Full Abstraction for Polymor phic Pi-Calculus

Alan Jeffrey*12 and Julian Rathke3

1 Bell Labs, Lucent Technologies, Chicago, IL, USA
2 DePaul University, Chicago, IL, USA
3 University of Sussex, Brighton, UK

Abstract. The problem of finding a fully abstract model for the polymorphic
1-calculus was stated in Pierce and Sangiorgi’s work in 1997 and has remained
open since then. In this paper, we show that a slight variant of their language has
a direct fully abstract model, which does not depend on type unification or log-
ical relations. This is the first fully abstract model for a polymorphic concurrent
language. In addition, we discuss the relationship between our work and Pierce
and Sangiorgi’s, and show that their conjectured fully abstract model is, in fact,
sound but not complete.

1 Introduction

Finding sound and complete models for languages with polymorphic types is notori-
ously difficult. Consider the following implementation of a polymorphic ‘or’ function
in Java 5.0 [17]:

static<X> X or (X t, X a, X b) {
if (a == t) { return a; } else { return b; }

}

This implementation of or takes a type parameter X, which will be instantiated with
the representation chosen for the booleans, together with three parameters of type X:
a constant for ‘true’, and the values to be ‘or’ed. This function can be called in many
different ways, for example®:

or.<int> (1, 0, 1); or.<bool> (true, false, true);

In each case, there is no way for the callee to determine the exact type the caller instan-
tiated for X, and so no matter what implementation for or is used, there is no observable
difference between the above program and the following:

or.<int> (1, 0, 1); or.<string> ("true", "false", "true");

* This material is based upon work supported by the National Science Foundation under Grant
No. 0430175

4 Java purists should note that this discussion assumes for simplicity that downcasting and reflec-
tion are not being used, and a particular implementation of autoboxing, for example the code
or.<int> (1, 0, 1) isimplementedas Integer x = new Integer(l); Integer y =
new Integer(0); or.<Integer> (x, y, X).

or the following:
or.<int> (1, 0, 1); or.<int> (2, 3, 2);

However, there is an observable difference between the above programs and:
or.<int> (1, 0, 1); or.<int> (1, 0, 1);

since we can use the following implementation of or to distinguish them:

static Object x=null;

static<X> X or (X t, X a, X b) {
if (a == x) { System.out.println ("hello"); } else { x=a; }
if (a == t) { return a; } else { return b; }

}

This example demonstrates some subtleties with polymorphic languages: the presence
of impure features (such as mutable fields in this case) and equality testing (such as
a == x in this case) can significantly impact the distinguishing power of tests. In the
case of pure languages such as System F [10], the technique of logical relations [27, 24]
can be used to establish equivalence of all of the above calls to or, which is evidently
broken by the addition of impurity and equality testing.

Much of the work in finding models of pure polymorphic languages comes in find-
ing appropriate techniques for modelling parametricity [26, 27] to show that programs
are completely independent of the instantiations for their type parameters. Such para-
metricity results are surprisingly strong, and can be used to establish ‘theorems for
free’ [31] such as the functoriality of the list type constructor. The strength of the re-
sulting theorems, however, comes at a cost: the proof techniques required to establish
them are quite difficult. In particular, even proving the existence of logical relations is
problematic in the presence of recursive types [24].

In this paper, we show that providing models for impure polymorphic languages
with equality testing can be surprisingly straightforward. We believe that the tech-
niques discussed here will extend to the polymorphic features of languages such as
Java 5.0 [17], and C# 2.0 [7]: F-bounded polymorphism [5], subtyping, recursive types
and object features. In this paper, we will investigate a minimal impure polymorphic
language with equality testing, based on Pierce and Sangiorgi’s work [23] on a poly-
morphic extension of Milner et al.’s [21, 20] Tecalculus.

Pierce and Sangiorgi have established a sound model for a polymorphic tecalculus,
but they only conjectured completeness [23, Sec. 12.2]. In this paper, we develop a
sound and complete model for a polymorphic T-calculus: the resulting model and proof
techniques are remarkably straightforward. In particular, our model makes no use of
type unification, which is an important feature of Pierce and Sangiorgi’s model. We
then compare our model to theirs, and show that ours is strictly finer: hence we have
resolved their outstanding conjecture, by demonstrating their model to be sound but not
complete.

This is the first sound and complete model for a polymorphic tecalculus: Pierce
and Sangiorgi [23] and Honda et al. [3] have established soundness results, but not
completeness.

a,b,c.d (Names)

X,Y,Z (Variables)
n,m:i=ajlx (Values)
P,Q,R:=n(X;x:T).P|A(T;A)|O|P|Q (Processes)

|v(@:T)P|IP|ifn=mthenPelseQ

Fig. 1. Syntax

2 An Asynchronous Polymor phic Pi-Calculus

The language we investigate in this paper is an asynchronous variant of Pierce and
Sangiorgi’s polymorphic tecalculus. This is an extension of the Tcalculus with type-
passing in addition to value-passing.

2.1 Syntax

The syntax of the asynchronous polymorphic Tecalculus is given in Figure 1. The syn-
tax makes use of types (ranged over by T,U,V,W) and type variables (ranged over by
X,Y,Z), which are defined in Section 2.3.

Definition 1 (Free identifiers). Write fn(P) for the free names of P, fn(n) for the free
names of n, fv(P) for the free variables of P, fv(n) for the free variables of n, ftv(P) for
the free type variables of P and ftv(T) for the free type variables of T.

Definition 2 (Substitution). Let o be a substitution of the form (V /X;F/X), and let
n[o], T[o] and P[o] be defined to be the capture-free substitution of type variables X by
types V and variables X by values fi, defined in the normal fashion. Let the domain of a
substitution dom(o) be defined as dom(V /X;f/X) = {X,X}.

Definition 3 (Process contexts). A process context ¢[-] is a process containing one
occurrence of a ‘hole’ (-). Write ¢ [P] for the process given by replacing the hole by P.

