)
⇒ (local (𝑖, 𝑗) = string.find(𝑥,𝑦); if 𝑖 then print(𝑗 − 𝑖) end)

Some issues raised by soundness for infallible types:
• How should the judgments and their metatheory be set up?
• How should type inference and generic functions be handled?
• Is the operational semantics of flagged values (𝑉 → 𝑉) the right one?

Related work: gradual typing and blame analysis, e.g. [2, 21, 23]. The main difference between this
approach and that of migratory typing [22] is that (due to backward compatibility with existing
Lua) we cannot introduce extra code during migration.

3.3 Nonstrict types
Goal: no false positives.

For developers who are not interested in defect detection, type-driven tools and techniques such
as autocomplete, API documentation and type-driven refactoring are still useful. For such developers,
Luau provides a nonstrict mode, which we hope will eventually be useful for all developers. This
non-strict typing mode is particularly useful when adopting Luau types in pre-existing code that
was not authored with the type system in mind. Non-strict mode does not aim for soundness, but
instead has the goal of “no false positives“, in the sense that any flagged code is guaranteed to
produce a runtime error when executed.

Our previous example was, in fact, a false positive since a programmer can make use of the fact
that string.find(𝑥,𝑦) is either nil in both results or neither, so if 𝑖 is non-nil then so is 𝑗 . This is
discussed in the English-language documentation but not reflected in the type. So flagging (𝑖 − 𝑗)
is a false positive.

4

Position Paper: Goals of the Luau Type System HATRA ’21, October 2021, Chicago, IL

On the face of it, detecting all errors without false positives is undecidable, since a program such
as (if 𝑓 () then error end) will produce a runtime error when 𝑓 () is true. Instead we can aim for a
weaker property: that all flagged code is either dead code or will produce an error. Either of these
is a defect, so deserves flagging, even if the tool does not know which reason applies.

We can formalize this by defining an evaluation context E[•], and saying𝑀 is incorrectly flagged
if it is of the form E[𝑉]. We can then define:

• Correct flagging: if ⊢ 𝑀 ⇒ 𝑁 : 𝑇 then 𝑁 is correctly flagged.
Some issues raised by nonstrict types:

• Will nonstrict types result in errors being flagged in function call sites rather than definitions?
• In Luau, ill-typed property update of most tables succeeds (the property is inserted if it did
not exist), and so functions which update properties cannot be flagged. Can we still provide
meaningful error messages in such cases?

• Does nonstrict typing require whole program analysis, to find all the possible types a property
might be updated with?

• The natural formulation of function types in a nonstrict setting is that of [6]: if 𝑓 : 𝑇 → 𝑈

and 𝑓 (𝑉) →∗ 𝑊 then 𝑉 : 𝑇 and𝑊 : 𝑈 . This formulation is covariant in 𝑇 , not contravariant;
what impact does this have?

Related work: success types [6] and incorrectness logic [10].

3.4 Mixing types
Goal: support mixed strict/nonstrict development.

Like every active software community, Roblox developers share code with one another constantly.
First- and third-party developers alike frequently share entire software packages written in Luau.
To add to this, many Roblox experiences are authored by a team. It is therefore crucial that we offer
first-class support for mixing code written in strict and nonstrict modes.

Some questions raised by mixed-mode types:
• How much feedback can we offer for a nonstrict script that is importing strict-mode code?
• In strict mode, how do we talk about values and types that are drawn from nonstrict code?
• How can we combine the goals of strict and nonstrict types?
• Can we have strict and non-strict mode infer the same types, only with different flagging?
• Is strict-mode code sound when it relies on non-strict code, which has weaker invariants?
• How can we avoid introducing function wrappers in higher-order code at the strict/nonstrict
boundary?

Related work: there has been work on interoperability between different type systems, notably [12],
but there the overall goals of the systems were similar safety properties. In our case, the two type
systems have different goals.

3.5 Type inference
Goal: infer types to allow gradual adoption of type annotations.
Since backward compatibility with existing code is important, we have to provide types for

code without explicit annotations. Moreover, we want to make use of type-directed tools such as
autocomplete, so we cannot adopt the common strategy of treating all untyped variables as having
type any. This leads us to type inference.

To make use of type-driven technologies for programs without explicit type annotations, we use
a type inference algorithm. Since Luau includes System F, type inference is undecidable [15], but
we can still make use of heuristics such as local type inference [14].

5

HATRA ’21, October 2021, Chicago, IL Lily Brown, Andy Friesen, and Alan Jeffrey

It remains to be seen if type inference can satisfy the goals of strict and non-strict types. The
current Luau system infers different types in the two modes, which is unsatisfactory as it makes
changing mode a non-local breaking change. In addition, non-strict inference is currently too
imprecise to support type-directed tools such as autocomplete.