We present an example process, following [23], in the untyped t-calculus, in which
we implement a boolean abstract datatype as:

v(t)v(f)v(test)(getBools(t, f,test) | t(x,y).x{) |1 F(x,y).¥() | test(b,x,y).b(x,y))

This process generates new channelst, f andtest, which it publishes on a public channel
getBools. It then waits for input on channel t: when it receives a pair (x,y) of channels,
it sends a signal on x. The same is true for channel f except that it sends the signal on'y.
Finally, on a test channel we wait to be sent a boolean b (which should either be t or f)
together with a pair (x.y) of channels, and just forwards the pair on to b, which chooses
whether to signal x or signal y as appropriate. This can be typed as:

B, & v(t : Bool)v(f : Bool)v(test : Test(Bool))(
getBools(Bool;t, f,test) |
It(x: Signal,y : Signal) . X() |
I'f(x:Signal,y: Signal).y() |
Itest(b : Bool,x : Signal,y : Signal) . b(x,y)
)

where we define:
Signal & 1] Bool %ef [[Signal,Signal] Test(T) &f [T, Signal, Signal]

The interesting typing is for the channel getBools where the implementation of booleans
is published:
getBools : [X;X, X, Test(X)]

that is, the implementation type Bool is never published: instead we just publish an
abstract type X together with the values t : X, f : X and test : Test(X). Since the im-
plementing type is kept abstract, we should be entitled to change the implementation
without impact on the observable behaviour of the system, for example by uniformly
swapping the positions of x and y:

B, & v(t : Bool)v(f : Bool)v(test : Test(Bool))(
getBools(Bool;t, f,test) |
It(x : Signal,y : Signal) . ¥() |
I'f(x: Signal,y : Signal) .X() |
Itest (b : Bool,x : Signal,y : Signal) . b{y, X)
)

As Pierce and Sangiorgi observe, as untyped processes B; and B, are easily distin-
guished, for example by the testing context:

T |v(a)v(b)(getBools(t, f,test).t(a,b)|a().c()|b().d())

However, this process does not typecheck, since when we come to typecheck T, the
channel t has abstract type X, not the implementation type Bool. We expect any sound
and complete model to consider B1 and B, equivalent.

An illustrative example of a contextual inequivalence is given below. For some gen-
erative type T consider the following processes:

L =v(b:][T],c:I[T],d:T)@(T,T;b,b,c,d)|c(
L"=v(b:][T],c:][T],d:T)@&(T,T;b,b,c,d)|c

y:T).fail{))
(y:T).0)

and a type environment I which contains only a: J[X,Y; [[X],][Y],][Y].X] and a suit-
able type for fail. Now it may at first appear that L and L’ should be considered equiv-
alent with respect to the type information in " as the private name d is only released
along channel a at some abstract type represented by X, say. And the private hame c
is only released as a channel which carries values of abstract type Y, say. In order to
distinguish these processes a test term would need to obtain a value of type Y to send
on c. However, there is a testing context which allows the name d to be cast to type Y:

R=a(X,Y;z: I[X],Z : [IY],Z" - TIY],x: X) . () |2 (y 1Y) . 27(y))

It is easy to check that this process is well-typed with respect to I'. Here, when R com-
municates with L and L', the vector of fresh names is received along a and the variables
z and 7’ are aliased so that a further internal communication within R sends d as if it
were of type X but receives it as if it were of type Y. It can then be sent along c to
interact with the remainder of L and L’ to distinguish them.

wa=1|c(U;b)|v(@:T)c(U;b) (Untyped Labels)

— (R-IN) —————— (R-OuUT)
c(X:x: T).p S8 PG /%:b/x) c(U:b) 8 o
P-5 P bn(w)nf(Q) =0 (R-PAR)
PIQ 5 P'|Q
c(U;p) _, v@Teldnp _
P—%P Q 4:Q {&nfn(P)=0 (R-Com)
PIQ — v(@:T)(P'|Q)
TR v@T)edp o -
P— P a¢f Ub P P" aec{b}\{c,a
() vy 2L 2SO oy
v(@:T)P — v(a:T)P v@a:T)p 2= o pf
l o
'Plpip (R'REPL)
p o pr
[’ [/
P—P m (R-TEST-T) azb Q— Qu (R-TEST-F)
ifa=athenPelseQ — P’ ifa=DbthenPelseQ — Q'

Fig. 2. Untyped Labelled Transitions P Hop (eliding symmetric rules for P | Q)

2.2 Dynamic Semantics

The untyped transition semantics for the asynchronous polymorphic e-calculus is given
in Figure 2, and is the same as Pierce and Sangiorgi’s. We define the free names of a
label fn(p) as fn(t) = 0, fn(c(U;b)) = {c,b} and fn(v(a: T)c(U;b)) = {c,b}\ {a}.
We also define the bound names of a label bn(p) as bn(t) = bn(c{U;b)) = 0 and
bn(v(a: T)c(U;b)) = {&}. The untyped semantics is useful for defining the run-time
behaviour of processes, but is not immediately appropriate for defining a notion of
equivalence, as it distinguishes terms such as B1 and B, which cannot be distinguished
by any well-typed environment:

v(t:Bool, f:Bool test: Test(Bool))getBools(Bool ;t, f test) t(ab) &)

B1 aly
v(t:Bool, f:Bool test: Test (Bool))getBools(Bool ;t, f test) t(a,b) b()
B> —

These behaviours correspond to the untyped test T, but do not correspond to any well-
typed test, which only has access to the abstract type X and not to the concrete type

. b
Bool. As a result, no well-typed test can cause the action Hab) to be performed. We
will come back to this point in Section 3.2.

X,Y,Z (Type Variables)

T,UV,W :=X| I (Types X is non-generative, I | is generative)
rA:=X;A:T (Typing Contexts)
Xel (T-TVAR) X,F=T {X}ﬁdomﬂ(l’l: 0 X disjoint (T-CHAN)
r=X r=1X;T]
XFT Mo (n:T)erl
KnTre W) g (TVAD

FEn:JX;T] X, Mx:THP {X,X}Ndom(F) =0 xdisjoint

FEnX;x:T).P (T
Fen: I[X;U}_ ren: U[T/X] (T-0uUT)
I =n(T;n)
F}—O rFFPF Prng (TPAR)
Nna:THP a¢ dom(l’)r '_f\t)\(/gl':)Tfpdom(r) T is generative (T-NEw)
% (T-REPL) e :I'TI— ifrnzmr;tien;;sZQ 2 (T-TEsT-W)

Fig. 3. Type System, with judgementsT =T, FFo,T-n:Tand P

2.3 Static Semantics

The static semantics for the asynchronous polymorphic tecalculus is given in Figure 3
where the domain of a typing context dom(I") is dom(X;fi : T) = {X,n}, the free
names of a typing context fn(I") are fn(X;f : T) = fn(f), the free variables of a typ-
ing context fv(I") are fv(X;fi: T) = fv(i), and the free type variables of a typing context
ftv(I") are fev(X;A: T) = {X} Uftv(T). We say that a typing context A is closed if
fv(A) = ftv(A) = 0and moreover foranya: T e Aanda:U € Athen T =U. We write
[[o] as the typing context given by (X;f: T)[W /Y;m/y] = (X \Y;A[m/y] : T W /Y]).

This is quite a simple type system, as it does not include subtyping, bounded poly-
morphism, or recursive types, although we expect that such features could be added
with little extra complexity.

In Section 4, we will discuss the relationship between this type system and that of
Pierce and Sangiorgi. For the moment, we will just highlight one crucial non-standard
point about our typing judgement: we are allowing identifiers to have more than one

type in a typing context. For example:

X Ysa T[IX] TYT) b T1X] b TiY = acb, b)

To motivate the use of these mulitcontexts consider the processes

P (X, Y [IIX,TYT) - x(y s TX]2: 1Y) . X(y
Q L v(a: {[1fint], J[int])v(b : [[int])C(int, int; a>| < >

which can interact as follows:

P|Q —= v(a: {[{[int], Ifint]})(a(y: I[int],z: I[int]).a(y,2) |v(b: [[int])(@(b,b)))
— v(a:][{lint], J[int]])v(b: I[int])a(b,b)

This interaction comes about due to the following labelled transitions from P (with
appropriate matching transitions from Q):

c(int,int;a)
—_—

P a(y : I[int],z: T[int]) .afy,2)

alb,b)

Now, P typechecks as:
c: I Y TITIXL T =P

and we would like to find an appropriate typing fora(b,b). The obvious typing would
be to use Q’s choice of concrete implementation of X and Y as int however in order
to reason about P independently of Q we must choose a typing which preserves type
abstraction and is independent of any choice provided by Q. To do this we use a typing
which more closely resembles P’s view of the interaction:

X Y5e TGS TITXE T ac UK DY DL b T[X) b 1Y] +=a(b, b

which makes a use of two different types for b in the type environment.

Pierce and Sangiorgi do not allow multiple typings for the same identifier: instead,
they use type unification for the same purpose. In their model, the types X and Y above
would be unified, and so b would just have one type b : [[X]. This produces a model
which is sound, but not complete, as we discuss in Section 4.

An alternative strategy to either multiple typings for variables or type unification
would be subtyping with intersection types [6, 28], which ensure that meets exist in
the subtype relation. Subtyping with meets are used, for example, by Hennessy and
Riely [12] to ensure subject reduction. Intersection types would provide this language
with pleasant properties such as principal typing, which it currently lacks, but at the
cost of complexity.

3 Equivalencesfor Asynchronous Polymorphic Pi-Calculus

Process equivalence has a long history, including Milner’s [19] bisimulation, Brookes,
Hoare and Roscoe’s [4] failures-divergences equivalence, and Hennessy’s [11] testing

equivalence. In this paper, we will follow Pierce and Sangiorgi [23] and investigate
contextual equivalence on processes [13, 22].

Contextual equivalence has a very natural definition: it is the most generous equiv-
alence satisfying three natural properties: reduction closure (that is, respecting the op-
erational semantics), contextuality (that is, respecting the syntax of the language), and
barb preservation (that is, respecting output on visible channels).

Unfortunately, although contextual equivalence has a very natural definition, it is
difficult to reason about directly, due to the requirement of contextuality. Since con-
textuality requires processes to be equivalent in all contexts, to show contextual equiv-
alence of P and Q, we have to show contextual equivalence of ¢[P] and ¢[Q] for any
appropriately typed context ¢ : moreover, attempts to show this by induction on ¢ break
down due to reduction closure.

The problem of showing processes to be contextually equivalent is not restricted
to polymorphic tecalculi, for example this problem comes up in treatments of the A-
calculus [2], monomorphic T-calculus [20] and object languages [1]. The standard so-
lution is to ask for a fully abstract model, which coincides with contextual equivalence,
but is hopefully more tractable.

The problem of finding fully abstract models of programming languages originates
with Milner [18], and was investigated in depth by Plotkin [25] for the functional lan-
guage PCF. For polymorphic languages, logical relations [27] allow for the construction
of fully abstract models [24] but require an induction on type, and so break down in the
presence of recursive types. Sumii and Pierce have recently shown that a hybrid of con-
text bisimulation and logical relations [30] yields a fully abstract model in the presence
of recursive types.

The monomorphic first order [20] and higher-order [29] T-calculus have quite sim-
ple fully abstract models, but to date the only known models for polymorphic t-calculus
have been sound but not complete [23, 3]. We will now show that a very direct treatment
of type-respecting labelled transitions generates a fully abstract bisimulation equiva-
lence which makes no use of logical relations or type unification.

3.1 Contextual Equivalence

Process contexts are typed as follows: A= ¢ [I'] whenever V(I - P). (AF ¢c[P]). A typed
relation on closed processes % is a set of triples (I,P,Q) suchthat T =P and - Q
such that I" is closed. We will typically write ' = P ® Q whenever (I',P,Q) € % . Given
any typed relation on closed processes ®_, we can define its open extension %° to be the
typed relation on processes given by I' = P £° Q whenever I'[0],A F P[o] ® Qo] for
any closed typing environment of the form (I'[0],A).

Definition 4 (Reduction closure). A typed relation £ on closed processes is reduction-
closed whenever AE P £ Q and P Lp implies there exists some Q' such that
Q=—QandAFP % Q.

Definition 5 (Contextuality). A typed relation ® on closed processes is contextual
whenever ' EP 8° Q and A ¢ [} implies AE ¢[P] R° ¢[Q].

Definition 6 (Barb preservation). A typed relation £ on closed processes is barb-

preserving whenever A= P £ Q and P 2 implies Q L :

o =1 |v(@: T)c[U;b] | v(a)c(X;b: V) (Typed Labels)
C:=(T'+[a]P) (Configurations)
T /
P P (TR-SILENT)

(T F[o]P) —> (T F [o]P’)

(TR-RECEP)

).0 {&X}Nndom(l) =
(MF [o]P) Z255200 (X rb:V - [U/X,0]P)

0 (TR-OUT-W)

Fig. 4. Typed Labelled Transitions C S

We can now define contextual equivalence=2 as the open extension of the largest
symmetric typed relation on closed processes which is reduction-closed, contextual
and barb-preserving. The requirement of contextuality makes it very difficult to prove
properties about contextual equivalence, and so we investigate bisimulation as a more
tractable proof technique for establishing contextual equivalence.

3.2 Bisimulation

As a first attempt to find a more tractable presentation of contextual equivalence, we
could use bisimulation. Unfortunately, as we discussed in Section 2.2, our untyped la-
belled transition system does not respect the type system, and so gives rise to too fine
an equivalence. We therefore investigate a restricted labelled transition system which
respects types: this is defined in Figure 4. The transition system is given by a relation:

(F-[olP) =+ (' [0']P)
between configurations of the form (I - [0]P). These comprise three constituent parts:

— P is the process being observed: after the transition, it becomes process P’.