Some questions raised by type inference:
• How many cases in strict mode cannot be inferred by the type inference system? Minimizing
this kind of error is desirable, to make the type system as unobtrusive as possible.

• Can something like the Rust traits system [5] or Haskell classes [3] be used to provide types
for overloaded operators, without hopelessly confusing learners?

• Type inference currently infers monotypes for unannotated functions, in contrast to Quick-
Look [20], which can infer generic types. Will this be good enough for idiomatic Luau
scripts?

• Can type inference be used to infer the same types in strict and nonstrict mode, to ease
migrating between modes, with the only difference being error reporting?

Related work: there is a large body of work on type inference, largely summarized in [13].

4 CONCLUSIONS
In this paper, we have presented some of the goals of the Luau type system, and how they map to
the needs of the Roblox creator community. We have also explored how these goals differ from
traditional type systems, where it is necessary to accommodate the unique needs of the Roblox
platform. We have sketched what a solution might look like; all that remains is to draw the owl [9].

REFERENCES
[1] Edwin Brady. 2017. Type-Driven Development with Idris. Manning.
[2] Robert B. Findler and Matthias Felleisen. 2002. Contracts for Higher-order Functions. In Proc. Int. Conf. Functional

Programming. 48–59.
[3] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. 1996. Type Classes in Haskell. ACM

Trans. Program. Lang. Syst. 18, 2 (1996), 109–138.
[4] Bastiaan J. Heeren. 2005. Top Quality Type Error Messages. Ph.D. Dissertation. U. Utrecht.
[5] Steve Klabnik, Carol Nichols, and the Rust Community. 2021. The Rust Programming Language. https://doc.rust-

lang.org/book/
[6] Tobias Lindahl and Konstantinos Sagonas. 2006. Practical Type Inference Based on Success Typings. In Proc. Int. Conf.

Principles and Practice of Declarative Programming. 167–178.
[7] Lua.org and PUC-Rio. 2021. The Lua Programming Language. https://lua.org
[8] Bruce J. McAdam. 2002. Repairing Type Errors in Functional Programs. Ph.D. Dissertation. U. Edinburgh.
[9] Know Your Meme. 2010. How To Draw An Owl. https://knowyourmeme.com/memes/how-to-draw-an-owl
[10] Peter W. O’Hearn. 2020. Incorrectness Logic. In Proc. Symp. Principles of Programming Languages. Article 10, 32 pages.
[11] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew Hammer. 2019. Live Functional Programming with Typed Holes.

In Proc. Symp. Principles of Programming Languages. 14:1–14:28.
[12] Daniel Patterson and Amal Ahmed. 2017. Linking Types for Multi-Language Software: Have Your Cake and Eat It Too.

In Proc. Summit on Advances in Programming Languages.
[13] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.
[14] Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (2000),

1–44.
[15] Partial polymorphic type inference is undecidable. 1985. Hans-J. Boehm. In Proc. Symp. Foundations of Computer

Science. 339–345.
[16] Roblox. 2020. Roblox Developers Expected to Earn Over $250 Million in 2020; Platform Now Has Over 150 Million

Monthly Active Users. https://corp.roblox.com/2020/07/roblox-developers-expected-earn-250-million-2020-platform-
now-150-million-monthly-active-users/

[17] Roblox. 2021. The Luau Programming Language. https://luau-lang.org
[18] Roblox. 2021. Roblox Education: All Educators. https://education.roblox.com/en-us/educators
[19] Roblox. 2021. What is Roblox. https://corp.roblox.com

6

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://lua.org
https://knowyourmeme.com/memes/how-to-draw-an-owl
https://corp.roblox.com/2020/07/roblox-developers-expected-earn-250-million-2020-platform-now-150-million-monthly-active-users/
https://corp.roblox.com/2020/07/roblox-developers-expected-earn-250-million-2020-platform-now-150-million-monthly-active-users/
https://luau-lang.org
https://education.roblox.com/en-us/educators
https://corp.roblox.com

Position Paper: Goals of the Luau Type System HATRA ’21, October 2021, Chicago, IL

[20] Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A quick look at impredicativity.
In Proc. Int. Conf. Functional Programming.

[21] Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proc. Scheme and Functional
Programming Workshop. 81–92.

[22] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent,
Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten Years Later. In Proc.
Summit on Advances in Programming Languages.

[23] Philip Wadler and Robert B. Findler. 2009. Well-typed Programs Can’t be Blamed. In Proc. European Symp. Programming.
1–16.

7

	Abstract
	1 Introduction
	2 Needs of the Roblox platform
	2.1 Heterogeneous developer community
	2.2 Goal-driven learning
	2.3 Type-driven development

	3 Goals of the type system
	3.1 Infallible types
	3.2 Strict types
	3.3 Nonstrict types
	3.4 Mixing types
	3.5 Type inference

	4 Conclusions
	References