— I is the external view of the typing context P operates in. This external view may
not have complete information about the types, for example P may have exported
the concrete type int as an abstract type X. Only X will be recorded in the typing
context. As P exports more type information, I may grow to become I"’. It is here
that we make use of the multiple entries in type environments.

— 0 is a type substitution, mapping the external view to the internal view. This map-
ping provides complete information about the types exported by P, for example
int/X records that external type X is internal type int. Note that this substitution is
not applied to P, we represent that with the alternative notation P[a].

There are three kinds of transitions:

— Silent transitions (I - [0]P) — (I F [o]P") which are inherited from the untyped
transition system.)

_ Receptivity transitions (I - [o]P) “EEL (5.7 1 ()P | (c(U;B)[a])) which
allow the environment to send data to the process. We require the message to type-
check, and we allow the environment to generate new names, which are recorded
in the type environment. We are modelling an asynchronous language, and so pro-
cesses are always input-enabled. Note that the process is sending no information to
the environment, so the type substitution o does not grow. Note also that the mes-
sage is typed using the external view I but must have the type mapping o applied
to it for it to be mapped to the internal type consistent with P.

_ Output transitions (I - [o]P) Y@X*Y) (% 1 B:V - [U /X, 0]P’) which allow the
process to send data to the environment. The channel being used to communicate
with the environment must be typed [[X V} so the typlng context is extended with
abstract types X and the new type information b:V. This may result in more than
one type being given to the same name, which is why we allow duplicate entries in
typing contexts. The process P must have provided concrete implementations U of
the abstract types X : these are recorded in the type substitution.

To demonstrate how our typed labelled transitions can be used we return to the
example above of processes L and L’ and type environment I". We show a sequence of
typed transitions from (I" F [JL) which cannot be matched by (I" F [JL’):

(M F[ole(y : 1[T]) - fail())

where o is [T, T/X,Y]and " is X,Y,[,b: [[X],b: J[Y],c: J[Y],d : X. At this point we
would like to use Rule TR-RECEP to provide a message on channel ¢ to facilitate a
communication, however, there is no name of the appropriate type listed in I'" and the
restriction to generative types for the fresh names means that this cannot yet be done.
However, note the following transitions:

(r - []L) v(b,c.d)a(X,Y;b:][X],b:1[Y],c:][Y],d:Y)

(M foley: {T]).Rn)) 24 (7 [ole(y: 1[T]) . fail() | B(d))
&;“ <r'd wo}c(y 1[1). fail())
f_‘% (T,d Y F [o]e(y : 1[T]) . Fail() [c(d))

in which the second type listed for b in I is used to justify the b(d) transition. These
transitions serve to mimic the typecasting and subsequent use of the extruded name d
by a testing context which are crucial to distinguishing L and L'.

We now formalise our notion of bisimulation equivalence. A typed relation on
closed configurations % _ is a set of 5-tuples (I', o, P,p, Q) such that ['[a] - Pand I'[p] - Q
and both I'[o] and I [p] are closed. For convenience we will write I' = [0]P % [p]Q when-
ever (IN,o,P,p,Q) € R.

Definition 7 (Bisimulation). A simulation ® is a typed relation on closed configura-
tions such that if I = [o]P % [p]Q and (T + [o]P) 2 (I'" + [0’]P’) then we can show

10

(I [p]Q) == (I I [¢']Q') for some I = [o']P' & [p']Q". A bisimulation is a simu-
lation whose inverse is also a simulation. Let ~ be the largest bisimulation.

We are now in position to show full abstraction of bisimulation for contextual equiv-
alence, and so provide a tractable model of polymorphic re-calculus.

3.3 Soundness of Bisimulation for Contextual Equivalence

The difficult property to show is that bisimulation is a congruence: from this it is routine
to establish that bisimulation implies contextual equivalence. Showing congruence for
bisimulation is a well-established problem for process languages, going back to Mil-
ner [19]. In the case of polymorphic 11, the problem is in showing that bisimulation is
preserved by parallel composition. We do this by constructing a candidate bisimulation:

I E [o]P|R[o] ® [p]Q|R[p] whenever I = [0]P =~ [p]Q
andl FR
and o and p are type substitutions

and then showing that this is a bisimulation (up to some technicalities which we shall
elide for the moment). This has a routine proof, except for one case, which is when
R[o] — R’[0]. It is straightforward to establish that type substitutions do not influ-
ence reduction, and so we have R[p] — R’[p], and all that remains is to show that
I = [o]P|R'[0] & [p]Q|R'[p]. Unfortunately, this is not directly possible, due to the
requirement that I = R’. If we had a subject reduction result for open processes, then
this would be routine, but this result is not true due to channels with multiple types:

a(c)|a(x:Y).b(x) — 0|b{c)
X,Y;a:[[XL,a:J[Y],b:][Y],c: X + alc)|a(x:Y).b(x)
X,Y;a:[[X,a:][Y],b:][Y],c:X ¥ 0]b{c)

Pierce and Sangiorgi’s technique for dealing with this problem is to introduce type uni-
fication to ensure that every channel has a unique type. Unfortunately, as we will discuss
in Section 4, the resulting semantics is incomplete. Instead of using such unifications,
we observe that in any case where subject reduction fails, it does so because of com-
munication on a visible channel: if the channel was hidden by a v-binder, then it would
have only one type, and so subject reduction holds. We therefore observe that in the
cases where subject reduction fails to hold, there must be a pair of matching visible
reductions which caused the communication.

Proposition 1 (Open subject reduction). If I P and P — P” then either:
1. TP or .

2. p YETIEUD o) bryihere P = (v(a: T)P))[U /X].

In the example (up to structural equivalence):

alc)[a(x:Y).bx) 2% ola(x:Y).b(x)
29 0]b(e)
X,Y;a: X, a:J[Y],b:J[Y],c: X + alc)|a(x:Y).b(x)
X,Y;a:[[X,a:J[Y],b:T[Y],c: X,c:Y F 0Ola(x:Y).b(x)
X,Y;a:[[X],a: J[Y],b:1[Y],c: X,c:Y F 0]|b(c)

The crucial point is that these extra transitions by the testing context correspond to
complementary typed transitions by the process such that, after the visible a(c) output
action, the typing context I' is extended with ¢ : Y. The problematic residual of the
test term R’ (0 | b(c) in the example) can now be typed in this extended I and the
bisimulation argument can be completed.

Theorem 1 (Bisimulation is a congruence). If [= P & Q then AF ¢[P] =2 ¢[Q] for
any At c[r].

Proof. Given in Appendix A.

Theorem 2 (Soundness of bisimulation for contextual equivalence). If T P & Q
then EP Q.

Proof. It suffices to prove the result for closed processes, for which we need to show
that = is symmetric, reduction-closed,contextual and barb-preserving. All of these are
direct, except for contextuality, which follows from Theorem 1.

3.4 Completeness of Bisimulation for Contextual Equivalence

The proof of soundness for bisimulation required some non-standard techniques. In
comparison, the proof of completeness is quite straightforward, and follows the usual
definability argument [11, 9, 15] of showing that for every visible action a, we can find
a process R which exactly tests for the ability to perform a. Once we have established
definability, completeness follows in a straightforward fashion.

Theorem 3 (Completeness of bisimulation for contextual equivalence). IfIT EP = Q
thenl EP~ Q.

Proof. Given in Appendix B.

4 Comparison with Pierce and Sangiorgi

In this paper, we have shown that weak bisimulation is fully abstract for observational
equivalence for an asynchronous polymorphic tecalculus. This is almost enough to set-
tle the open problem set by Pierce and Sangiorgi [23] of finding a fully abstract seman-
tics for their polymorphic tecalculus. There are, however, some differences between
their setting and ours, most of which we believe to be routine, with one important ex-
ception: the type rule for if-then-else.

4.1 Minor differences
The minor differences between our polymorphic tcalculus and theirs are:

1. We are considering weak bisimulation rather than strong bisimulation.

2. Since we are considering weak bisimulation, we have not included P + Q in our
language of processes. We expect that this could be handled in the usual fashion,
by defining observational equivalence on processes in the style of Milner [19].

12

3. We have treated an asynchronous rather than a synchronous language, since the
soundness result follows more naturally for the resulting asynchronous transition
system. We expect that a fully abstract bisimulation for a synchronous language
can be given by adding transitions for synchronous input as well as receptivity:

pUB) b T E B

{@}Ndom(l)=0 T are generative

(F F [o]p) YEDUR) (.7 - [o]P))
Note that the label used here for synchronous input is distinct from the label used
for receptivity.

4. We have used a variable-name distinction, and so have used Honda and Yoshida’s
definition of observational equivalence [13]. See [8] for a discussion of this issue.

5. Our type system keeps track explicitly of free type variables, rather than treating
them implicitly: this makes some of the book-keeping easier, at the cost of some
additional syntactic overhead.

(TR-IN)

We do not believe that these differences are substantial.

4.2 Major difference: typing if-then-else

However, there is one important difference between our language and Pierce and San-
giorgi’s, even though it may appear at first sight to be a minor point: the type rule for
if-then-else. In their paper, a strong type rule is given:

FrEn:T TEM:T
MNP Ir=Q
I ifn=mthenPelseQ

(T-TEST-S)

In our work, the weaker type rule T-TEST-W is used, which allows n and m to have
different types. Note that in a language with subtyping and a top type, these rules are
equivalent, since we can always choose T to be the top type, and use subsumption to
derive T-TEST-W from T-TEST-S. In the absence of subtyping, however, the rule T-
TeEST-W allows more processes to typecheck, so raises the expressive power of tests,
and hence makes observational equivalence finer. For example:

P 2" v(b: {[int])v(c : |[string])a(int,string; b, c)

Q “' v(b: {fint])a(int, int;b,b)
As long as a: [[X,Y;][X],][Y]] these processes cannot be distinguished by any test
which uses the type rule T-TEST-S, but they can be distinguished by:

R a(X,Y;x: 1[X],y: 1[Y]).ifx = ythend()

which typechecks using type rule T-TEST-W. In fact, there is a third possible type rule
for if-then-else, which makes use of type unification:

FMN=n:T I'kEm:U
mgu(T,U)=0=T[o]FP[o] THQ
["Fifn=mthenPelseQ

(T-TEST-U)

13

where mgu(T,U) builds the most general type substitution o such that T [a] = U|o].
This type rule is strictly weaker than T-TEST-W, and raises the expressive power of
tests even further, and hence makes observational equivalence even finer. For example:
p &f v(c: I[int,string])v(d : {[int])a(int,string;c,d) .b
Q¥ v(c:][int,string])v(d :][int])a(int,string;c,d) . b

(string;c) .d(x :int).&(X)
(string; C)

Aslongasa: [[X,Y;][X,Y],1[X]],b:1[Z;][int,Z]] and e :] [int], these processes cannot
be distinguished by any test which uses T-TEST-W, but they can be distinguished by:

R a(X,Y:x: [[X,Y],y: 1[X]).b(Z;z: [[int,Z]).ifx = ztheny(5)

which typechecks using type rule T-TEST-U. We have that:

— The type rule T-TEST-W has a matching fully abstract bisimulation equivalence =,
which for purpose of this discussion we shall refer to as ~,, (shown in Theorems 2
and 3).

— The type rule T-TEST-S has a matching fully abstract bisimulation equivalence
~ (shown in Appendix D).

— The type rule T-TEST-U has a matching fully abstract bisimulation equivalence
=, (shown in Appendix E).

Moreover:

We have inclusions on these equivalences: if I E P ~,, Q then I £ P =~ Q for any
s Pand Tl ¢ Q (and similarly for =, and =~,,).

The above examples show that the inclusions are strict: we have I' F P %,, Q and
MEP~;Qforsomerl s Pand T Q (and similarly for =, and =~,,).

The type rule for if-then-else used by Pierce and Sangiorgi is T-TEST-S.

Pierce and Sangiorgi’s bisimulation is the strong, synchronous version of =, (shown
in Appendix C).

Hence, since synchrony and weak bisimulation play no role in the above examples, we
have a resolution of Pierce and Sangiorgi’s conjecture:

— Pierce and Sangiorgi’s polymorphic bisimulation is sound, but not complete, for
their polymorphic tecalculus.

These arguments are formalised in Appendices C, D and E.

5 Conclusions

This paper gives the first fully abstract semantics for a polymorphic process language.
Moreover the semantics is extremely straightforward: the only nonstandard part of the
presentation is that names are given more than one type in a type environment. This
corresponds to the ability for a polymorphic program to be sent the same channel at
multiple different types. In contrast to polymorphic A-calculi, polymorphic te-calculi
have the ability to compare names for syntactic equality, and so there is an internal test
which can detect when the same name has been given multiple different types.

14

We believe that the techniques given in this paper are quite robust (for example
there are no uses of type induction) and could be scaled with little difficulty to larger
type systems with features such as subtyping, F-bounded polymorphism, and recursive
types. Moreover, object languages such as the ¢-calculus support object equality, and
so we believe that adapting our previous fully abstract semantics [14] for objects [1] to
deal with generic objects would also be possible.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

2. H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North Holland, 1984.

3. M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. In Proc. Int. Conf.
Foundations of Software Science and Computer Structures (FoSSaCs), Lecture Notes in
Computer Science. Springer-Verlag, 2003.

4. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560-599, 1984.

5. P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-bounded polymorphism for
object-oriented programming. In Proc. Int. Conf. Functional Programming Languages and
Computer Architecture (FPCA), pages 273-280. ACM Press, 1989.

6. M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for A-terms. Archiv Math.
Logik, 19:139-156, 1978.

7. Microsoft Corporation. ECMA and ISO/IEC c¢# and common language infrastructure stan-
dards, 2004. http://msdn.microsoft.com/net/ecma/.

8. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. In Proc.
Int. Conf. Automata, Languages and Programming (ICALP), volume 1443 of Lecture Notes
in Computer Science. Springer-Verlag, 1998.

9. C. Fournet, G. Gonthier, J-J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents.
In Proc. Int. Conf. Concurrency Theory (CONCUR), volume 1119 of Lecture notes in com-
puter science. Springer-\Verlag, 1996.

10. J-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press, 1989.

11. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

12. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information
and Computation, 173(1):82-120, 2002.

13. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437-486, 1995.

14. A.S. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects.
In Proc. IEEE Logic In Computer Science, pages 101-112. IEEE Press, 2002. Full version
to appear in Theoretical Computer Science.

15. A. S. A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revis-
ited. In Proc. Mathematical Foundations of Programming Semantics, Electronic Notes in
Computer Science. Elsevier, 2003.

16. A. S. A. Jeffrey and J. Rathke. Full abstraction for polymorphic pi-calculus. Online edition
with proofs, http://www.fabfac.org/, 2005.

17. Sun Microsystems. Release notes Java 2 platform standard edition development kit 5.0,
2004. http://java.sun.com/j2se/1.5.0/relnotes.html.

18. R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science,
4:1-22, 1977.

19. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

20. R. Milner. Communication and mobile systems: the Te-calculus. Cambridge University Press,
1999.

15

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

3L

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part | + II. Information
and Computation, 100(1):1-77, 1992.

R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. Int. Conf. Automata, Languages
and Programming (ICALP), volume 623 of Lecture Notes in Computer Science. Springer-
Verlag, 1992.

B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.
J. ACM, 47(3):531-584, 2000.

A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures
in Computer Science, 10:321-359, 2000.

G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,
5:223-255, 1977.

J. C. Reynolds. Types, abstraction and parametric polymorphism. Information Processing,
83:513-523, 1983.

J. C. Reynolds. An introduction to logical relations and parametric polymorphism (abstract).
In Proc. ACM Symp. Principles of Programming Languages, pages 155-156. ACM Press,
1993.

J. C. Reynolds. Theories of Programming Languages. Cambridge University Press, 1998.
D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, University of Edinburgh, 1993.

E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion. In Proc. ACM
Symp. Principles of Programming Languages, 2005. To appear.

P. Wadler. Theorems for free! In Proc. Int. Conf. Functional Programming Languages and
Computer Architecture (FPCA), pages 347-359. ACM Press, New York, 1989.

16

Theremaining appendicesareonly in the online version
A Bisimulation isa congruence

Defi nition 8 (Structural equivalence). Let = be the equivalence generated by treating | as a
monoid with unit O, satisfying scope extrusion, and closed under | and v(a: T).

Defi nition 9 (v-extension of a relation). For any typed relation on closed configurations % ,
define its v-extension &’ to be the typed relation on closed configurations generated by:

= [o]P Y [p]Q whenever I’ [0’']P' % [p']Q’
forsome P=v(a: T)P,Q=v(a:U)Q’
andoCao,pCp.,rcr’
Defi nition 10 (Bisimulation up to v). A simulation up to v is a typed relation on closed con-
figurations & such that if I' = [0]P ® [p]Q and (I" - [o]P)—q> (I + [0']P") then we have
(FH[PIQ) = (I +[p']Q") for some I = [0']P’ %Y [p']Q’. A bisimulation up to v is a simula-
tion up to v whose inverse is also a simulation up to v.

Proposition 2 (Soundness of bisimulation up tov). If ® is a bisimulation up tov then 8 C =.
Proposition 3 (Reduction under type substitution). For any process P and type substitution g,
Plo] Y. Qifand only if we can find #f and Q' such that P > Q', p= W [o] and Q = Q’[o].

v(@T)c(U;b)

Proposition 4 (Output reduction). If I - P and P P’ then T are generative,

ra:TrclU;b)andla:THP.

Proposition 5 (Input reduction). If I - P and P _b),
M=c(X;x:V)and X,l,b:VEP.

P’ and {X} Ndom(I") = O then

Proposition 6 (Closed subject reduction). If T is a closed typing environment, ' -+ P and
P~ P'thenl P

Proposition 7 (Labelled Subject Reduction). If (I - [0]P) —> (I I [o']P’) and (T - [a]P) is
a closed configuration then (I - [0’]P’) is also a closed configuration.

We can now prove Theorem 1: if I E P &° Q then AE c[P] &° ¢[Q] forany A+ c[l].

Proof. We show that & is preserved by each of the process operators, from which the result
follows by induction on ¢. The difficult case is to show that &° is preserved by |, which follows
if we can establish that the following relation is a bisimulation up to v:

I E [0]P|R[o] % [p]Q|R[p] whenever I & [0]P =~ [p]Q
and-R
and ¢ and p are type substitutions

Since % is symmetric, it suffices from Proposition 2 to show that & is a simulation up to v.
Consider any transition of the form:

(T F[o]P|R[a]) —> (T [¢]P")

where:
Fe[o]P~[p|Q FFR

17

We are required to establish a matching weak transition for (I' - [p]Q|R[p]), for which we proceed
by case analysis on a. The interesting case is when o = T, so from Rule TR-SILENT we have:

P|R[0] — P”

and we proceed by case analysis on the derivation of this transition. The interesting case is when
the symmetric form of Rule R-PAR was used, and we have:

Rlo] — R” P"=P|R"
for which we use Proposition 3 to get that:
R— R’ R"=R"[d]
We then use Proposition 1 to get two cases, of which the interesting one is 2, where we have:
R YETIUE, X8 Ry — (vy(a: T)R)(U[o]/X, o]
s0 we can use Propositions 4 and 5 to get that T are generative and:
ra:TreU;b) ra:TreX;x:V) X,ra:T,b:VrR

Hence we can use Rules TR-REceP and TR-OuUT-W to establish:

Cu

(Fe[op) YEDUE 471 (lP o [0]:B))
r

,r,a:T,b:V+[U[o]/X,0]P|0)

Since I' E [0]P ~ [p]Q we have:

FHpR) S22 (T e
2 R TBV - W/K,pIQ)

where:

=

X,r,a:T,b:V E=[U[o]/X,0]P~ W /X,p]Q

From Proposition 3 we have:

and so it is routine to establish using Rules R-PAR and R-CoM:
QIR[p] == v(a@: T[p))Q' [R'W/X,p]
and hence using TR-SILENT:
(M [PIQIRIP) == (T [p]v(a: T[p])(Q'[RW/X,p]))
Finally, since X,I",a: T,b:V E [U[0]/X,0]P ~ [W /X, p]Q’ we have by definition of & :
X.r.a:T,b:V[Ufo]/X,0]P|R'U[o]/X,0] & W/X.plQ[R'W /X, p]
and hence by definition of gV:
M= [o]v(@: T[o])(P|R'U[o]/X,0]) 2" [p]v(@: T[p])(Q'[RW/X,p])

which is as required.

18

B Completeness of bisimulation for contextual equivalence

Defi nition 11. We define a typed relatiorezP on closed configurations by asking that=P be the
largest relation which is symmetric, reduction closed, barb preserving (with these concepts lifted
to configurations in the obvious way), and is closed with respect to the following condition:

I, & [o]P|R[o] ® [p]Q|R[p] whenever I' E [0]P ~ [p]Q
and I, =R
and o and p are type substitutions

Note immediately, that I F P = Q implies ' = P =P Q. Therefore it is sufficient to prove com-
pleteness of =~ with respect to =P. Before we can do this we show two Propositions which will
be used to execute the proof. We omit the proofs of these as they follow the lines of similar
propositions for the (higher-order) tecalculus [15].

Proposition 8 (Contextuality). If

v(@)c(X;b:V

(T [alP) Y)P

a:T)eJ:b .
where P vaneon P’ then there exists some process R, and ext, fail € dom(I") such that

Mext: [[X;V],fail: [FR
and
PIR[o] == v(@: T)(P'[ext(U;b)) v(@:T)(P'|ext(U;b)) Atail
Moreover, for any Q,p such that Q |R[p] == Q" with Q" Jr,; we have
Q" =v(@: T)(Q |ext(W;b))

v(&@T)c(W;b) , .
and Q :> Q' for some W.

Proposition 9 (Extrusion). If
Mext: [[X;V]E [olv(@: T)(P|ext(U;b)) =P [plv(a: T)(Q|ext(W;b))
with & C b and ext ¢ fn(P,Q) then
X;r,b:VE[G/X,0)P =P W/X,pQ
We can now prove Theorem 3: if TEP = QthenT EP & Q.

Proof. If suffices to prove the result for closed processes and for =P in place of =2. We proceed
by coinduction by defining ® to be

E [0]P . [p]Q whenever I E [o]P =P [p]Q

and showing that % forms a bisimulation upto =. Suppose that I' = [0]P % [p]Q and further

suppose that (I" + [o]P) 2 (I + [0']P"). We must show that (I" F [p]Q) has a matching tran-
sition. This is straightforward in the cases in which a is generated by rules (TR-SILENT) or

(TR-RECEP). Otherwise, a is generated by rule (TR-OuUT-W), that is

a is of the form v(&)c X;b: V),
MisX;,b:V
dis [U/X,a]

and P 4>(o)

P/

19

We can now appeal to Proposition 8 to find a process R such that I, ext : I[)?;V],fail ;1 +Rand

P|Ro] == v(@: T)(P'|ext(U:b)) v(@:T)(P'|&xt(U;b)) Arail
We know that I = [0]P 2P [p]Q and, by definition, this gives us
I ext: [[X;V],fail : |[] E [0]P|R[o] =P Q|R]p]

also. As =P is reduction-closed and barb-preserving, we must have Q| R[o] == Q" for some
Q" Ml Such that (strengthening to remove fail from the environment)

b)) =P Q". @)
. - I . v(@T)c(W;b)

By Proposition 8 we have Q" =v(a: T)(Q’ |ext(W; b)) for some Q" andW and Q ——— Q'.

This tells us that

Mext: [[X;V]Ev(@:T)(P'|ext(U

(MEIPIQ) = (I W/X,pIQ))
and moreover, by applying Proposition 9 to (1), we see that
X;r,b:VE[G/X,0)P =P W/X,pQ
which is to say
"Flo'lP & W/X,p]Q.
as required.

C Pierceand Sangiorgi’s polymor phic bisimulation isour unifying
bismulation

Pierce and Sangiorgi’s definition of polymorphic bisimulation relies on an “allow relation’ [23,

Defn 12.1.1] which, rewritten to fit our notation, is almost the same as in Definition 12. The

‘almost’ is the addition of the condition ‘T are generative’ to Rule A-INP which is missing in
their formulation: this appears to be a slight error in their definition.

Defi nition 12 (Allow Relation). The allow relation (" || 0) ('] o), where ['[o] and [0’
are closed, is defined by:
(A-TAU)

(Fo) — (T'[lo)

r,a:TrcU;b) {a@ndom(F)=0 T are generative

(A-INP)
b -
rlio) Y9 (ra:70)
M Fo(X:X: \7) V.ra:veb:w
N W\ — (T
{@.X,Y} ndom(r) =0 (mgU(va)'G)—(T/Y 9 (a-0uT)
v@T)cUb J

The weak, asynchronous formulation of Pierce and Sangiorgi’s definition of polymorphic bisim-
ulation [23, Defn 12.2.2] is then as in Definition 13. Readers familiar with their paper will note
that this is the definition without clause 3(a), which is their conjectured fully abstract model.

20

Defi nition 13 (Polymor phic bisimulation). A polymorphic (asynchronous weak) simulation %
is a typed relation on closed configurations such that if I" = [0]P & [p]Q then:

1.
2.

if P —~ P’ then we have Q == Q' for some I - [o]P’ & [p]Q;

|f(F\|0) U] ("]l 0") then (T || p) <5 WEL (11 of) and (Q|C(W;BY) —— Q' for some

[0] P|C§U b)) & [p1Q';
VETSOD) (1) o7y and P ¥

aT)c(U;b) v(@V)c(W:b)

P’ then (T || p)

(T|lp') and
<§V) < ﬂ / ! / / /
Q L&D oy for some I &= (o]’ & [0']Q.

A polymorphic bisimulation is a simulation whose inverse is also a simulation. Let ~ be the
largest polymorphic bisimulation.

Proposition 10. ~ and ~ coincide.

Proof. We have to show two properties: ~ is a polymorphic simulation, and ~ is a simulation.
We consider each of these in turn.

~ isa polymorphic simulation. Consider any ' = [0]P =~ [p]Q

1. If P —» P’ then by Rule TR-SILENT and the definition of bisimulation, we have
Q — Q’ for some I = [0]P’ =~ [p]Q’ as required.

2. 1F (F || o) U108 (a: T || o) then by Rule A-INPwe have:

ra:TrcU;b) {a}ndom(F)=0 T are generative

and so we also have: o
SR —
(Fllp) —— (F.a:T|p)
Moreover, we have:
(T [olP) YEDUE 4.5 1 [o)p | o(d]ol;B))
and so by definition of bisimulation:
aT)c[U;b N . .
(FF[0]Q) 28 (- 4.7 L (@) r.a:T F (o] |c(Uib) ~ @

which must come from Rules TR-SILENT and TR-RECEP where:
Q— Q" Q"[c{U[p};b) —
and so from R-PAR we have:
Qlc(Up)ib) — Q'

as required.
v(aT)c(U;b)

3. 1f (M) o) VETCOR (- (r'||o’)and P P’ then by Rule A-OuT we have:
= (XY,ra:v)[mguV, W)} Mc(X;x:V) Y,ra:yrb:w
{aX.Y}ndom(N) =0 (mgu(V.W);0') = (T/¥,0)
and by Rule TR-OuT-U we have:
(I_ - [O']P) v(@yY)c(X;b:v) (I_, - [0,“3,)
and so, by definition of ~ we have:
&Y)c(X;bV
(MFplQ) S22 (M [p]Q) M EP A Q

which must come from Rules TR-SILENT and TR-OuT-U where:

v@E@T)ed’e)
Q _ Q
as required.

21

~ jsasimulation. Consider any I' E [0]P ~ [p]Q.

1. If (' [o]P) = (I = [0]P’) then by Rule TR-SILENT and the definition of polymor-
phic bisimulation, we have (I - [p]Q) == (I' - [p]Q’) for some I' & [0]P" ~ [p]Q’ as
required.

2. 1F (T F [o]P) YEM8 &7 - [0]P') then by Rule TR-RECEP we have:

P'=P|c(U;b)jo] r,a:TrcU;b) {alndom(F)=0 T are generative
and so by Rule A-INP we have:

(T o) c[Uol;b]

(r,a:7| o)
which means by definition of polymorphic bisimulation we have:
Qle(Ulplib) = Q' r.a:Tk[o]P' ~[pQf

so by Rules TR-RECEP and TR-SILENT we have:

v(aT)c[U;b] = ,
(FEPIQ) =———— (Na: T+ [pQ)
as required.)
3. 1F (T [o]p) YEEXEY) 1 (5/)P) then by TR-OUT-U we have:
M= (X,¥,r,b: V) [mgu(V,W) P YETEUD) b
FecX;x:V) Y,ra:¥Yrb:w
{a8,X,¥Y}ndom(N) =0 (mgu(V,W);d’)=(T/¥,0)

and so by Rule A-OuT we have:
(r o) Y8 (R.9.1.4:9)[meu(V.W)] || o)
which means by the definition of polymorphic bisimulation we have:

(Fllp) YETEWE, (pry oy @ XELEED o pri (g~ [p)Q)

so by Rule A-OuT we have:
(mgu(V,W);p") = (T'/¥,p)
and hence by Rules TR-OuT-U and TR-SILENT we have:
V(@Y)e(X;p)
(M-[pQ) == (" pIQ)
as required.
Thus, = and ~ coincide.

D Strongtyping for if-then-else

Defi nition 14 (Strongtyping). Write I' 5 P when the process typing ' - P can be derived using
Rule T-TEST-S in place of T-TEST-W.

Defi nition 15 (Strong typed contextual eguivalence). Let 2 be the contextual equivalence
generated by type system I" ¢ P.

Defi nition 16 (Strong closing substitution). A substitution o strongly closes I if:

22

1. dom(o) C dom(I),

2. I'[o] is closed,

3. foranyx:Telandx:U eTl,ifx=ythenT =U, and

4, foranyx:Telandy:U eT,ifx[o]=y[o]and T =U thenx =Y.

Proposition}l (Strong closed extension). For any o which strongly closes I, and for any
closed I'[o],b : V, there exists unique y (up to renamingﬂfreshly chosen variables) and unique
o’ D o such that o’ strongly closes (7,X: V) and y[o'] = b.

Defi nition 17 (Strong typed labelled transitions). Write C A s C’ when the labelled transi-

tionC —2» C’ can be derived using Rule TR-OuUT-S in place of TR-OUT-W.

—ll

p YETUUR) o g% V)
(U/)? o) ¢ strongly closes ()? r.y
(X,

(- [o]p) XY

(@

,X}Ndom(l) =0
\7)

Mo1=b_291=2 g ours)

Vo))

Defi nition 18 (Strong typed bisimulation). Write ~ for the bisimulation generated by the la-
belled transition system C A .c.

Theorem 4 (Full abstraction of strong typed bisimulation for strong typed contextual
equivalence). T E P~ Qifandonly if T = P =, Q.
E Unifying typing for if-then-else

Defi nition 19 (Unifying typing). Write " i, P when the process typing I' - P can be derived
using Rule T-TEST-U in place of T-TEST-W.

Defi nition 20 (Unifying typed contextual equivalence). Let=, be the contextual equivalence
generated by type system I -, P.

Defi nition 21 (Unifying typed labelled transitions). Write C S « C" when the labelled tran-

sition C —% C' can be derived using Rule TR-OuT-U in place of TR-OUT-W.

P P rhe(XiX:V) Y,ra:Yeb:W
{8X ¥} ndom(T) =0 _(mgu(V.W):0) =(T/V,0) _ (g g1y
(T [o]p) L&) (X ¥, 7,6 V) [mgu(V,W)] - [0')P)

Defi nition 22 (Unifying typed bisimulation). Write =, for the bisimulation generated by the
s a
labelled transition system C — , C'.

Theorem 5 (Full abstraction of unifying typed bisimulation for unifying typed contextual
equivalence). T EP~,° Qifandonlyif T FP =, Q.

23

